536
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Encapsulation of dairy protein hydrolysates: Recent trends and future prospects

, , &
Pages 1513-1528 | Received 17 Feb 2021, Accepted 16 Mar 2021, Published online: 13 Apr 2021

References

  • Bratovcic, A.; Suljagic, J. Micro- and Nano-Encapsulation in Food Industry. Croat. J. Food Sci. Technol. (Online) 2019, 11, 113–121. DOI: 10.17508/CJFST.2019.11.1.17.
  • Golkar, A.; Milani, J. M.; Vasiljevic, T. Altering Allergenicity of Cow's Milk by Food Processing for Applications in Infant Formula. Crit. Rev. Food Sci. Nutr. 2019, 59, 159–172. DOI: 10.1080/10408398.2017.1363156.
  • Abd El-Salam, M. H.; El-Shibiny, S. Reduction of Milk Protein Antigenicity by Enzymatic Hydrolysis and Fermentation. A review. Food Rev. Int. 2021, 37, 276–295. DOI: 10.1080/87559129.2019.1701010.
  • Conesa, C.; Fitzgerald, R. J. Total Solids Content and Degree of Hydrolysis Influence Proteolytic Inactivation Kinetics following Whey Protein Hydrolysate Manufacture. J. Agric. Food Chem. 2013, 61, 10135–10144. DOI: 10.1021/jf401837a.
  • National Internacional Health. Dietary Supplements for Exercise and Athletic Performance. https://ods.od.nih.gov/factsheets/ExerciseAndAthleticPerformance-Consumer/ (accessed Dec 3, 2020). DOI: 10.1016/s0022-3182(85)80200-4..
  • Sarabandi, K.; Gharehbeglou, P.; Jafari, S. M. Spray-Drying Encapsulation of Protein Hydrolysates and Bioactive Peptides: Opportunities and Challenges. Drying Technol. 2020, 38, 577–589. DOI: 10.1080/07373937.2019.1689399.
  • Mcclements, D. J. Historical Perspective Encapsulation, Protection, and Delivery of Bioactive Proteins and Peptides Using Nanoparticle and Microparticle Systems: A Review. Adv. Colloid. Interface Sci. 2018, 253, 1–22. DOI: 10.1016/j.cis.2018.02.002.
  • Rao, P. S.; Bajaj, R. K.; Mann, B.; Arora, S.; Tomar, S. K. Encapsulation of Antioxidant Peptide Enriched Casein Hydrolysate Using Maltodextrin–Gum Arabic Blend. J. Food Sci. Technol. 2016, 53, 3834–3843. DOI: 10.1007/s13197-016-2376-8.
  • Mendanha, D. v.; Molina Ortiz, S. E.; Favaro-Trindade, C. S.; Mauri, A.; Monterrey-Quintero, E. S.; Thomazini, M. Microencapsulation of Casein Hydrolysate by Complex Coacervation with SPI/Pectin. Food Res. Int. 2009, 42, 1099–1104. DOI: 10.1016/j.foodres.2009.05.007.
  • Sarabandi, K.; Mahoonak, A. S.; Hamishehkar, H.; Ghorbani, M.; Jafari, S. M. Protection of Casein Hydrolysates within Nanoliposomes: Antioxidant and Stability Characterization. J. Food Eng. 2019, 251, 19–28. DOI: 10.1016/j.jfoodeng.2019.02.004.
  • Drapala, K. P.; Auty, M. A. E.; Mulvihill, D. M.; O'Mahony, J. A. Performance of Whey Protein Hydrolysate–Maltodextrin Conjugates as Emulsifiers in Model Infant Formula Emulsions. Int. Dairy J. 2016, 62, 76–83. DOI: 10.1016/j.idairyj.2016.03.006.
