1,254
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Drying of tomatoes and tomato processing waste: a critical review of the quality aspects

, ORCID Icon, &
Pages 1720-1744 | Received 15 Mar 2021, Accepted 25 Mar 2021, Published online: 14 Jun 2021

References

  • Food and Agriculture Organization of United Nations., 2018, From: http://www.fao.org/faostat/en/#data/QC., Retrieved on 25/8/2020.
  • Burton-Freeman, B.; Reimers, K. Tomato Consumption and Health: emerging Benefits. Am. J. Lifestyle Med. 2011, 5, 182–191. DOI: 10.1177/1559827610387488.
  • Ringeisen, B.; Barrett, D. M.; Stroeve, P. Concentrated Solar Drying of Tomatoes. Energy for Sustainable Dev. 2014, 19, 47–55. DOI: 10.1016/j.esd.2013.11.006.
  • Nour, V.; Panaite, T. D.; Ropota, M.; Turcu, R.; Trandafir, I.; Corbu, A. R. Nutritional and Bioactive Compounds in Dried Tomato Processing Waste. CyTA J. Food 2018, 16, 222–229. DOI: 10.1080/19476337.2017.1383514.
  • P A Silva, Y.; Borba, B. C.; Pereira, V. A.; Reis, M. G.; Caliari, M.; Brooks, M. S.-L.; Ferreira, T. A. P. C. Characterization of Tomato Processing by-Product for Use as a Potential Functional Food Ingredient: nutritional Composition, Antioxidant Activity and Bioactive Compounds. Int J Food Sci Nutr. 2019, 70, 150–160. DOI: 10.1080/09637486.2018.1489530.
  • Paulino, S. L. J.; Adrián, Á. T. G.; Gabriela, E. A. L.; Maribel, V. M.; Sergio, M. G. Technology, Nutraceutical Potential of Flours from Tomato by-Product and Tomato Field Waste. J. Food Sci. Technol. 2020, 57, 3525–3531. DOI: 10.1007/s13197-020-04585-1.
  • Previtera, L.; Fucci, G.; De Marco, A.; Romanucci, V.; Di Fabio, G.; Zarrelli, A. Chemical and Organoleptic Characteristics of Tomato Purée Enriched with Lyophilized Tomato Pomace. J. Sci. Food Agric. 2016, 96, 1953–1958. DOI: 10.1002/jsfa.7303.
  • Grassino, A. N.; Halambek, J.; Djaković, S.; Brnčić, S. R.; Dent, M.; Grabarić, Z. Utilization of Tomato Peel Waste from Canning Factory as a Potential Source for Pectin Production and Application as Tin Corrosion Inhibitor. Food Hydrocolloids 2016, 52, 265–274. DOI: 10.1016/j.foodhyd.2015.06.020.
  • Mustaf, K. I.; Rashid, Z. S. Study of the Effect of Some Treatments and Method of Drying on the Storing and Qualitative Characteristics of Tomato Vartiety Kanze. Plant Arch. 2020, 20, 395–400.
  • Gould, W. A. Tomato Production, Processing and Technology. Elsevier; Baltimore USA, 2013, 125–151.
  • Karaaslan, S.; Ekinci, K.; Kumbul, B. S. Solar Tunnel Drying: Pretreatment on Drying Kinetic of Plum Tomatoes. Cienc. Rural 2019, 49, DOI: 10.1590/0103-8478cr20180988.
  • Jumah, R.; Banat, F.; Al-Asheh, S.; Hammad, S. Drying Kinetics of Tomato Paste. Int. J. Food Prop. 2004, 7, 253–259. DOI: 10.1081/JFP-120026061.
  • Latapi, G.; Barrett, D. M. Influence of Pre‐Drying Treatments on Quality and Safety of Sun‐Dried Tomatoes. Part II. Effects of Storage on Nutritional and Sensory Quality of Sun‐Dried Tomatoes Pretreated with Sulfur, Sodium Metbisulfite, or Salt. J. Food Sci. 2006, 71, S32–S37. DOI: 10.1111/j.1365-2621.2006.tb12402.x.
  • Al-Harahsheh, M.; Ala’a, H.; Magee, T. Intensification Processing: Process, Microwave Drying Kinetics of Tomato Pomace: Effect of Osmotic Dehydration. Chem. Eng. Process. Process Intensification 2009, 48, 524–531. DOI: 10.1016/j.cep.2008.06.010.
