1,061
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Recent initiatives in effective modeling of spray drying

, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & show all
Pages 1614-1647 | Received 26 Feb 2021, Accepted 09 Mar 2021, Published online: 28 Mar 2021

References

  • Huang, L.; Mujumdar, A. S. Development of a New Innovative Conceptual Design for Horizontal Spray Dryer via Mathematical Modeling. Drying Technol. 2005, 23, 1169–1187. DOI: 10.1081/DRT-200059328.
  • Xiao, J.; Li, Y.; George, O. A.; Li, Z.; Yang, S.; Woo, M. W.; Wu, W. D.; Chen, X. D. Numerical Investigation of Droplet Pre-Dispersion in a Monodisperse Droplet Spray Dryer. Particuology 2018, 38, 44–60. DOI: 10.1016/j.partic.2017.04.008.
  • Langrish, T. A. G.; Harrington, J.; Huang, X.; Zhong, C. Using CFD Simulations to Guide the Development of a New Spray Dryer Design. Processes 2020, 8, 932. DOI: 10.3390/pr8080932.
  • Woo, M. W.; Rogers, S.; Lin, S. X. Q.; Selomulya, C.; Chen, X. D. Numerical Probing of a Low Velocity Concurrent Pilot Scale Spray Drying Tower for Mono-Disperse Particle Production – Unusual Characteristics and Possible Improvements. Chem. Eng. Process 2011, 50, 417–427. DOI: 10.1016/j.cep.2011.02.007.
  • Masters, K. Spray Drying Handbook, 5th ed.; Longman Scientific and Technical: New York, 1991.
  • Mandato, S.; Rondet, E.; Delaplace, G.; Barkouti, A.; Galet, L.; Accart, P.; Ruiz, T.; Cuq, B. Liquids' Atomization with Two Different Nozzles: Modeling of the Effects of Some Processing and Formulation Conditions by Dimensional Analysis. Powder Technol. 2012, 224, 323–330. DOI: 10.1016/j.powtec.2012.03.014.
  • Patel, K.; Chen, X. D.; Jeantet, R.; Schuck, P. One-Dimensional Simulation of co-Current, Dairy Spray Drying Systems — Pros and Cons. Dairy Sci. Technol. 2010, 90, 181–210. DOI: 10.1051/dst/2009059.
  • Truong, V.; Bhandari, B. R.; Howes, T. Optimization of co-Current Spray Drying Process of Sugar-Rich Foods. Part I—Moisture and Glass Transition Temperature Profile during Drying. J. Food Eng. 2005, 71, 55–65. DOI: 10.1016/j.jfoodeng.2004.10.017.
  • Pearce, D. L. A Novel Way to Measure the Concentration of a Spray in a Spray Dryer. Drying Technol. 2006, 24, 777–781. DOI: 10.1080/03602550600685366.
  • Pinto, M.; Kemp, I.; Bermingham, S.; Hartwig, T.; Bisten, A. Development of an Axisymmetric Population Balance Model for Spray Drying and Validation against Experimental Data and CFD Simulations. Chem. Eng. Res. Des. 2014, 92, 619–634. DOI: 10.1016/j.cherd.2013.12.019.
  • Ali, M.; Mahmud, T.; Heggs, P. J.; Ghadiri, M.; Djurdjevic, D.; Ahmadian, H.; Juan, LMd.; Amador, C.; Bayly, A. A One-Dimensional Plug-Flow Model of a Counter-Current Spray Drying Tower. Chem. Eng. Res. Des. 2014, 92, 826–841. DOI: 10.1016/j.cherd.2013.08.010.
  • Jubaer, H.; Afshar, S.; Xiao, J.; Chen, X. D.; Selomulya, C.; Woo, M. W. On the Effect of Turbulence Models on CFD Simulations of a Counter-Current Spray Drying Process. Chem. Eng. Res. Des. 2019, 141, 592–607. DOI: 10.1016/j.cherd.2018.11.024.
  • Jin, Y.; Chen, X. D. Numerical Study of the Drying Process of Different Sized Particles in an Industrial-Scale Spray Dryer. Drying Technol. 2009, 27, 371–381. DOI: 10.1080/07373930802682957.
  • Huang, L.; Kumar, K.; Mujumdar, A. S. Simulation of a Spray Dryer Fitted with a Rotary Disk Atomizer Using a Three-Dimensional Computional Fluid Dynamic Model. Drying Technol. 2004, 22, 1489–1515. DOI: 10.1081/DRT-120038737.
  • Fletcher, D. F.; Langrish, T. A. G. Scale-Adaptive Simulation (SAS) Modelling of a Pilot-Scale Spray Dryer. Chem. Eng. Res. Des. 2009, 87, 1371–1378. DOI: 10.1016/j.cherd.2009.03.006.
  • Zhu, P.; Méjean, S.; Blanchard, E.; Jeantet, R.; Schuck, P. Prediction of Drying of Dairy Products Using a Modified Balance-Based Desorption Method. Dairy Sci. & Technol. 2013, 93, 347–355. DOI: 10.1007/s13594-012-0099-9.
  • Langrish, T. A. G.; Kockel, T. K. The Assessment of a Characteristic Drying Curve for Milk Powder for Use in Computational Fluid Dynamics Modelling. Chem. Eng. J. 2001, 84, 69–74. DOI: 10.1016/S1385-8947(00)00384-3.
  • Chen, X. D. The Basics of a Reaction Engineering Approach to Modeling Air-Drying of Small Droplets or Thin-Layer Materials. Drying Technol. 2008, 26, 627–639. DOI: 10.1080/07373930802045908.
  • Woo, M. W.; Daud, W. R. W.; Mujumdar, A. S.; Wu, Z.; Meor Talib, M. Z.; Tasirin, S. M. CFD Evaluation of Droplet Drying Models in a Spray Dryer Fitted with a Rotary Atomizer. Drying Technol. 2008, 26, 1180–1198. DOI: 10.1080/07373930802306953.