  • Mohan, A.; Rajendran, S. R. C. K.; He, Q. S.; Bazinet, L.; Udenigwe, C. C. Encapsulation of Food Protein Hydrolysates and Peptides: A Review. RSC Adv. 2015, 5, 79270–79278. DOI: 10.1039/C5RA13419F.
  • Mati, A.; Senoussi-Ghezali, C.; Si Ahmed Zennia, S.; Almi-Sebbane, D.; El-Hatmi, H.; Girardet, J. M. Dromedary Camel Milk Proteins, a Source of Peptides Having Biological Activities – A Review. Int. Dairy J. 2017, 73, 25–37. DOI: 10.1016/j.idairyj.2016.12.001.
  • Vincenzetti, S.; Pucciarelli, S.; Polzonetti, V.; Polidori, P. Role of Proteins and of Some Bioactive Peptides on the Nutritional Quality of Donkey Milk and Their Impact on Human Health. Beverages 2017, 3, 34. DOI: 10.3390/beverages3030034.
  • Sharma, R. Whey Proteins in Functional Foods. In Whey Proteins; Academic Press: Cambridge, 2019; pp 637–663. DOI: 10.1016/B978-0-12-812124-5.00018-7.
  • Iltchenco, S.; Preci, D.; Bonifacino, C.; Franco, E.; Steffens, C. Whey Protein Concentration by Ultrafiltration and Study of Functional Properties. Ciência Rural. 2018, 48, 1–11.
  • Hernández-Ledesma, B.; García-Nebot, M. J.; Fernández-Tomé, S.; Amigo, L.; Recio, I. Dairy Protein Hydrolysates: Peptides for Health Benefits. Int. Dairy J. 2014, 38, 82–100. DOI: 10.1016/j.idairyj.2013.11.004.
  • Khanam, A.; Chikkegowda, R. K.; Swamylingappa, B. Functional and Nutritional Evaluation of Supplementary Food Formulations. J. Food Sci. Technol. 2013, 50, 309–316. DOI: 10.1007/s13197-011-0344-x.
  • Phillips, S. M. Dietary Protein Requirements and Adaptive Advantages in Athletes. Br. J. Nutr. 2012, 108, S158–S167. DOI: 10.1017/S0007114512002516.
  • Pal, S.; Radavelli-Bagatini, S. The Effects of Whey Protein on Cardiometabolic Risk Factors. Obes. Rev. 2013, 14, 324–343. DOI: 10.1111/obr.12005.
  • van Loon, L. J.; Saris, W. H.; Verhagen, H.; Wagenmakers, A. J. Plasma Insulin Responses after Ingestion of Different Amino Acid or Protein Mixtures with Carbohydrate. Am. J. Clin. Nutr. 2000, 72, 96–105. https://academic.oup.com/ajcn/article/72/1/96/4729439. (accessed Jun) DOI: 10.1093/ajcn/72.1.96.
  • Nongonierma, A. B.; FitzGerald, R. J. Enhancing Bioactive Peptide Release and Identification Using Targeted Enzymatic Hydrolysis of Milk Proteins. Anal. Bioanal. Chem. 2018, 410, 3407–3423. DOI: 10.1007/s00216-017-0793-9.
  • Bassan, J. C.; Goulart, A. J.; Nasser, A. L. M.; Bezerra, T. M. S.; Garrido, S. S.; Rustiguel, C. B.; Guimarães, L. H. S.; Monti, R. Buffalo Cheese Whey Proteins, Identification of a 24 KDa Protein and Characterization of Their Hydrolysates: In Vitro Gastrointestinal Digestion. PLoS One 2015, 10, e0139550-18. DOI: 10.1371/journal.pone.0139550.
  • dos Santos Aguilar, J. G.; Sato, H. H. Microbial Proteases: Production and Application in Obtaining Protein Hydrolysates. Food Res. Int. 2018, 103, 253–262. DOI: 10.1016/j.foodres.2017.10.044.