  • Lewicki, P. P.; Le, H. V.; Pomarańska-Łazuka, W. Effect of Pre-Treatment on Convective Drying of Tomatoes. J. Food Eng. 2002, 54, 141–146. DOI: 10.1016/S0260-8774(01)00199-6.
  • Lewicki, P. P.; Michaluk, E. Drying of Tomato Pretreated with Calcium. Drying Technol. 2004, 22, 1813–1827. DOI: 10.1081/DRT-200032777.
  • Horuz, E.; Jaafar, H. J.; Maskan, M. Ultrasonication as Pretreatment for Drying of Tomato Slices in a Hot Air–Microwave Hybrid Oven. Drying Technol. 2017, 35, 849–859. DOI: 10.1080/07373937.2016.1222538.
  • Xanthopoulos, G.; Yanniotis, S.; Talaiporou, E. Influence of Salting on Drying Kinetics and Water Diffusivity of Tomato Halves. Int. J. Food Prop. 2012, 15, 847–863. DOI: 10.1080/10942912.2010.506018.
  • Heredia, A.; Barrera, C.; Andrés, A. Drying of Cherry Tomato by a Combination of Different Dehydration Techniques. Comparison of Kinetics and Other Related Properties. J. Food Eng. 2007, 80, 111–118. DOI: 10.1016/j.jfoodeng.2006.04.056.
  • Jorge, A.; Sauer Leal, E.; Sequinel, R.; Sequinel, T.; Kubaski, E. T.; Tebcherani, S. M. Changes in the Composition of Tomato Powder (Lycopersicon esculentum Mill) Resulting from Different Drying Methods. J. Food Process. Preserv. 2018, 42, e13595. DOI: 10.1111/jfpp.13595.
  • Turgut, S. S.; Küçüköner, E.; Karacabey, E. Influence of Carbonic Maceration Pre-Treatment on Functional Quality of Dried Tomato Quarters. Food Bioprocess Technol. 2018, 11, 1818–1827. DOI: 10.1007/s11947-018-2145-y.
  • Sacilik, K.; Keskin, R.; Elicin, A. K. Mathematical Modelling of Solar Tunnel Drying of Thin Layer Organic Tomato. J. Food Eng. 2006, 73, 231–238. DOI: 10.1016/j.jfoodeng.2005.01.025.
  • Rajkumar, P.; Kulanthaisami, S.; Raghavan, G.; Gariépy, Y.; Orsat, V. Drying Kinetics of Tomato Slices in Vacuum Assisted Solar and Open Sun Drying Methods. Drying Technol. 2007, 25, 1349–1357. DOI: 10.1080/07373930701438931.
  • Bashir, N.; Bhat, M. A.; Dar, B. N.; Shah, M. A. Effect of Different Drying Methods on the Quality of Tomatoes. Adv. Food Sci. 2014, 36, 65–69.
  • Gümüşay, Ö. A.; Borazan, A. A.; Ercal, N.; Demirkol, O. Drying Effects on the Antioxidant Properties of Tomatoes and Ginger. Food Chem. 2015, 173, 156–162. DOI: 10.1016/j.foodchem.2014.09.162.
  • Eze, J.; Ojike, O. Energy Sustainable., Studies on the Effect of Different Solar Dryers on the Vitamin Content of Tomato (Solanum Lycopersicon). J. Renewable Sustainable Energy 2012, 4, 063102. DOI: 10.1063/1.4763563.
  • Gaware, T.; Sutar, N.; Thorat, B. Drying of Tomato Using Different Methods: comparison of Dehydration and Rehydration Kinetics. Drying Technol. 2010, 28, 651–658. DOI: 10.1080/07373931003788759.
  • Hossain, M.; Amer, B.; Gottschalk, K. Hybrid Solar Dryer for Quality Dried Tomato. Drying Technol. 2008, 26, 1591–1601. DOI: 10.1080/07373930802467466.
  • Reyes, A.; Mahn, A.; Huenulaf, P.; González, T. Tomato Dehydration in a Hybrid-Solar Dryer. J. Chem. Eng. Process Technol. 2014, 5, 1–8.
  • Mohsen, H. A.; Abd El-Rahmam, A.; Hassan, H. Drying of Tomato Fruits Using Solar Energy. Agric. Eng. Int. CIGR J. 2019, 21(2), 204-215.