  • Fletcher, D. F.; Guo, B.; Harvie, D. J. E.; Langrish, T. A. G.; Nijdam, J. J.; Williams, J. What is Important in the Simulation of Spray Dryer Performance and How Do Current CFD Models Perform? Appl. Math. Modell. 2006, 30, 1281–1292. DOI: 10.1016/j.apm.2006.03.006.
  • Jaskulski, M.; Atuonwu, J. C.; Tran, T. T. H.; Stapley, A. G. F.; Tsotsas, E. Predictive CFD Modeling of Whey Protein Denaturation in Skim Milk Spray Drying Powder Production. Adv. Powder Technol. 2017, 28, 3140–3147. DOI: 10.1016/j.apt.2017.09.026.
  • Jubaer, H.; Afshar, S.; Mejean, S.; Jeantet, R.; Xiao, J.; Chen, X. D.; Selomulya, C.; Woo, M. W. Computationally Inexpensive Simulation of Agglomeration in Spray Drying While Preserving Structure Related Information Using CFD. Powder Technol. 2020, 372, 372–393. DOI: 10.1016/j.powtec.2020.05.111.
  • Malafronte, L.; Ahrné, L.; Innings, F.; Jongsma, A.; Rasmuson, A. Prediction of Regions of Coalescence and Agglomeration along a Spray Dryer—Application to Skim Milk Powder. Chem. Eng. Res. Des. 2015, 104, 703–712. DOI: 10.1016/j.cherd.2015.10.011.
  • Verdurmen, R. E. M.; Menn, P.; Ritzert, J.; Blei, S.; Nhumaio, G. C. S.; Sonne Sørensen, T.; Gunsing, M.; Straatsma, J.; Verschueren, M.; Sibeijn, M.; et al. Simulation of Agglomeration in Spray Drying Installations: The EDECAD Project. Drying Technol. 2004, 22, 1403–1461. DOI: 10.1081/DRT-120038735.
  • Woo, M. W.; Rogers, S.; Selomulya, C.; Chen, X. D. Particle Drying and Crystallization Characteristics in a Low Velocity Concurrent Pilot Scale Spray Drying Tower. Powder Technol. 2012, 223, 39–45. DOI: 10.1016/j.powtec.2011.06.030.
  • Fu, N.; Xiao, J.; Woo, M. W.; Chen, X. D. Frontiers in Spray Drying. Advances in Drying Science and Technology; CRC Press: Boca Raton, 2020.
  • Woo, M. W. Computational Fluid Dynamics Simulation of Spray Dryers: An Engineer’s Guide. In Advances in Drying Science and Technology; A.S. Mujumdar, Ed.; CRC Press: Boca Raton London New York, 2016.
  • Zbicinski, I. Modeling and Scaling up of Industrial Spray Dryers: A Review. J. Chem. Eng. Jpn. 2017, 50, 757–767. DOI: 10.1252/jcej.16we350.
  • Chen, X. D.; Lin, S. X. Q. Air Drying of Milk Droplet under Constant and Time-Dependent Conditions. AIChE J. 2005, 51, 1790–1799. DOI: 10.1002/aic.10449.
  • Gauvin, W. H.; Katta, S.; Knelman, F. H. Drop Trajectory Predictions and Their Importance in the Design of Spray Dryers. Int. J. Multiphase Flow 1975, 1, 793–816. DOI: 10.1016/0301-9322(75)90036-1.
  • Gauvin, W. H.; Katta, S. Basic Concepts of Spray Dryer Design. AIChE J. 1976, 22, 713–724. DOI: 10.1002/aic.690220413.
  • Parti, M.; Paláncz, B. Mathematical Model for Spray Drying. Chem. Eng. Sci. 1974, 29, 355–362. DOI: 10.1016/0009-2509(74)80044-8.
  • Patel, K. C.; Chen, X. D. 2004 Mathematical Modelling for Plug-Flow Spray Dryer. In 32nd Australasian Chemical Engineering Conference (CHEMECA 2004); Engineers Australia: Sydney, Australia, 2004; pp. 645–650.
  • Patel, K. C.; Chen, X. D. Prediction of Spray-Dried Product Quality Using Two Simple Drying Kinetics Models. J. Food Process Eng. 2005, 28, 567–594. DOI: 10.1111/j.1745-4530.2005.00039.x.
  • Rogers, S.; Fang, Y.; Qi Lin, S. X.; Selomulya, C.; Dong Chen, X. A Monodisperse Spray Dryer for Milk Powder: Modelling the Formation of Insoluble Material. Chem. Eng. Sci. 2012, 71, 75–84. DOI: 10.1016/j.ces.2011.11.041.
  • You, X.; Zhou, Z.; Liao, Z.; Che, L.; Chen, X. D.; Wu, W. D.; Woo, M.; Selomulya, C. Dairy Milk Particles Made with a Mono-Disperse Droplet Spray Dryer (MDDSD) Investigated for the Effect of Fat. Drying Technol. 2014, 32, 528–542. DOI: 10.1080/07373937.2013.840650.
  • Zbiciński, I. Development and Experimental Verification of Momentum, Heat and Mass Transfer Model in Spray Drying. Chem. Eng. J. Biochem. Eng. J. 1995, 58, 123–133. DOI: 10.1016/0923-0467(94)02943-1.
  • Zbicinski, I.; Strumillo, C.; Delag, A. Drying Kinetics and Particle Residence Time in Spray Drying. Drying Technol. 2002, 20, 1751–1768. DOI: 10.1081/DRT-120015412.
  • Zbicinski, I.; Grabowski, S.; Strumillo, C.; Kiraly, L.; Krzanowski, W. Mathematical Modelling of Spray Drying. Comput. Chem. Eng. 1988, 12, 209–214. DOI: 10.1016/0098-1354(88)85029-4.
  • Jubaer, H.; Afshar, S.; Le Maout, G.; Mejean, S.; Selomulya, C.; Xiao, J.; Chen, X. D.; Jeantet, R.; Woo, M. W. The Impact of Self-Sustained Oscillations on Particle Residence Time in a Commercial Scale Spray Dryer. Powder Technol. 2020, 360, 1177–1191. DOI: 10.1016/j.powtec.2019.11.023.
