735
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Advances in dewatering and drying in mineral processing

, , &
Pages 1667-1684 | Received 15 Mar 2021, Accepted 19 Mar 2021, Published online: 13 Apr 2021

References

  • Tao, D.; Parekh, B. K.; Liu, J. T.; Chen, S. An Investigation on Dewatering Kinetics of Ultrafine Coal. Int. J. Miner. Process. 2003, 70, 235–249. DOI: 10.1016/S0301-7516(03)00025-5.
  • Wu, Z. H.; Hu, Y. J.; Lee, D. J.; Mujumdar, A. S.; Li, Z. Y. Dewatering and Drying in Mineral Processing Industry: Potential for Innovation. Dry. Technol. 2010, 28, 834–842. DOI: 10.1080/07373937.2010.490485.
  • Wills, B. A.; Finch, J. A. Chapter 15 - Dewatering. In Wills’ Mineral Processing Technology, 8th ed.; Wills, B. A., Finch, J. A., Eds.; Butterworth-Heinemann: Boston, 2016; pp 417–438. DOI: 10.1016/B978-0-08-097053-0.00015-7.
  • Li, Y.; Xie, S.; Zhao, Y.; Xia, L.; Li, H.; Song, S. The Life Cycle of Water Used in Flotation: A. Review. Min. Metall. Explor. 2019, 36, 385–397. DOI: 10.1007/s42461-018-0004-z.
  • Miller, M. Thickener Design, Control and Development. In Proceedings of ALTA 2018 Nickel-Cobalt-Copper Sessions; ALTA Metallurgical Services: Perth, Australia, 2018.
  • Garcia, V. A.; Lobato, F. S.; Vieira, L. G. M. Design of High Performance Thickener Hydrocyclones Using Robust Optimization. J. Pet. Sci. Eng. 2020, 191, 107144. DOI: 10.1016/j.petrol.2020.107144.
  • Ni, L.; Tian, J.; Song, T.; Jong, Y.; Zhao, J. Optimizing Geometric Parameters in Hydrocyclones for Enhanced Separations: A Review and Perspective. Sep. Purif. Rev. 2019, 48, 30–51. DOI: 10.1080/15422119.2017.1421558.
  • Xu, P.; Wu, Z.; Mujumdar, A. S.; Yu, B. Innovative Hydrocyclone Inlet Designs to Reduce Erosion-Induced Wear in Mineral Dewatering Processes. Dry. Technol. 2009, 27, 201–211. DOI: 10.1080/07373930802603433.
  • Zhang, H.; Wang, F.; He, D.; Zhao, L. A Two-Step Coordinated Optimization Model for a Dewatering Process. Can. J. Chem. Eng. 2021, 99, 742–754. DOI: 10.1002/cjce.23886.
  • da Silva, J. T. T.; Bicalho, I. C.; Ribeiro, G. P.; Ataíde, C. H. Hydrocyclone Applied in the Physical Processing of Phosphate Concentrate Containing Rare Earth Elements. Miner. Eng. 2020, 155, 106402. DOI: 10.1016/j.mineng.2020.106402.
  • Wang, C.; Chen, J.; Shen, L.; Ge, L. Study of Flow Behaviour in a Three Products Hydrocyclone Screen: Numerical Simulation and Experimental Validation. Physicochem. Probl. Miner. Process. 2019, 55, 879–895. DOI: 10.5277/ppmp19008.
  • Li, F.; Liu, P.; Yang, X.; Zhang, Y.; Zhao, Y. Effects of Inlet Concentration on the Hydrocyclone Separation Performance with Different Inlet Velocity. Powder Technol. 2020, 375, 337–351. DOI: 10.1016/j.powtec.2020.07.110.
  • Kuang, S. B.; Chu, K. W.; Yu, A. B.; Vince, A. Numerical Study of Liquid–Gas–Solid Flow in Classifying Hydrocyclones: Effect of Feed Solids Concentration. Miner. Eng. 2012, 31, 17–31. DOI: 10.1016/j.mineng.2012.01.003.
  • Chu, L.-Y.; Chen, W.-M.; Lee, X.-Z. Effects of Geometric and Operating Parameters and Feed Characters on the Motion of Solid Particles in Hydrocyclones. Sep. Purif. Technol. 2002, 26, 237–246. DOI: 10.1016/S1383-5866(01)00171-X.
  • Cui, B.; Zhang, C.; Zhao, Q.; Hou, D.; Wei, D.; Song, T.; Feng, Y. Study on Interaction Effects between the Hydrocyclone Feed Flow Rate and the Feed Size Distribution. Powder Technol. 2020, 366, 617–628. DOI: 10.1016/j.powtec.2020.03.009.