  • Ahmed, A. E. R. Drying of Tomato Fruits Using Solar Energy. Agric. Eng. Int. CIGR J. 2019, 21, 204–215.
  • Dorouzi, M.; Mortezapour, H.; Akhavan, H. R.; Moghaddam, A. G. Tomato Slices Drying in a Liquid Desiccant-Assisted Solar Dryer Coupled with a Photovoltaic-Thermal Regeneration System. Sol. Energy 2018, 162, 364–371. DOI: 10.1016/j.solener.2018.01.025.
  • Adenike, A. B. The Effect of Pretreatment and Drying on Some Vitamin Contents of Tomato Powder. Food Sci. Technol. 2012, 13(2), 156–160.
  • Allison, B. J.; Cádiz, J. C.; Karuna, N.; Jeoh, T.; Simmons, C. W. The Effect of Ionic Liquid Pretreatment on the Bioconversion of Tomato Processing Waste to Fermentable Sugars and Biogas. Appl. Biochem. Biotechnol. 2016, 179, 1227–1247. DOI: 10.1007/s12010-016-2061-4.
  • Murugavelh, S.; Anand, B.; Midhun Prasad, K.; Nagarajan, R.; Azariah Pravin Kumar, S. Exergy Analysis and Kinetic Study of Tomato Waste Drying in a Mixed Mode Solar Tunnel Dryer. Energy Sources Part A Recov. Util. Environ. Effects 2019, 1–17. DOI: 10.1080/15567036.2019.1679289.
  • Chavan, A.; Vitankar, V.; Mujumdar, A.; Thorat, B. Natural Convection and Direct Type (NCDT) Solar Dryers: A Review. Drying Technol. 2020, 1–22. DOI: 10.1080/07373937.2020.1753065.
  • Chavan, A.; Vitankar, V.; Thorat, B. CFD Modeling and Experimental Study of Solar Conduction Dryer. Drying Technol. 2020, 1–14. DOI: 10.1080/07373937.2020.1846051.
  • Akanbi, C. T.; Adeyemi, R. S.; Ojo, A. Drying Characteristics and Sorption Isotherm of Tomato Slices. J. Food Eng. 2006, 73, 157–163. DOI: 10.1016/j.jfoodeng.2005.01.015.
  • Demiray, E.; Tulek, Y. Thin-Layer Drying of Tomato (Lycopersicum Esculentum Mill. cv. Rio Grande) Slices in a Convective Hot Air Dryer. Heat Mass Transfer 2012, 48, 841–847. DOI: 10.1007/s00231-011-0942-1.
  • Doymaz, I. Air-Drying Characteristics of Tomatoes. J. Food Eng. 2007, 78, 1291–1297. DOI: 10.1016/j.jfoodeng.2005.12.047.
  • Fernandes, F. A.; Rodrigues, S.; García-Pérez, J. V.; Cárcel, J. A. Effects of Ultrasound-Assisted Air-Drying on Vitamins and Carotenoids of Cherry Tomatoes. Drying Technol 2016, 34, 986–996. DOI: 10.1080/07373937.2015.1090445.
  • Abano, E.; Ma, H.; Qu, W. Influence of Air Temperature on the Drying Kinetics and Quality of Tomato Slices. J. Food Process. Technol. 2011, 2, 2–9. DOI: 10.4172/2157-7110.1000123.
  • Belghith, A.; Azzouz, S.; ElCafsi, A. Desorption Isotherms and Mathematical Modeling of Thin Layer Drying Kinetics of Tomato. Heat Mass Transfer 2016, 52, 407–419. DOI: 10.1007/s00231-015-1560-0.
  • Santos-Sánchez, N. F.; Valadez-Blanco, R.; Gómez-Gómez, M. S.; Pérez-Herrera, A.; Salas-Coronado, R. Effect of Rotating Tray Drying on Antioxidant Components, Color and Rehydration Ratio of Tomato Saladette Slices. LWT Food Sci. Technol. 2012, 46, 298–304. DOI: 10.1016/j.lwt.2011.09.015.
  • Dianda, B.; Ousmane, M.; Kam, S.; Ky, T. Experimental Study of the Kinetics and Shrinkage of Tomato Slices in Convective Drying. Afr. J. Food Sci. 2015, 9, 262–271. DOI: 10.5897/AJFS.