  • Razmi, R.; Yu, W.; Young, B.; Woo, M. W. What is Important in the Design of Counter Current Spray Drying Towers? In Chemeca 2019: Chemical Engineering Megatrends and Elements; Engineers Australia: Sydney, Australia, 2019; pp. 5–15.
  • Ali, M. Numerical Modelling of a Counter-Current Spray Drying Tower. In School of Chemical and Process Engineering; The University of Leeds: Leeds, UK, 2014.
  • Strumillo, C.; Kudra, T. Drying: Principles, Applications, and Design. Gordon and Breach Science Publishers: New York, 1986.
  • Chiou, D.; Langrish, T. A. G.; Braham, R. Partial Crystallization Behavior during Spray Drying: Simulations and Experiments. Drying Technol. 2007, 26, 27–38. DOI: 10.1080/07373930701781181.
  • Ferziger, J. H.; Perić, M. Computational Methods for Fluid Dynamics, 3rd ed. Springer: Berlin, 2002.
  • Crowe, C. T.; Sharma, M. P.; Stock, D. E. The Particle-Source-in Cell (PSI-Cell) Model for Gas-Droplet Flows. J. Fluids Eng. 1977, 99, 325–332. DOI: 10.1115/1.3448756.
  • Bradshaw, P.; Launder, B. E.; Lumley, J. L. Collaborative Testing of Turbulence Models. J. Fluids Eng. 1996, 118, 243–247. DOI: 10.1115/1.2817369.
  • Jongsma, F. J.; Innings, F.; Olsson, M.; Carlsson, F. Large Eddy Simulation of Unsteady Turbulent Flow in a Semi-Industrial Size Spray Dryer. Dairy Sci. Technol. 2013, 93, 373–386. DOI: 10.1007/s13594-012-0097-y.
  • Kuriakose, R.; Anandharamakrishnan, C. Computational Fluid Dynamics (CFD) Applications in Spray Drying of Food Products. Trends Food Sci. Technol. 2010, 21, 383–398. DOI: 10.1016/j.tifs.2010.04.009.
  • Li, X.; Zbiciński, I. A Sensitivity Study on CFD Modeling of Cocurrent Spray-Drying Process. Drying Technol. 2005, 23, 1681–1691. DOI: 10.1081/DRT-200065093.
  • Zbiciński, I.; Li, X. Conditions for Accurate CFD Modeling of Spray-Drying Process. Drying Technol. 2006, 24, 1109–1114. DOI: 10.1080/07373930600778221.
  • Tran, T. T. H.; Jaskulski, M.; Tsotsas, E. Reduction of a Model for Single Droplet Drying and Application to CFD of Skim Milk Spray Drying. Drying Technol. 2017, 35, 1571–1583. DOI: 10.1080/07373937.2016.1263204.
  • Mezhericher, M.; Levy, A.; Borde, I. Borde, I. Spray Drying Modelling Based on Advanced Droplet Drying Kinetics. Chem. Eng. Process 2010, 49, 1205–1213. DOI: 10.1016/j.cep.2010.09.002.
  • Jaskulski, M.; Wawrzyniak, P.; Zbiciński, I. CFD Model of Particle Agglomeration in Spray Drying. Drying Technol. 2015, 33, 1971–1980. DOI: 10.1080/07373937.2015.1081605.
  • Wawrzyniak, P.; Podyma, M.; Zbicinski, I.; Bartczak, Z.; Rabaeva, J. Modeling of Air Flow in an Industrial Countercurrent Spray-Drying Tower. Drying Technol. 2012, 30, 217–224. DOI: 10.1080/07373937.2011.618282.
  • Wawrzyniak, P.; Jaskulski, M.; Zbiciński, I.; Podyma, M. CFD Modelling of Moisture Evaporation in an Industrial Dispersed System. Adv. Powder Technol. 2017, 28, 167–176. DOI: 10.1016/j.apt.2016.09.029.
  • Ali, M.; Mahmud, T.; Heggs, P. J.; Ghadiri, M.; Bayly, A.; Ahmadian, H.; Martin de Juan, L. CFD Modeling of a Pilot-Scale Countercurrent Spray Drying Tower for the Manufacture of Detergent Powder. Drying Technol. 2017, 35, 281–299. DOI: 10.1080/07373937.2016.1163576.
  • Hernandez, B.; Fraser, B.; Martin de Juan, L.; Martin, M. Computational Fluid Dynamics (CFD) Modeling of Swirling Flows in Industrial Counter-Current Spray-Drying Towers under Fouling Conditions. Ind. Eng. Chem. Res. 2018, 57, 11988–12002. DOI: 10.1021/acs.iecr.8b02202.
  • Mezhericher, M.; Levy, A.; Borde, I. Probabilistic Hard-Sphere Model of Binary Particle–Particle Interactions in Multiphase Flow of Spray Dryers. Int. J. Multiphase Flow 2012, 43, 22–38. DOI: 10.1016/j.ijmultiphaseflow.2012.02.009.
  • Mezhericher, M.; Levy, A.; Borde, I. Borde, I. Droplet–Droplet Interactions in Spray Drying by Using 2d Computational Fluid Dynamics. Drying Technol. 2008, 26, 265–282. DOI: 10.1080/07373930801897523.
  • Mezhericher, M.; Levy, A.; Borde, I. Borde, I. Modeling of Droplet Drying in Spray Chambers Using 2D and 3D Computational Fluid Dynamics. Drying Technol. 2009, 27, 359–370. DOI: 10.1080/07373930802682940.
  • Kieviet, F. G.; Kerkhof, P. J. A. M. Air Flow, Temperature and Humidity Patterns in a co-Current Spray Dryer: modelling and Measurements. Drying Technol. 1997, 15, 1763–1773. DOI: 10.1080/07373939708917325.
  • Francia, V.; Martin, L.; Bayly, A. E.; Simmons, M. J. H. An Experimental Investigation of the Swirling Flow in a Tall-Form Counter Current Spray Dryer. Exp. Therm. Fluid Sci. 2015, 65, 52–64. DOI: 10.1016/j.expthermflusci.2015.03.004.