  • Kapali, A.; Neopane, H. P.; Chitrakar, S.; Kayastha, A.; Shrestha, O. Experimental and CFD Study of Influence of Sediment Size on Efficiency of Hydrocyclone for Use as Sediment Separation Device. J. Phys. Conf. Ser. 2020, 1608, 012014. DOI: 10.1088/1742-6596/1608/1/012014.
  • Merkl, R.; Steiger, W. Properties of Decanter Centrifuges in the Mining Industry. Min. Metall. Explor. 2012, 29, 6–12. DOI: 10.1007/BF03402327.
  • Li, Y.; Xia, W.; Wen, B.; Xie, G. Filtration and Dewatering of the Mixture of Quartz and Kaolinite in Different Proportions. J. Colloid Interface Sci. 2019, 555, 731–739. DOI: 10.1016/j.jcis.2019.08.031.
  • Benli Gönül, B.; Özcan, Ö. The Effect of Particle Shape on the Filtration Rate and Shear Strength of Quartz and Dolomite Mineral Filter Cakes. In Studies in Surface Science and Catalysis; Rodriguez-Reinoso, F., McEnaney, B., Rouquerol, J., Unger, K., Eds.; Characterization of Porous Solids VI; Amsterdam, The Netherlands: Elsevier, 2002; Vol. 144, pp 315–322. DOI: 10.1016/S0167-2991(02)80150-1.
  • Morsch, P.; Anlauf, H.; Nirschl, H. The Influence of Filter Cloth on Cake Discharge Performances during Backwashing into Liquid Phase. Sep. Purif. Technol. 2021, 254, 117549. DOI: 10.1016/j.seppur.2020.117549.
  • Tung, K.-L.; Li, Y.-L.; Lu, K.-T.; Lu, W.-M. Effect of Calendering of Filter Cloth on Transient Characteristics of Cake Filtration. Sep. Purif. Technol. 2006, 48, 1–15. DOI: 10.1016/j.seppur.2005.07.026.
  • Alam, N.; Ozdemir, O.; Hampton, M. A.; Nguyen, A. V. Dewatering of Coal Plant Tailings: Flocculation Followed by Filtration. Fuel 2011, 90, 26–35. DOI: 10.1016/j.fuel.2010.08.006.
  • Svarovsky, L. 13 - Vacuum Filtration. In Solid-Liquid Separation, 4th ed.; Svarovsky, L., Ed.; Butterworth-Heinemann: Oxford, 2001; pp 409–431. DOI: 10.1016/B978-075064568-3/50039-0.
  • Tarleton, E. S.; Wakeman, R. J. 7 - Process Design for Continuous Separations. In Solid/Liquid Separation; Tarleton, E. S., Wakeman, R. J., Eds.; Butterworth-Heinemann: Oxford, 2007; pp 329–382. DOI: 10.1016/B978-185617421-3/50007-9.
  • Dincer, I.; Rosen, M. A.; Chapter 8 - Exergy Analysis of Drying Processes and Systems. In Exergy; Dincer, I.; Rosen, M. A. Eds.; Elsevier: Amsterdam, 2007; pp 103–126. DOI: 10.1016/B978-008044529-8.50011-2.
  • Miura, K.; Mae, K.; Ashida, R.; Tamura, T.; Ihara, T. Dewatering of Coal through Solvent Extraction. Fuel. 2002, 81, 1417–1422. DOI: 10.1016/S0016-2361(02)00059-5.
  • Xie, F.; Zhang, T. A.; Dreisinger, D.; Doyle, F. A Critical Review on Solvent Extraction of Rare Earths from Aqueous Solutions. Miner. Eng. 2014, 56, 10–28. DOI: 10.1016/j.mineng.2013.10.021.
  • Kupich, I.; Girczys, J. In-Situ Leaching of Limestone in the Process of Water Drainage in Zn-Pb Ore Mines. Physicochem. Probl. Miner. Process. 2017, 53, 240–248. DOI: 10.5277/ppmp170120..
  • Lee, J.; Chung, E. Lithium Recovery by Solvent Extraction from Simulated Shale Gas Produced Water – Impact of Organic Compounds. Appl. Geochem. 2020, 116, 104571. DOI: 10.1016/j.apgeochem.2020.104571.
  • Liu, Z.; Zhang, Y.; Dai, Z.; Huang, J.; Liu, C. Coextraction of Vanadium and Manganese from High-Manganese Containing Vanadium Wastewater by a Solvent Extraction-Precipitation Process. Front. Chem. Sci. Eng. 2020, 14, 902–912. DOI: 10.1007/s11705-019-1887-z.