  • Mótyán, J.; Tóth, F.; Tőzsér, J. Research Applications of Proteolytic Enzymes in Molecular Biology. Biomolecules 2013, 3, 923–942. DOI: 10.3390/biom3040923.
  • Embiriekah, S.; Bulatović, M.; Borić, M.; Zarić, D.; Rakin, M. Antioxidant Activity, Functional Properties and Bioaccessibility of Whey Protein Hydrolysates. Int. J. Dairy Technol. 2018, 71, 243–252. DOI: 10.1111/1471-0307.12428.
  • Egger, L.; Ménard, O. Update on Bioactive Peptides after Milk and Cheese Digestion. Curr. Opin. Food Sci. 2017, 14, 116–121. DOI: 10.1016/j.cofs.2017.03.003.
  • Nongonierma, A. B.; FitzGerald, R. J. Bioactive Properties of Milk Proteins in Humans: A Review. Peptides 2015, 73, 20–34. DOI: 10.1016/j.peptides.2015.08.009.
  • Agyei, D.; Danquah, M. K. Industrial-Scale Manufacturing of Pharmaceutical-Grade Bioactive Peptides. Biotechnol. Adv. 2011, 29, 272–277. DOI: 10.1016/j.biotechadv.2011.01.001.
  • Prieto, C. A.; Guadix, E. M.; Guadix, A. Recent Patents on Whey Protein Hydrolysates Manufactured by Proteolysis Coupled to Membrane Ultrafiltration. Recent Patent Chem. Eng. 2010, 3, 115–128. DOI: 10.2174/2211334711003020115.
  • Dullius, A.; Goettert, M. I.; de Souza, C. F. V. Whey Protein Hydrolysates as a Source of Bioactive Peptides for Functional Foods – Biotechnological Facilitation of Industrial Scale-Up. J. Funct. Foods 2018, 42, 58–74. DOI: 10.1016/j.jff.2017.12.063.
  • Morifuji, M.; Kanda, A.; Koga, J.; Kawanaka, K.; Higuchi, M. Post-Exercise Carbohydrate plus Whey Protein Hydrolysates Supplementation Increases Skeletal Muscle Glycogen Level in Rats. Amino Acids 2010, 38, 1109–1115. DOI: 10.1007/s00726-009-0321-0.
  • Hong, C. R.; Lee, G. W.; Paik, H. D.; Chang, P. S.; Choi, S. J. Nanosuspended Branched Chain Amino Acids: The Influence of Stabilizers on Their Solubility and Colloidal Stability. Food Sci. Biotechnol. 2017, 26, 573–579. DOI: 10.1007/s10068-017-0100-8.
  • Chen, H.; Khemtong, C.; Yang, X.; Chang, X.; Gao, J. Nanonization Strategies for Poorly Water-Soluble Drugs. Drug Discov. Today 2011, 16, 354–360. DOI: 10.1016/j.drudis.2010.02.009.
  • Elias, R. J.; Kellerby, S. S.; Decker, E. A. Antioxidant Activity of Proteins and Peptides. Crit. Rev. Food Sci. Nutr. 2008, 48, 430–441. DOI: 10.1080/10408390701425615.
  • Santhanam, A. K.; Lekshmi, M.; Chouksey, M. K.; Tripathi, G.; Gudipati, V. Delivery of Omega-3 Fatty Acids into Cake through Emulsification of Fish Oil-in-Milk and Encapsulation by Spray Drying with Added Polymers. Drying Technol. 2015, 33, 83–91. DOI: 10.1080/07373937.2014.934832.
  • Jiménez-Martín, E.; Gharsallaoui, A.; Pérez-Palacios, T.; Carrascal, J. R.; Rojas, T. A. Suitability of Using Monolayered and Multilayered Emulsions for Microencapsulation of ω-3 Fatty Acids by Spray Drying: Effect of Storage at Different Temperatures. Food Bioprocess Technol. 2015, 8, 100–111. DOI: 10.1007/s11947-014-1382-y.