  • Francia, V.; Martin, L.; Bayly, A. E.; Simmons, M. J. H. Influence of Wall Friction on Flow Regimes and Scale-up of Counter-Current Swirl Spray Dryers. Chem. Eng. Sci. 2015, 134, 399–413. DOI: 10.1016/j.ces.2015.04.039.
  • Wawrzyniak, P.; Podyma, M.; Zbicinski, I.; Bartczak, Z.; Polanczyk, A.; Rabaeva, J. Model of Heat and Mass Transfer in an Industrial Counter-Current Spray-Drying Tower. Drying Technol. 2012, 30, 1274–1282. DOI: 10.1080/07373937.2012.704604.
  • Jaskulski, M.; Wawrzyniak, P.; Zbiciński, I. CFD Simulations of Droplet and Particle Agglomeration in an Industrial Counter-Current Spray Dryer. Adv. Powder Technol. 2018, 29, 1724–1733. DOI: 10.1016/j.apt.2018.04.007.
  • Piątkowski, M. Drying Kinetics of Counter-Current Spray Drying (in Polish); University of Technology: Łódź, 2011.
  • Zbicinski, I.; Piatkowski, M. Continuous and Discrete Phase Behavior in Countercurrent Spray Drying Process. Drying Technol. 2009, 27, 1353–1362. DOI: 10.1080/07373930903383661.
  • Langrish, T. A. G.; Oakley, D. E.; Keey, R. B.; Bahu, R. E.; Hutchinson, C. A. Time-Dependent Flow Patterns in Spray Dryers: Particle Processing. Trans. Inst. Chem. Eng. 1993, 71, 355–360.
  • Southwell, D. B.; Langrish, T. A. G. The Effect of Swirl on Flow Stability in Spray Dryers. Chem. Eng. Res. Des. 2001, 79, 222–234. DOI: 10.1205/026387601750281752.
  • Gabites, J. R.; Abrahamson, J.; Winchester, J. A. Air Flow Patterns in an Industrial Milk Powder Spray Dryer. Chem. Eng. Res. Des. 2010, 88, 899–910. DOI: 10.1016/j.cherd.2009.12.009.
  • Gimbun, J.; Law, W. P.; Anandharamakrishnan, C. Computational Fluid Dynamics Modelling of the Dairy Drying Processes. In Handbook of Drying for Dairy Products, C. Anandharamakrishnan, Ed.; John Wiley & Sons, Ltd: Chichester, UK, 2017; pp. 179–201.
  • Papadakis, S. E.; King, C. J. Air Temperature and Humidity Profiles in Spray Drying. 1. Features Predicted by the Particle Source in Cell Model. Ind. Eng. Chem. Res. 1988, 27, 2111–2116. DOI: 10.1021/ie00083a026.
  • Oakley, D. E.; Bahu, R. E. Computational Modelling of Spray Dryers. Comput. Chem. Eng. 1993, 17, S493–S498. DOI: 10.1016/0098-1354(93)80271-N.
  • Kieviet, F. G.; Van Raaij, J.; De Moor, P. P. E. A.; Kerkhof, P. J. A. M. Measurement and Modelling of the Air Flow Pattern in a Pilot-Plant Spray Dryer. Chem. Eng. Res. Des. 1997, 75, 321–328. DOI: 10.1205/026387697523778.
  • Frydman, A.; Vasseur, J.; Moureh, J.; Sionneau, M.; Tharrault, P. Comparison of Superheated Steam and Air Operated Spray Dryers Using Computational Fluid Dynamics. Drying Technol. 1998, 16, 1305–1338. DOI: 10.1080/07373939808917464.
  • Straatsma, J.; Van Houwelingen, G.; Steenbergen, A. E.; De Jong, P. Spray Drying of Food Products: 1. Simulation Model. J. Food Eng. 1999, 42, 67–72. DOI: 10.1016/S0260-8774(99)00107-7.
  • Lebarbier, C.; Kockel, T. K.; Fletcher, D. F.; Langrish, T. A. G. Experimental Measurement and Numerical Simulation of the Effect of Swirl on Flow Stability in Spray Dryers. Chem. Eng. Res. Des. 2001, 79, 260–268. DOI: 10.1205/026387601750281789.
  • Harvie, D. J. E.; Langrish, T. A. G.; Fletcher, D. F. Numerical Simulations of Gas Flow Patterns within a Tall-Form Spray Dryer. Chem. Eng. Res. Des. 2001, 79, 235–248. DOI: 10.1205/026387601750281761.
  • Harvie, D. J. E.; Langrish, T. A. G.; Fletcher, D. F. A Computational Fluid Dynamics Study of a Tall-Form Spray Dryer. Food Bioprod. Process. 2002, 80, 163–175. DOI: 10.1205/096030802760309188.
  • Langrish, T. A. G.; Williams, J.; Fletcher, D. F. Simulation of the Effects of Inlet Swirl on Gas Flow Patterns in a Pilot-Scale Spray Dryer. Chem. Eng. Res. Des. 2004, 82, 821–833. DOI: 10.1205/0263876041596661.
  • Bayly, A. E.; Jukes, P.; Groombridge, M.; McNally, C. Airflow Patterns in a Counter-Current Spray Drying Tower-Simulation and Measurement. In Proceedings of the 14th International Drying Symposium, UNICAMP Universidade Estadual de Campinas, Campinas, State of São Paulo, Brazil, 2004; pp. 775–781.
  • Birchal, V. S.; Huang, L.; Mujumdar, A. S.; Passos, M. L. Spray Dryers: Modeling and Simulation. Drying Technol. 2006, 24, 359–371. DOI: 10.1080/07373930600564431.
  • Kota, K.; Langrish, T. Prediction of Deposition Patterns in a Pilot-Scale Spray Dryer Using Computational Fluid Dynamics (CFD) Simulations. Chem. Prod. Process Model. 2007, 2, 1–18. DOI: 10.2202/1934-2659.1124.
  • Blei, S.; Sommerfeld, M. CFD in Drying Technology – Spray-Dryer Simulation. In Modern Drying Technology; Wiley-VCH Verlag GmbH & Co. KGaA: Berlin, Germany, 2007; pp. 155–208.