  • Mujumdar, A. S. Handbook of Industrial Drying, 3rd ed.; CRC Press: Boca Raton, FL, 2006. DOI: 10.1201/9781420017618.
  • Sinnott, R.; Towler, G. Chapter 10 - Equipment Selection, Specification and Design. In Chemical Engineering Design, 6th ed.; Sinnott, R., Towler, G., Eds.; Chemical Engineering Series; Butterworth-Heinemann: Oxford, 2020; pp 525–644. DOI: 10.1016/B978-0-08-102599-4.00010-2.
  • Patel, S. K.; Bade, M. H. Energy Targeting and Process Integration of Spray Dryer with Heat Recovery Systems. Energy Convers. Manag. 2020, 221, 113148. DOI: 10.1016/j.enconman.2020.113148.
  • Couper, J. R.; Penney, W. R.; Fair, J. R.; Walas, S. M. 9 - Dryers and Cooling Towers. In Chemical Process Equipment, 3rd ed.; Couper, J. R., Penney, W. R., Fair, J. R., Walas, S. M., Eds.; Butterworth-Heinemann: Boston, 2012; pp 223–275. DOI: 10.1016/B978-0-12-396959-0.00009-4.
  • Ilhan, E.; Findik, F.; Aslanlar, S. An Investigation of the Factors Affecting the Design of Drum Dryers. Mater. Des. 2003, 24, 503–507. DOI: 10.1016/S0261-3069(03)00108-0.
  • Chen, Q.; Hu, J.; Yang, H.; Wang, D.; Liu, H.; Wang, X.; Chen, H. Experiment and Simulation of the Pneumatic Classification and Drying of Coking Coal in a Fluidized Bed Dryer. Chem. Eng. Sci 2020, 214, 115364. DOI: 10.1016/j.ces.2019.115364.
  • Drioli, E.; Carnevale, M. C.; Figoli, A.; Criscuoli, A. Vacuum Membrane Dryer (VMDr) for the Recovery of Solid Microparticles from Aqueous Solutions. J. Membr. Sci. 2014, 472, 67–76. DOI: 10.1016/j.memsci.2014.08.047.
  • Joseph-Soly, S.; Saldanha, T.; Nosrati, A.; Skinner, W.; Addai-Mensah, J. Improved Dewatering of Clay Rich Mineral Dispersions Using Recyclable Superabsorbent Polymers. Chem. Eng. Res. Des. 2019, 142, 78–86. DOI: 10.1016/j.cherd.2018.07.032.
  • Rezaei, A. H.; Abdollahi, H.; Gharabaghi, M.; Mohammadzadeh, A. A. Effects of Flocculant, Surfactant, Coagulant, and Filter Aid on Efficiency of Filtration Processing of Copper Concentrate: Mechanism and Optimization. J. Min. Environ. 2020, 11, 119–141. DOI: 10.22044/jme.2019.8692.1753.
  • Patra, A. S.; Makhija, D.; Mukherjee, A. K.; Tiwari, R.; Sahoo, C. R.; Mohanty, B. D. Improved Dewatering of Iron Ore Fines by the Use of Surfactants. Powder Technol. 2016, 287, 43–50. DOI: 10.1016/j.powtec.2015.09.030.
  • Franks, G. V. Stimulant Sensitive Flocculation and Consolidation for Improved Solid/Liquid Separation. J Colloid Interface Sci. 2005, 292, 598–603. DOI: 10.1016/j.jcis.2005.06.010.
  • Li, H.; O’Shea, J.-P.; Franks, G. V. Effect of Molecular Weight of Poly(N-Isopropyl Acrylamide) Temperature-Sensitive Flocculants on Dewatering. AIChE J. 2009, 55, 2070–2080. DOI: 10.1002/aic.11859.
  • Li, H.; Long, J.; Xu, Z.; Masliyah, J. H. Flocculation of Kaolinite Clay Suspensions Using a Temperature-Sensitive Polymer. AIChE J. 2007, 53, 479–488. DOI: 10.1002/aic.11073.
  • Farkish, A.; Fall, M. Rapid Dewatering of Oil Sand Mature Fine Tailings Using Super Absorbent Polymer (SAP). 2013, 50–51, 38–47. Miner. Eng. DOI: 10.1016/j.mineng.2013.06.002.
  • Joseph-Soly, S.; Nosrati, A.; Addai-Mensah, J. Improved Dewatering of Nickel Laterite Ore Slurries Using Superabsorbent Polymers. Adv. Powder Technol. 2016, 27, 2308–2316. DOI: 10.1016/j.apt.2016.07.010.