  • Zhang, S.; Zeng, X.; Ren, M.; Mao, X.; Qiao, S. Novel Metabolic and Physiological Functions of Branched Chain Amino Acids: A Review. J. Anim. Sci. Biotechnol. 2017, 8, 10. DOI: 10.1186/s40104-016-0139-z.
  • Burd, N. A.; Yang, Y.; Moore, D. R.; Tang, J. E.; Tarnopolsky, M. A.; Phillips, S. M. Greater Stimulation of Myofibrillar Protein Synthesis with Ingestion of Whey Protein Isolate v. Micellar Casein at Rest and after Resistance Exercise in Elderly Men. Br. J. Nutr. 2012, 108, 958–962. DOI: 10.1017/S0007114511006271.
  • Aoi, W.; Takanami, Y.; Kawai, Y.; Morifuji, M.; Koga, J.; Kanegae, M.; Mihara, K.; Yanohara, T.; Mukai, J.; Naito, Y.; Yoshikawa, T. Dietary Whey Hydrolysate with Exercise Alters the Plasma Protein Profile: A Comprehensive Protein Analysis. Nutrition 2011, 27, 687–692. DOI: 10.1016/j.nut.2010.06.004.
  • Kong, S.; Zhang, H. Z.; Zhang, W. Regulation of Intestinal Epithelial Cells Properties and Functions by Amino Acids. Biomed. Res. Int. 2018, 2018, 2819154. DOI: 10.1155/2018/2819154.
  • Calbet, J. A. L.; Maclean, D. A. Human Nutrition and Metabolism Plasma Glucagon and Insulin Responses Depend on the Rate of Appearance of Amino Acids after Ingestion of Different Protein Solutions in Humans. J. Nutr. 2002, 132, 2174–2182.
  • Chartrand, D.; da Silva, M. S.; Julien, P.; Rudkowska, I. Influence of Amino Acids in Dairy Products on Glucose Homeostasis: The Clinical Evidence. Can. J. Diabetes 2017, 41, 329–337. DOI: 10.1016/j.jcjd.2016.10.009.
  • Bifari, F.; Nisoli, E. Branched-Chain Amino Acids Differently Modulate Catabolic and Anabolic States in Mammals: A Pharmacological Point of View. Br. J. Pharmacol. 2017, 174, 1366–1377. DOI: 10.1111/bph.13624.
  • Ye, Q.; Georges, N.; Selomulya, C. Microencapsulation of Active Ingredients in Functional Foods: From Research Stage to Commercial Food Products. Trends Food Sci. Technol. 2018, 78, 167–179. DOI: 10.1016/j.tifs.2018.05.025.
  • Zuidam, N. J.; Shimoni, E. Overview of Microencapsulates for Use in Food Products or Processes and Methods to Make Them. In Encapsulation Technologies for Active Food Ingredients and Food Processing; Springer: New York, 2010; pp 3–29. DOI: 10.1007/978-1-4419-1008-0_2.
  • Eraso, M. O.; Aníbal, H. Use of Starches and Milk Proteins in Microencapsulation. Int. J. Vegetable Sci. 2014, 20, 289–304. DOI: 10.1080/19315260.2013.803181.
  • Wu, W. An, Innovative Delivery Method for BCAAs. New Hope Network https://www.newhope.com/proteins/innovative-delivery-method-bcaas (accessed Jul 5, 2020).
  • Hong, C. R.; Lee, G. W.; Paik, H. D.; Chang, P. S.; Choi, S. J. Influence of Biopolymers on the Solubility of Branched-Chain Amino Acids and Stability of Their Solutions. Food Chem. 2018, 239, 872–878. DOI: 10.1016/j.foodchem.2017.07.032.
  • Comunian, T. A.; Favaro-Trindade, C. S. Microencapsulation Using Biopolymers as an Alternative to Produce Food Enhanced with Phytosterols and Omega-3 Fatty Acids: A Review. Food Hydrocolloids 2016, 61, 442–457. DOI: 10.1016/j.foodhyd.2016.06.003.