  • Woo, M. W.; Daud, W. R. W.; Mujumdar, A. S.; Talib, M. Z. M.; Hua, W. Z.; Tasirin, S. M. Siti Masrinda Comparative Study of Droplet Drying Models for CFD Modelling. Chem. Eng. Res. Des. 2008, 86, 1038–1048. DOI: 10.1016/j.cherd.2008.04.003.
  • Jin, Y.; Chen, X. D. A Three-Dimensional Numerical Study of the Gas/Particle Interactions in an Industrial-Scale Spray Dryer for Milk Powder Production. Drying Technol. 2009, 27, 1018–1027. DOI: 10.1080/07373930903203588.
  • Woo, M. W.; Daud, W. R. W.; Mujumdar, A. S.; Wu, Z.; Talib, M. Z. M.; Tasirin, S. M. Non-Swirling Steady and Transient Flow Simulations in Short-Form Spray Dryers. Chem. Prod. Process Model. 2009, 4, Article 20. DOI: 10.2202/1934-2659.
  • Gianfrancesco, A.; Turchiuli, C.; Flick, D.; Dumoulin, E. CFD Modeling and Simulation of Maltodextrin Solutions Spray Drying to Control Stickiness. Food Bioprocess Technol. 2010, 3, 946–955. DOI: 10.1007/s11947-010-0352-2.
  • Ullum, T.; Sloth, J.; Brask, A.; Wahlberg, M. Predicting Spray Dryer Deposits by CFD and an Empirical Drying Model. Drying Technol. 2010, 28, 723–729. DOI: 10.1080/07373931003799319.
  • Anandharamakrishnan, C.; Gimbun, J.; Stapley, A. G. F.; Rielly, C. D. A Study of Particle Histories during Spray Drying Using Computational Fluid Dynamic Simulations. Drying Technol. 2010, 28, 566–576. DOI: 10.1080/07373931003787918.
  • Jin, Y.; Chen, X. D. A Fundamental Model of Particle Deposition Incorporated in CFD Simulations of an Industrial Milk Spray Dryer. Drying Technol. 2010, 28, 960–971. DOI: 10.1080/07373937.2010.497082.
  • Jin, Y.; Chen, X. D. Entropy Production during the Drying Process of Milk Droplets in an Industrial Spray Dryer. Int. J. Therm. Sci. 2011, 50, 615–625. DOI: 10.1016/j.ijthermalsci.2010.10.013.
  • Woo, M. W.; Che, L. M.; Daud, W. R. W.; Mujumdar, A. S.; Chen, X. D. Highly Swirling Transient Flows in Spray Dryers and Consequent Effect on Modeling of Particle Deposition. Chem. Eng. Res. Des. 2012, 90, 336–345. DOI: 10.1016/j.cherd.2011.06.019.
  • Mezhericher, M.; Levy, A.; Borde, I. Borde, I. Multi-Scale Multiphase Modeling of Transport Phenomena in Spray-Drying Processes. Drying Technol. 2015, 33, 2–23. DOI: 10.1080/07373937.2014.941110.
  • Yang, X.; Xiao, J.; Woo, M.-W.; Chen, X. D. Three-Dimensional Numerical Investigation of a Mono-Disperse Droplet Spray Dryer: Validation Aspects and Multi-Physics Exploration. Drying Technol. 2015, 33, 742–756. DOI: 10.1080/07373937.2014.990565.
  • Gimbun, J.; Muhammad, N. I. S.; Law, W. P. Unsteady RANS and Detached Eddy Simulation of the Multiphase Flow in a co-Current Spray Drying. Chin. J. Chem. Eng. 2015, 23, 1421–1428. DOI: 10.1016/j.cjche.2015.05.007.
  • Schmitz-Schug, I.; Kulozik, U.; Foerst, P. Modeling Spray Drying of Dairy Products – Impact of Drying Kinetics, Reaction Kinetics and Spray Drying Conditions on Lysine Loss. Chem. Eng. Sci. 2016, 141, 315–329. DOI: 10.1016/j.ces.2015.11.008.
  • Guo, B. G.; Langrish, T. A.; Fletcher, D. F. Simulation of Turbulent Swirl Flow in an Axisymmetric Sudden Expansion. AIAA J. 2001, 39, 96–102. DOI: 10.2514/2.1275.
  • Guo, B.; Langrish, T. A. G.; Fletcher, D. F. Simulation of Gas Flow Instability in a Spray Dryer. Chem. Eng. Res. Des. 2003, 81, 631–638. DOI: 10.1205/026387603322150480.
  • Guo, B.; Langrish, T. A. G.; Fletcher, D. F. Numerical Simulation of Unsteady Turbulent Flow in Axisymmetric Sudden Expansions. J. Fluids Eng. 2001, 123, 574–587. DOI: 10.1115/1.1374441.
  • Afshar, S.; Metzger, L.; Patel, H.; Selomulya, C.; Woo, M. W. A Practical CFD Modeling Approach to Estimate Outlet Boundary Conditions of Industrial Multistage Spray Dryers: Inert Particle Flow Field Investigation. Drying Technol. 2019, 37, 824–838. DOI: 10.1080/07373937.2018.1464473.
  • Southwell, D. B.; Langrish, T. A. G. Observations of Flow Patterns in a Spray Dryer. Drying Technol. 2000, 18, 661–685. DOI: 10.1080/07373930008917731.
  • Southwell, D. B.; Langrish, T. A. G.; Fletcher, D. F. Process Intensification in Spray Dryers by Turbulence Enhancement. Chem. Eng. Res. Des. 1999, 77, 189–205. DOI: 10.1205/026387699526098.
  • Woo, M. W. Recent Advances in the Drying of Dairy Products. In Handbook of Drying for Dairy Products; C. Anandharamakrishnan, ed.; John Wiley & Sons, Ltd: Chichester, UK, 2017; pp. 249–267
  • Kota, K.; Langrish, T. A. G. Fluxes and Patterns of Wall Deposits for Skim Milk in a Pilot-Scale Spray Dryer. Drying Technol. 2006, 24, 993–1001. DOI: 10.1080/07373930600776167.