  • Joseph-Soly, S.; Asamoah, R. K.; Skinner, W.; Addai-Mensah, J. Superabsorbent Dewatering of Refractory Gold Concentrate Slurries. Adv. Powder Technol. 2020, 31, 3168–3176. DOI: 10.1016/j.apt.2020.06.010.
  • Mahmoud, A.; Olivier, J.; Vaxelaire, J.; Hoadley, A. F. A. Electrical Field: A Historical Review of Its Application and Contributions in Wastewater Sludge Dewatering. Water Res. 2010, 44, 2381–2407. DOI: 10.1016/j.watres.2010.01.033.
  • Bourgès-Gastaud, S.; Dolez, P.; Blond, E.; Touze-Foltz, N. Dewatering of Oil Sands Tailings with an Electrokinetic Geocomposite. Miner. Eng. 2017, 100, 177–186. DOI: 10.1016/j.mineng.2016.11.002.
  • Radoiu, M. Microwave Drying Process Scale-Up. Chem. Eng. Process. - Process Intensif. 2020, 155, 108088. DOI: 10.1016/j.cep.2020.108088.
  • Pickles, C. A. Microwave Drying of Nickeliferous Limonitic Laterite Ores. Can. Metall. Q. 2005, 44, 397–408. DOI: 10.1179/cmq.2005.44.3.397.
  • Athayde, M.; Cota, M.; Covcevich, M. Iron Ore Pellet Drying Assisted by Microwave: A Kinetic Evaluation. Miner. Process. Extr. Metall. Rev. 2018, 39, 266–275. DOI: 10.1080/08827508.2017.1423295.
  • Du, J.; Gao, L.; Yang, Y.; Guo, S.; Chen, J.; Omran, M.; Chen, G. Modeling and Kinetics Study of Microwave Heat Drying of Low Grade Manganese Ore. Adv. Powder Technol. 2020, 31, 2901–2911. DOI: 10.1016/j.apt.2020.05.013.
  • Lv, W.; Xin, Y.; Elliott, R.; Song, J.; Lv, X.; Barati, M. Drying Kinetics of a Philippine Nickel Laterite Ore by Microwave Heating. Miner. Process. Extr. Metall. Rev. 2021, 42, 46–52. DOI: 10.1080/08827508.2020.1801433.
  • Song, Z.; Jing, C.; Yao, L.; Zhao, X.; Sun, J.; Wang, W.; Mao, Y.; Ma, C. Coal Slime Hot Air/Microwave Combined Drying Characteristics and Energy Analysis. Fuel Process. Technol. 2017, 156, 491–499. DOI: 10.1016/j.fuproc.2016.10.016.
  • Andrés, A.; Bilbao, C.; Fito, P. Drying Kinetics of Apple Cylinders under Combined Hot Air–Microwave Dehydration. J. Food Eng. 2004, 63, 71–78. DOI: 10.1016/S0260-8774(03)00284-X.
  • Makul, N.; Vongpradubchai, S.; Rattanadecho, P. An Experimental Study of Microwave Drying under Low Pressure to Accelerate the Curing of Portland Cement Pastes Using a Combined Unsymmetrical Double-Fed Microwave and Vacuum System. Int. J. Heat Mass Transf. 2018, 127, 179–192. DOI: 10.1016/j.ijheatmasstransfer.2018.06.119.
  • Scaman, C. H.; Durance, T. D.; Drummond, L.; Sun, D.-W. Chapter 23 - Combined Microwave Vacuum Drying. In Emerging Technologies for Food Processing, 2nd ed.; Sun, D.-W., Ed.; Academic Press: San Diego, 2014; pp 427–445. DOI: 10.1016/B978-0-12-411479-1.00023-1.
  • Ambros, S.; Mayer, R.; Schumann, B.; Kulozik, U. Microwave-Freeze Drying of Lactic Acid Bacteria: Influence of Process Parameters on Drying Behavior and Viability. Innov. Food Sci. Emerg. Technol. 2018, 48, 90–98. DOI: 10.1016/j.ifset.2018.05.020.
  • Lovás, M.; Znamenáčková, I.; Zubrik, A.; Kováčová, M.; Dolinská, S. The Application of Microwave Energy in Mineral Processing – a Review. Acta Montan. Slovaca 2011, 16, 137–148.
  • Deventer, H. C.; van; Heijmans, R. M. H. Drying with Superheated Steam. Dry. Technol. 2001, 19, 2033–2045. DOI: 10.1081/DRT-100107287.