  • Ma, J. J.; Mao, X. Y.; Wang, Q.; Yang, S.; Zhang, D.; Chen, S. W.; Li, Y. H. Effect of Spray Drying and Freeze Drying on the Immunomodulatory Activity, Bitter Taste and Hygroscopicity of Hydrolysate Derived from Whey Protein Concentrate. LWT - Food Sci. Technol. 2014, 56, 296–302. DOI: 10.1016/j.lwt.2013.12.019.
  • Favaro-Trindade, C. S.; Santana, A. S.; Monterrey-Quintero, E. S.; Trindade, M. A.; Netto, F. M. The Use of Spray Drying Technology to Reduce Bitter Taste of Casein Hydrolysate. Food Hydrocolloids 2010, 24, 336–340. DOI: 10.1016/j.foodhyd.2009.10.012.
  • Chen, M.-J.; Chen, K.-N. Applications of Probiotic Encapsulation in Dairy Products. In Encapsulation and Controlled Release Technologies in Food Systems; Blackwell Publishing: Ames, Iowa, USA, 2007; pp 83–112. DOI: 10.1002/9780470277881.ch4.
  • Yang, S.; Mao, X. Y.; Li, F. F.; Zhang, D.; Leng, X. J.; Ren, F. Z.; Teng, G. X. The Improving Effect of Spray-Drying Encapsulation Process on the Bitter Taste and Stability of Whey Protein Hydrolysate. Eur. Food Res. Technol. 2012, 235, 91–97. DOI: 10.1007/s00217-012-1735-6.
  • Sarabandi, K.; Sadeghi Mahoonak, A.; Hamishekar, H.; Ghorbani, M.; Jafari, S. M. Microencapsulation of Casein Hydrolysates: Physicochemical, Antioxidant and Microstructure Properties. J. Food Eng. 2018, 237, 86–95. DOI: 10.1016/j.jfoodeng.2018.05.036.
  • Drapala, K. P.; Auty, M. A. E.; Mulvihill, D. M.; O'Mahony, J. A. Improving Thermal Stability of Hydrolysed Whey Protein-Based Infant Formula Emulsions by Protein–Carbohydrate Conjugation. Food Res. Int. 2016, 88, 42–51. DOI: 10.1016/j.foodres.2016.01.028.
  • Mohan, A.; McClements, D. J.; Udenigwe, C. C. Encapsulation of Bioactive Whey Peptides in Soy Lecithin-Derived Nanoliposomes: Influence of Peptide Molecular Weight. Food Chem. 2016, 213, 143–148. DOI: 10.1016/j.foodchem.2016.06.075.
  • Mohan, A.; Rajendran, S. R. C. K.; Thibodeau, J.; Bazinet, L.; Udenigwe, C. C. Liposome Encapsulation of Anionic and Cationic Whey Peptides: Influence of Peptide Net Charge on Properties of the Nanovesicles. LWT - Food Sci. Technol. 2018, 87, 40–46. DOI: 10.1016/j.lwt.2017.08.072.
  • Corrêa, A. P. F.; Bertolini, D.; Lopes, N. A.; Veras, F. F.; Gregory, G.; Brandelli, A. Characterization of Nanoliposomes Containing Bioactive Peptides Obtained from Sheep Whey Hydrolysates. LWT- Food Sci. Technol. 2019, 101, 107–112. DOI: 10.1016/j.lwt.2018.11.036.
  • Gómez-Mascaraque, L. G.; Miralles, B.; Recio, I.; López-Rubio, A. Microencapsulation of a Whey Protein Hydrolysate within Micro-Hydrogels: Impact on Gastrointestinal Stability and Potential for Functional Yoghurt Development. J. Funct. Foods 2016, 26, 290–300. DOI: 10.1016/j.jff.2016.08.006.