  • Kota, K.; Langrish, T. A. G. Prediction of Wall Deposition Behaviour in a Pilot-Scale Spray Dryer Using Deposition Correlations for Pipe Flows. J. Zhejiang Univ. Sci. A. 2007, 8, 301–312. DOI: 10.1631/jzus.2007.A0301.
  • Woo, M. W.; Daud, W. R. W.; Mujumdar, A. S.; Tasirin, S. M.; Talib, M. Z. M. Role of Rheological Characteristics in Amorphous Food Particle-Wall Collisions in Spray Drying. Powder Technol. 2010, 198, 251–257. DOI: 10.1016/j.powtec.2009.11.015.
  • Jubaer, H.; Xiao, J.; Chen, X. D.; Selomulya, C.; Woo, M. W. Identification of Regions in a Spray Dryer Susceptible to Forced Agglomeration by CFD Simulations. Powder Technol. 2019, 346, 23–37. DOI: 10.1016/j.powtec.2019.01.088.
  • Nijdam, J. J.; Guo, B.; Fletcher, D. F.; Langrish, T. A. G. Challenges of Simulating Droplet Coalescence within a Spray. Drying Technol. 2004, 22, 1463–1488. DOI: 10.1081/DRT-120038736.
  • Adhikari, B.; Howes, T.; Bhandari, B. R.; Troung, V. Effect of Addition of Maltodextrin on Drying Kinetics and Stickiness of Sugar and Acid-Rich Foods during Convective Drying: Experiments and Modelling. J. Food Eng. 2004, 62, 53–68. DOI: 10.1016/S0260-8774(03)00171-7.
  • Adhikari, B.; Howes, T.; Lecomte, D.; Bhandari, B. R. A Glass Transition Temperature Approach for the Prediction of the Surface Stickiness of a Drying Droplet during Spray Drying. Powder Technol. 2005, 149, 168–179. DOI: 10.1016/j.powtec.2004.11.007.
  • Woo, M. W.; Wan Daud, W. R.; Tasirin, S. M.; Talib, M. Z. M. Effect of Wall Surface Properties at Different Drying Kinetics on the Deposition Problem in Spray Drying. Drying Technol. 2007, 26, 15–26. DOI: 10.1080/07373930701781033.
  • Woo, M. W.; Daud, W. R. W.; Tasirin, S. M.; Talib, M. Z. M. Amorphous Particle Deposition and Product Quality under Different Conditions in a Spray Dryer. Particuology 2008, 6, 265–270. DOI: 10.1016/j.partic.2008.03.008.
  • Ozmen, L.; Langrish, T. A. G. Comparison of Glass Transition Temperature and Sticky Point Temperature for Skim Milk Powder. Drying Technol. 2002, 20, 1177–1192. DOI: 10.1081/DRT-120004046.
  • Roos, Y.; Karel, M. Plasticizing Effect of Water on Thermal Behavior and Crystallization of Amorphous Food Models. J. Food Sci. 1991, 56, 38–43. DOI: 10.1111/j.1365-2621.1991.tb07970.x.
  • Adhikari, B.; Howes, T.; Bhandari, B. R.; Troung, V. Surface Stickiness of Drops of Carbohydrate and Organic Acid Solutions during Convective Drying: Experiments and Modeling. Drying Technol. 2003, 21, 839–873. DOI: 10.1081/DRT-120021689.
  • Hennigs, C.; Kockel, T. K.; Langrish, T. A. G. New Measurements of the Sticky Behavior of Skim Milk Powder. Drying Technol. 2001, 19, 471–484. DOI: 10.1081/DRT-100103929.
  • Williams, M. L.; Landel, R. F.; Ferry, J. D. The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-Forming Liquids. J. Am. Chem. Soc. 1955, 77, 3701–3707. DOI: 10.1021/ja01619a008.
  • Oakley, D. E. Spray Dryer Modeling in Theory and Practice. Drying Technol. 2004, 22, 1371–1402. DOI: 10.1081/DRT-120038734.
  • Hirt, C. W.; Nichols, B. D. Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries. Comput. Phys. 1981, 39, 201–225. DOI: 10.1016/0021-9991(81)90145-5.
  • Li, X. G.; Fritsching, U. Numerical Investigation of Binary Droplet Collisions in All Relevant Collision Regimes. The Journal of Computational Multiphase Flows 2011, 3, 207–224. DOI: 10.1260/1757-482X.3.4.207.
  • Mason, L. R.; Stevens, G. W.; Harvie, D. J. Multi-Scale Volume of Fluid Modelling of Droplet Coalescence. In Ninth International Conference on CFD in the Minerals and Process Industries; CSIRO: Melbourne, Australia, 2012; pp. 1–6.
  • Chen, X.; Yang, V. Direct Numerical Simulation of Multiscale Flow Physics of Binary Droplet Collision. Phys. Fluids 2020, 32, 062103. DOI: 10.1063/5.0006695.
  • Ho, C. A.; Sommerfeld, M. Modelling of Micro-Particle Agglomeration in Turbulent Flows. Chem. Eng. Sci. 2002, 57, 3073–3084. DOI: 10.1016/S0009-2509(02)00172-0.
  • Guo, B.; Fletcher, D. F.; Langrish, T. A. G. Simulation of the Agglomeration in a Spray Using Lagrangian Particle Tracking. Appl. Math. Modell. 2004, 28, 273–290. DOI: 10.1016/S0307-904X(03)00133-1.
  • O'Rourke, P. J. Collective Drop Effects on Vaporizing Liquid Sprays; Princeton University: Princeton, NJ, 1981.
  • Verdurmen, R. E. M.; Houwelingen, Gv.; Gunsing, M.; Verschueren, M.; Straatsma, J. Agglomeration in Spray Drying Installations (the EDECAD Project): Stickiness Measurements and Simulation Results. Drying Technol. 2006, 24, 721–726. DOI: 10.1080/07373930600684973.
  • Stübing, S.; Sommerfeld, M. 2010 Lagrangian Modelling of Agglomerate Structures in a Homogeneous Isotropic Turbulence. In 7th International Conference on Multiphase Flow; ICMF: Tampa, FL, 2010.