  • Osman, H.; Jangam, S. V.; Lease, J. D.; Mujumdar, A. S. Drying of Low-Rank Coal (LRC)—A Review of Recent Patents and Innovations. Dry. Technol. 2011, 29, 1763–1783. DOI: 10.1080/07373937.2011.616443.
  • Romdhana, H.; Bonazzi, C.; Esteban-Decloux, M. Superheated Steam Drying: An Overview of Pilot and Industrial Dryers with a. Focus on Energy Efficiency. Dry. Technol. 2015, 33, 1255–1274. DOI: 10.1080/07373937.2015.1025139.
  • Ramachandran, R. P.; Bourassa, J.; Paliwal, J.; Cenkowski, S. Effect of Temperature and Velocity of Superheated Steam on Initial Condensation of Distillers’ Spent Grain Pellets during Drying. Dry. Technol. 2017, 35, 182–192. DOI: 10.1080/07373937.2016.1166123.
  • Blasco, R.; Vega, R.; Alvarez, P. I. Pneumatic Drying with Superheated Steam: Bi-Dimensional Model for High Solid Concentration. Dry. Technol. 2001, 19, 2047–2061. DOI: 10.1081/DRT-100107288.
  • Chen, Z.; Agarwal, P. K.; Agnew, J. B. Steam Drying of Coal. Part 2. Modeling the Operation of a Fluidized Bed Drying Unit. Fuel. 2001, 80, 209–223. DOI: 10.1016/S0016-2361(00)00081-8.
  • Kozanoglu, B.; Flores, A.; Guerrero-Beltrán, J. A.; Welti-Chanes, J. Drying of Pepper Seed Particles in a Superheated Steam Fluidized Bed Operating at Reduced Pressure. Dry. Technol. 2012, 30, 884–890. DOI: 10.1080/07373937.2012.675532.
  • Bórquez, R. M.; Canales, E. R.; Quezada, H. R. Drying of Fish Press-Cake with Superheated Steam in a Pilot Plant Impingement System. Dry. Technol. 2008, 26, 290–298. DOI: 10.1080/07373930801897986.
  • Choicharoen, K.; Devahastin, S.; Soponronnarit, S. Comparative Evaluation of Performance and Energy Consumption of Hot Air and Superheated Steam Impinging Stream Dryers for High-Moisture Particulate Materials. Appl. Therm. Eng. 2011, 31, 3444–3452. DOI: 10.1016/j.applthermaleng.2011.06.030.
  • Ahmad Farid, M. A.; Roslan, A. M.; Hassan, M. A.; Aziz Ujang, F.; Mohamad, Z.; Hasan, M. Y.; Yoshihito, S. Convective Sludge Drying by Rotary Drum Dryer Using Waste Steam for Palm Oil Mill Effluent Treatment. J. Clean. Prod. 2019, 240, 117986. DOI: 10.1016/j.jclepro.2019.117986.
  • Stroem, L. K.; Desai, D. K.; Hoadley, A. F. A. Superheated Steam Drying of Brewer’s Spent Grain in a Rotary Drum. Adv. Powder Technol. 2009, 20, 240–244. DOI: 10.1016/j.apt.2009.03.009.
  • Nikolopoulos, N.; Violidakis, I.; Karampinis, E.; Agraniotis, M.; Bergins, C.; Grammelis, P.; Kakaras, E. Report on Comparison among Current Industrial Scale Lignite Drying Technologies (a Critical Review of Current Technologies). Fuel. 2015, 155, 86–114. DOI: 10.1016/j.fuel.2015.03.065.
  • Gálvez, E. D.; Cruz, R.; Robles, P. A.; Cisternas, L. A. Optimization of Dewatering Systems for Mineral Processing. Miner. Eng. 2014, 63, 110–117. DOI: 10.1016/j.mineng.2014.01.026.
  • Ojeda, P.; Bergh, L. G.; Torres, L. Intelligent Control of an Industrial Thickener. In 2014 13th International Conference on Control Automation Robotics Vision (ICARCV); 2014; pp 505–510. DOI: 10.1109/ICARCV.2014.7064356.
  • Jia, R.; Zhang, B.; He, D.; Mao, Z.; Chu, F. Data-Driven-Based Self-Healing Control of Abnormal Feeding Conditions in Thickening–Dewatering Process. Miner. Eng. 2020, 146, 106141. DOI: 10.1016/j.mineng.2019.106141.
  • Tripathy, S. K.; Murthy, Y. R.; Farrokhpay, S.; Filippov, L. O. Design and Analysis of Dewatering Circuits for a Chromite Processing Plant Tailing Slurry. Miner. Process. Extr. Metall. Rev. 2021, 42, 102–114. DOI: 10.1080/08827508.2019.1700983.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.