  • Rocha, G. A.; Trindade, M. A.; Netto, F. M.; Favaro-Trindade, C. S. Microcapsules of a Casein Hydrolysate: Production, Characterization, and Application in Protein Bars. Food Sci. Technol. Int. 2009, 15, 407–413. DOI: 10.1177/1082013209346042.
  • Subtil, S. F.; Rocha-Selmi, G. A.; Thomazini, M.; Trindade, M. A.; Netto, F. M.; Favaro-Trindade, C. S. Effect of Spray Drying on the Sensory and Physical Properties of Hydrolysed Casein Using Gum Arabic as the Carrier. J Food Sci Technol. 2014, 51, 2014–2021. DOI: 10.1007/s13197-012-0722-z.
  • Peighambardoust, S. H.; Golshan Tafti, A.; Hesari, J. Application of Spray Drying for Preservation of Lactic Acid Starter Cultures: A Review. Trends Food Sci. Technol. 2011, 22, 215–224. pp . DOI: 10.1016/j.tifs.2011.01.009.
  • Oliveira, O. W.; Petrovick, P. R. Secagem Por Aspersão (Spray Drying) de Extratos Vegetais: Bases e Aplicações. Rev. Bras. Farmacogn. 2010, 20, 641–650. DOI: 10.1590/S0102-695X2010000400026.
  • Santivarangkna, C.; Kulozik, U.; Foerst, P. Alternative Drying Processes for the Industrial Preservation of Lactic Acid Starter Cultures. Biotechnol. Prog. 2007, 23, 302–315. DOI: 10.1021/bp060268f.
  • Timilsena, Y. P.; Haque, M. A.; Adhikari, B. Encapsulation in the Food Industry: A Brief Historical Overview to Recent Developments. Int. J. Food Sci. Nutr. 2020, 11, 481–508. DOI: 10.4236/fns.2020.116035.
  • Ray, S.; Raychaudhuri, U.; Chakraborty, R. An Overview of Encapsulation of Active Compounds Used in Food Products by Drying Technology. Food Biosci. 2016, 13, 76–83. DOI: 10.1016/j.fbio.2015.12.009.
  • Conegero, J.; Ribeiro, L. C.; Costa, J. M. C. da, C.; Monteiro, A. R. G. Estabilidade, M. do pó da polpa de mangaba obtido por liofilização. https://www.scielo.br/scielo.php?pid=S1415-43662017000900645&script=sci_abstract&tlng=pt (accessed Jun 12, 2020).
  • Rezvankhah, A.; Emam-Djomeh, Z.; Askari, G. Encapsulation and Delivery of Bioactive Compounds Using Spray and Freeze-Drying Techniques: A Review. Drying Technol. 2020, 38, 235–258. DOI: 10.1080/07373937.2019.1653906.
  • Salamanca, C.; Rojas, J. La Liofilización: Percepciones y Desafíos Para El Secado de Productos Alimenticios y Extractos Vegetales. Vitae 2015, 22, 73–73. DOI: 10.17533/udea.vitae.v22n2a01.
  • Reineccius, G. Use of Proteins for the Delivery of Flavours and Other Bioactive Compounds. Food Hydrocolloids 2019, 86, 62–69. DOI: 10.1016/j.foodhyd.2018.01.039.
  • Jafari, S. M. An Overview of Nanoencapsulation Techniques and Their Classification. In Nanoencapsulation Technologies for the Food and Nutraceutical Industries; Academic Press: Cambridge, 2017; pp 1–34. DOI: 10.1016/B978-0-12-809436-5.00001-X.
  • Mozafari, M. R.; Johnson, C.; Hatziantoniou, S.; Demetzos, C. Nanoliposomes and Their Applications in Food Nanotechnology. J. Liposome Res. 2008, 18, 309–327. DOI: 10.1080/08982100802465941.