  • Sommerfeld, M. Validation of a Stochastic Lagrangian Modelling Approach for Inter-Particle Collisions in Homogeneous Isotropic Turbulence. Int. J. Multiphase Flow 2001, 27, 1829–1858. DOI: 10.1016/S0301-9322(01)00035-0.
  • Sommerfeld, M.; Stübing, S. A Novel Lagrangian Agglomerate Structure Model. Powder Technol. 2017, 319, 34–52. DOI: 10.1016/j.powtec.2017.06.016.
  • Stübing, S. Lagrangesche Berechnung Von Agglomeratstrukturen Am Beispiel Eines Sprühtrockners. In Zentrums Für Ingenieurwissenschaften, Lehrstuhl Mechanische Verfahrenstechnik; Martin-Luther-Universität Halle-Wittenberg: Germany, 2014.
  • Ernst, M.; Sommerfeld, M. Resolved Numerical Simulation of Particle Agglomeration. In Colloid Process Engineering; M. Kind, ed.; Springer International Publishing: Cham; 2015; pp. 45–71.
  • Ernst, M.; Dietzel, M.; Sommerfeld, M. A Lattice Boltzmann Method for Simulating Transport and Agglomeration of Resolved Particles. Acta Mech. 2013, 224, 2425–2449. DOI: 10.1007/s00707-013-0923-1.
  • Woo, M. W.; Chen, X. D. 2015 Modelling of Spray Drying Process: An Overview on the Physical Phenomena and the Predictions. In Asia Pacific Confederation of Chemical Engineering Congress 2015: APCChE 2015, Incorporating CHEMECA 2015; Engineers Australia: Melbourne, Victoria, 2015; p. 2564–2569.
  • Jubaer, H.; Dai, R.; Ruslim, E.; Mansouri, S.; Shan, Z.; Woo, M. W. New Perspectives on Capturing Particle Agglomerates in CFD Modeling of Spray Dryers. Drying Technol. 2020, 38, 685–694. DOI: 10.1080/07373937.2019.1691585.
  • Van der Lijn, J.; Kerkhof, P.; Rulkens, W. Droplet Heat and Mass Transfer under Spray-Drying Conditions. In International Symposium on Heat and Mass Transfer Problems in Food Engineering; Wageningen, The Netherlands, 1972.
  • Adhikari, B.; Howes, T.; Bhandari, B. R. Use of Solute Fixed Coordinate System and Method of Lines for Prediction of Drying Kinetics and Surface Stickiness of Single Droplet during Convective Drying. Chem. Eng. Process 2007, 46, 405–419. DOI: 10.1016/j.cep.2006.06.018.
  • Chen, X. D.; Xie, G. Z. Fingerprints of the Drying Behaviour of Particulate or Thin Layer Food Materials Established Using a Reaction Engineering Model. Food Bioprod. Process 1997, 75, 213–222. DOI: 10.1205/096030897531612.
  • Chen, Y.; Shen, C.; Shi, M.; Peterson, G. P. Visualization Study of Flow Condensation in Hydrophobic Microchannels. AIChE J. 2014, 60, 1182–1192. DOI: 10.1002/aic.14319.
  • Patel, K. C.; Chen, X. D. 2008 The Reaction Engineering Approach to Estimate Surface Properties of Aqueous Droplets during Convective Drying. In 16th International Drying Symposium (IDS 2008); IDS: Hyderabad, India, 2008; pp. 235–241.
  • Wang, S.; Langrish, T. A. G. A Distributed Parameter Model for Particles in the Spray Drying Process. Adv. Powder Technol. 2009, 20, 220–226. DOI: 10.1016/j.apt.2009.03.004.
  • Lin, S. X. Q.; Chen, X. D. The Reaction Engineering Approach to Modelling the Cream and Whey Protein Concentrate Droplet Drying. Chem. Eng. Process 2007, 46, 437–443. DOI: 10.1016/j.cep.2006.05.021.
  • Li, X.; Lin, S. X. Q.; Chen, X. D.; Chen, L.; Pearce, D. Inactivation Kinetics of Probiotic Bacteria during the Drying of Single Milk Droplets. Drying Technol. 2006, 24, 695–701. DOI: 10.1080/07373930600684890.
  • Jaskulski, M.; Tran, T. T. H.; Tsotsas, E. Model-supported design of optimal dryers, ENTHALPY Project FP7-613732 (Report No. D5.5); Magdeburg, Germany, 2016.
  • Amdadul Haque, M.; Putranto, A.; Aldred, P.; Chen, J.; Adhikari, B. Drying and Denaturation Kinetics of Whey Protein Isolate (WPI) during Convective Air Drying Process. Drying Technol. 2013, 31, 1532–1544. DOI: 10.1080/07373937.2013.794832.
  • Meerdink, G.; van 't Riet, K. Prediction of Product Quality during Spray Drying. Food Bioprod. Process. 1995, 73, C, 165–170.
  • Schmitz-Schug, I.; Kulozik, U.; Foerst, P. Reaction Kinetics of Lysine Loss in a Model Dairy Formulation as Related to the Physical State. Food Bioprocess Technol. 2014, 7, 877–886. DOI: 10.1007/s11947-013-1119-3.
  • Schmitz, I.; Gianfrancesco, A.; Kulozik, U.; Foerst, P. Kinetics of Lysine Loss in an Infant Formula Model System at Conditions Applicable to Spray Drying. Drying Technol. 2011, 29, 1876–1883. DOI: 10.1080/07373937.2011.589553.
  • Ferrer, E.; Alegría, A.; Farré, R.; Abellán, P.; Romero, F. Fluorometric Determination of Chemically Available Lysine: Adaptation, Validation and Application to Different Milk Products. Nahrung 2003, 47, 403–407. DOI: 10.1002/food.200390090.
  • Atuonwu, J. C.; Ray, J.; Stapley, A. G. F. A Kinetic Model for Whey Protein Denaturation at Different Moisture Contents and Temperatures. Int. Dairy J. 2017, 75, 41–50. DOI: 10.1016/j.idairyj.2017.07.002.
  • Jaskulski, M.; Tran, T. T. H.; Tsotsas, E. Design Study of Printer Nozzle Spray Dryer by Computational Fluid Dynamics Modeling. Drying Technol. 2020, 38, 211–223. DOI: 10.1080/07373937.2019.1633541.