  • Wang, M.; Doi, T.; McClements, D. J. Encapsulation and Controlled Release of Hydrophobic Flavors Using Biopolymer-Based Microgel Delivery Systems: Sustained Release of Garlic Flavor during Simulated Cooking. Food Res Int 2019, 119, 6–14. DOI: 10.1016/j.foodres.2019.01.042.
  • Nesterenko, A.; Alric, I.; Silvestre, F.; Durrieu, V. Vegetable Proteins in Microencapsulation: A Review of Recent Interventions and Their Effectiveness. Ind. Crops Prod. 2013, 42, 469–479. DOI: 10.1016/j.indcrop.2012.06.035.
  • Vladisavljević, G. T.; Al Nuumani, R.; Nabavi, S. A. Microfluidic Production of Multiple Emulsions. Micromachines 2017, 8, 75. DOI: 10.3390/mi8030075.
  • Dickinson, E. Double Emulsions Stabilized by Food Biopolymers. Food Biophys. 2011, 6, 1–11. DOI: 10.1007/s11483-010-9188-6.
  • Giroux, H. J.; Constantineau, S.; Fustier, P.; Champagne, C. P.; St-Gelais, D.; Lacroix, M.; Britten, M. Cheese Fortification Using Water-in-Oil-in-Water Double Emulsions as Carrier for Water Soluble Nutrients. Int. Dairy J. 2013, 29, 107–114. DOI: 10.1016/j.idairyj.2012.10.009.
  • Giroux, H. J.; Robitaille, G.; Britten, M. Controlled Release of Casein-Derived Peptides in the Gastrointestinal Environment by Encapsulation in Water-in-Oil-in-Water Double Emulsions. LWT - Food Sci. Technol. 2016, 69, 225–232. DOI: 10.1016/j.lwt.2016.01.050.
  • McClements, D. J. Encapsulation, Protection, and Release of Hydrophilic Active Components: Potential and Limitations of Colloidal Delivery Systems. Adv. Colloid Interface Sci. 2015, 219, 27–53. DOI: 10.1016/j.cis.2015.02.002.
  • Prichapan, N.; Klinkesorn, U. Factor Affecting the Properties of Water-in-Oil-in-Water Emulsions for Encapsulation of Minerals and Vitamins. Songklanakarin J. Sci. Technol. 2014, 36, 651–661.
  • Matos, M.; Gutiérrez, G.; Iglesias, O.; Coca, J.; Pazos, C. Enhancing Encapsulation Efficiency of Food-Grade Double Emulsions Containing Resveratrol or Vitamin B12 by Membrane Emulsification. J. Food Eng. 2015, 166, 212–220. DOI: 10.1016/j.jfoodeng.2015.06.002.
  • Matos, M.; Gutiérrez, G.; Coca, J.; Pazos, C. Preparation of Water-in-Oil-in-Water (W1/O/W2) Double Emulsions Containing Trans-Resveratrol. Colloids Surf. A 2014, 442, 69–79. DOI: 10.1016/j.colsurfa.2013.05.065.
  • Drapala, K. P.; Auty, M. A. E.; Mulvihill, D. M.; O'Mahony, J. A. Influence of Lecithin on the Processing Stability of Model Whey Protein Hydrolysate-Based Infant Formula Emulsions. Int. J. Dairy Technol. 2015, 68, 322–333. DOI: 10.1111/1471-0307.12256.
  • Ye, A.; Singh, H. Heat Stability of Oil-in-Water Emulsions Formed with Intact or Hydrolysed Whey Proteins: Influence of Polysaccharides. Food Hydrocolloids 2006, 20, 269–276. DOI: 10.1016/j.foodhyd.2005.02.023.
  • Pech-Canul, A.; de la, C.; Ortega, D.; García-Triana, A.; González-Silva, N.; Solis-Oviedo, R. L. A Brief Review of Edible Coating Materials for the Microencapsulation of Probiotics. Coatings 2020, 10, 197. DOI: 10.3390/coatings10030197.