  • Buckton, G.; Chidavaenzi, O. C.; Koosha, F. The Effect of Spray-Drying Feed Temperature and Subsequent Crystallization Conditions on the Physical Form of Lactose. AAPS PharmSciTech 2002, 3, E37–E37. DOI: 10.1208/pt0304_tn1.
  • Islam, I. U.; Langrish, T. A. G. Modelling Crystallization in Spray Drying for Food Powder Production. In Handbook of Food Powders; B. Bhandari, ed.; Woodhead Publishing: Sawston, UK, 2013; pp. 105–131.
  • Islam, M. I. U.; Langrish, T. A. G. An Investigation into Lactose Crystallization under High Temperature Conditions during Spray Drying. Food Res. Int. 2010, 43, 46–56. DOI: 10.1016/j.foodres.2009.08.010.
  • Islam, M. I. U.; Langrish, T. A. G.; Chiou, D. Particle Crystallization during Spray Drying in Humid Air. J. Food Eng. 2010, 99, 55–62. DOI: 10.1016/j.jfoodeng.2010.01.037.
  • Woo, M. W.; Fu, N.; Moo, F. T.; Chen, X. D. Unveiling the Mechanism of in Situ Crystallization in the Spray Drying of Sugars. Ind. Eng. Chem. Res. 2012, 51, 11791–11802. DOI: 10.1021/ie3007402.
  • Feng, A. L.; Boraey, M. A.; Gwin, M. A.; Finlay, P. R.; Kuehl, P. J.; Vehring, R. Mechanistic Models Facilitate Efficient Development of Leucine Containing Microparticles for Pulmonary Drug Delivery. Int. J. Pharm. 2011, 409, 156–163. DOI: 10.1016/j.ijpharm.2011.02.049.
  • Shakiba, S.; Mansouri, S.; Selomulya, C.; Woo, M. W. Time Scale Based Analysis of in-Situ Crystal Formation in Droplet Undergoing Rapid Dehydration. Int. J. Pharm. 2019, 560, 47–56. DOI: 10.1016/j.ijpharm.2018.12.045.
  • Woo, M. W.; Lee, M. G.; Shakiba, S.; Mansouri, S. Controlling in Situ Crystallization of Pharmaceutical Particles within the Spray Dryer. Expert Opin Drug Deliv. 2017, 14, 1315–1324. DOI: 10.1080/17425247.2017.1269077.
  • Chen, X. D.; Sidhu, H.; Nelson, M. Theoretical Probing of the Phenomenon of the Formation of the Outermost Surface Layer of a Multi-Component Particle, and the Surface Chemical Composition after the Rapid Removal of Water in Spray Drying. Chem. Eng. Sci. 2011, 66, 6375–6384. DOI: 10.1016/j.ces.2011.08.035.
  • Chen, X. D.; Sidhu, H.; Nelson, M. On the Addition of Protein (Casein) to Aqueous Lactose as a Drying Aid in Spray Drying—Theoretical Surface Composition. Drying Technol. 2013, 31, 1504–1512. DOI: 10.1080/07373937.2013.780247.
  • Xiao, J.; Chen, X. D. Multiscale Modeling for Surface Composition of Spray-Dried Two-Component Powders. AIChE J. 2014, 60, 2416–2427. DOI: 10.1002/aic.14452.
  • Wang, S.; Langrish, T.; Adhikari, B. A Multicomponent Distributed Parameter Model for Spray Drying: Model Development and Validation with Experiments. Drying Technol. 2013, 31, 1513–1524. DOI: 10.1080/07373937.2013.813533.
  • Xiao, J.; Zhang, H.; Wu, W. D.; Chen, X. D. An Improved Calculation Procedure on Surface Composition of Spray-Dried Protein-Sugar Two-Component Systems. Drying Technol. 2015, 33, 817–821. DOI: 10.1080/07373937.2014.990978.
  • Xiao, J.; Chen, L.; Wu, W. D.; Chen, X. D. Multiscale Modeling for Nanoscale Surface Composition of Spray-Dried Powders: The Effect of Initial Droplet Size. Drying Technol. 2016, 34, 1063–1072. DOI: 10.1080/07373937.2015.1092445.
  • Katiyar, P.; Singh, J. K. Evaporation Induced Self-Assembly of Different Shapes and Sizes of Nanoparticles: A Molecular Dynamics Study. J. Chem. Phys. 2019, 150, 044708 DOI: 10.1063/1.5053974.
  • Kletenik-Edelman, O.; Ploshnik, E.; Salant, A.; Shenhar, R.; Banin, U.; Rabani, E. Drying-Mediated Hierarchical Self-Assembly of Nanoparticles: A Dynamical Coarse-Grained Approach. J. Phys. Chem. C 2008, 112, 4498–4506. DOI: 10.1021/jp709583u.
  • Kletenik-Edelman, O.; Sztrum-Vartash, C. G.; Rabani, E. Coarse-Grained Lattice Models for Drying-Mediated Self-Assembly of Nanoparticles. J. Mater. Chem. 2009, 19, 2872–2876. DOI: 10.1039/b817439c.
  • Rabani, E.; Reichman, D. R.; Geissler, P. L.; Brus, L. E. Drying-Mediated Self-Assembly of Nanoparticles. Nature 2003, 426, 271–274. DOI: 10.1038/nature02087.
  • Sztrum, C. G.; Hod, O.; Rabani, E. Self-assembly of nanoparticles in three-dimensions: formation of stalagmites. J. Phys. Chem. B 2005, 109, 6741–6747. DOI: 10.1021/jp044994h.
  • Sztrum, C. G.; Rabani, E. Out-of-Equilibrium Self-Assembly of Binary Mixtures of Nanoparticles. Adv. Mater. 2006, 18, 565–571. DOI: 10.1002/adma.200501408.
  • Shang, L.; Chen, X. D.; Xiao, J. Coarse-Grained Simulation of Surface Morphology Formation for Spray Dried Particles. CIESC J. 2019, 70, 2153–2163. DOI: 10.11949/j.issn.0438-1157.20181523.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.