  • Sapei, L.; Naqvi, M. A.; Rousseau, D. Stability and Release Properties of Double Emulsions for Food Applications. Food Hydrocolloids 2012, 27, 316–323. DOI: 10.1016/j.foodhyd.2011.10.008.
  • Adjonu, R.; Doran, G.; Torley, P.; Agboola, S. Screening of Whey Protein Isolate Hydrolysates for Their Dual Functionality: Influence of Heat Pre-Treatment and Enzyme Specificity. Food Chem. 2013, 136, 1435–1443. DOI: 10.1016/j.foodchem.2012.09.053.
  • Adjonu, R.; Doran, G.; Torley, P.; Agboola, S. Formation of Whey Protein Isolate Hydrolysate Stabilised Nanoemulsion. Food Hydrocolloids 2014, 41, 169–177. DOI: 10.1016/j.foodhyd.2014.04.007.
  • Panyam, D.; Kilara, A. Enhancing the Functionality of Food Proteins by Enzymatic Modification. Trends Food Sci. Technol. 1996, 7, 120–125. DOI: 10.1016/0924-2244(96)10012-1.
  • Singh, H. Aspects of Milk-Protein-Stabilised Emulsions. Food Hydrocolloids 2011, 25, 1938–1944. DOI: 10.1016/j.foodhyd.2011.02.022.
  • Ramos, P. E.; Cerqueira, M. A.; Teixeira, J. A.; Vicente, A. A. Physiological Protection of Probiotic Microcapsules by Coatings. Crit. Rev. Food Sci. Nutr. 2018, 58, 1864–1877. DOI: 10.1080/10408398.2017.1289148.
  • Li, L.; Sun, J.; Gao, H.; Shen, Y.; Li, C.; Yi, P.; He, X.; Ling, D.; Sheng, J.; Li, J.; et al. Effects of Polysaccharide-Based Edible Coatings on Quality and Antioxidant Enzyme System of Strawberry during Cold Storage. Int. J. Polym. Sci. 2017, 2017, 1–8. DOI: 10.1155/2017/9746174.
  • Carneiro, H. C. F.; Tonon, R. v.; Grosso, C. R. F.; Hubinger, M. D. Encapsulation Efficiency and Oxidative Stability of Flaxseed Oil Microencapsulated by Spray Drying Using Different Combinations of Wall Materials. J. Food Eng. 2013, 115, 443–451. DOI: 10.1016/j.jfoodeng.2012.03.033.
  • Kurozawa, L. E.; Park, K. J.; Hubinger, M. D. Effect of Carrier Agents on the Physicochemical Properties of a Spray Dried Chicken Meat Protein Hydrolysate. J. Food Eng. 2009, 94, 326–333. DOI: 10.1016/j.jfoodeng.2009.03.025.
  • Silva, D. M.; Nunes, C.; Pereira, I.; Moreira, A. S. P.; Domingues, M. R. M.; Coimbra, M. A.; Gama, F. M. Structural Analysis of Dextrins and Characterization of Dextrin-Based Biomedical Hydrogels. Carbohydr. Polym. 2014, 114, 458–466. DOI: 10.1016/j.carbpol.2014.08.009.
  • Fathi, M.; Mozafari, M. R.; Mohebbi, M. Nanoencapsulation of Food Ingredients Using Lipid Based Delivery Systems. Trends Food Sci. Technol. 2012, 23, 13–27. DOI: 10.1016/j.tifs.2011.08.003.
  • Yokota, D.; Moraes, M.; Pinho, S. C. Characterization of Lyophilized Liposomes Produced with Non-Purified Soy Lecithin: A Case Study of Casein Hydrolysate Microencapsulation. Braz. J. Chem. Eng. 2012, 29, 325–335. doi:10.1590/S0104-66322012000200013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.