  • Doymaz, İ.; Özdemir, Ö. Effect of Air Temperature, Slice Thickness and Pretreatment on Drying and Rehydration of Tomato. Int. J. Food Sci. Technol. 2014, 49, 558–564. DOI: 10.1111/ijfs.12337.
  • Demiray, E.; Tulek, Y.; Yilmaz, Y. Degradation Kinetics of Lycopene, β-Carotene and Ascorbic Acid in Tomatoes during Hot Air Drying. LWT Food Sci. Technol. 2013, 50, 172–176. DOI: 10.1016/j.lwt.2012.06.001.
  • Brooks, M.; Abou El-Hana, N.; Ghaly, A. Effects of Tomato Geometries and Air Temperature on the Drying Behavior of Plum Tomato. Am. J. Appl. Sci. 2008, 5, 1369–1375. DOI: 10.3844/ajassp.2008.1369.1375.
  • Chang, C. H.; Lin, H. Y.; Chang, C. Y.; Liu, Y. C. Comparisons on the Antioxidant Properties of Fresh, Freeze-Dried and Hot-Air-Dried Tomatoes. J. Food Eng. 2006, 77, 478–485. DOI: 10.1016/j.jfoodeng.2005.06.061.
  • Giovanelli, G.; Zanoni, B.; Lavelli, V.; Nani, R. Water Sorption, Drying and Antioxidant Properties of Dried Tomato Products. J. Food Eng. 2002, 52, 135–141. DOI: 10.1016/S0260-8774(01)00095-4.
  • Toor, R. K.; Savage, G. P. Effect of Semi-Drying on the Antioxidant Components of Tomatoes. Food Chem. 2006, 94, 90–97. DOI: 10.1016/j.foodchem.2004.10.054.
  • Ashebir, D.; Jezik, K.; Weingartemann, H.; Gretzmacher, R. Change in Color and Other Fruit Quality Characteristics of Tomato Cultivars after Hot-Air Drying at Low Final-Moisture Content. Int. J. Food Sci. Nutr. 2009, 60, 308–315. DOI: 10.1080/09637480903114128.
  • Sacilik, K. The Thin-Layer Modelling of Tomato Drying Process. Agriculturae Conspectus Scientificus 2007, 72, 343–349.
  • Jangam, S. V.; Joshi, V. S.; Mujumdar, A. S.; Thorat, B. N. Studies on Dehydration of Sapota (Achras Zapota). Drying Technol. 2008, 26, 369–377. DOI: 10.1080/07373930801898190.
  • Aware, R.; Thorat, B. Garlic under Various Drying Study and Its Impact on Allicin Retention. Drying Technol. 2011, 29, 1510–1518. DOI: 10.1080/07373937.2011.578230.
  • Queiroz, R.; Gabas, A.; Telis, V. Drying Kinetics of Tomato by Using Electric Resistance and Heat Pump Dryers. Drying Technol. 2004, 22, 1603–1620. DOI: 10.1081/DRT-200025614.
  • Coşkun, S.; Doymaz, I.; Tunçkal, C.; Erdoğan, S. Investigation of Drying Kinetics of Tomato Slices Dried by Using a Closed Loop Heat Pump Dryer. Heat Mass Transfer 2017, 53, 1863–1871. DOI: 10.1007/s00231-016-1946-7.
  • Purkayastha, M. D.; Nath, A.; Deka, B. C.; Mahanta, C. L. Thin Layer Drying of Tomato Slices. J. Food Sci. Technol. 2013, 50, 642–653. DOI: 10.1007/s13197-011-0397-x.
  • Jeyaprakash, S.; Frank, D.; Driscoll, R. Influence of Heat Pump Drying on Tomato Flavor. Drying Technol. 2016, 34, 1709–1718. DOI: 10.1080/07373937.2016.1174937.
  • Jeyaprakash, S.; Heffernan, J. E.; Driscoll, R. H.; Frank, D. C. Impact of Drying Technologies on Tomato Flavor Composition and Sensory Quality. LWT Food Sci. Technol. 2020, 120, 108888. DOI: 10.1016/j.lwt.2019.108888.
  • Grbavcic, Z. B.; Arsenijevic, Z. L.; Garic-Grulovic, R. V. Drying of Slurries in Fluidized Bed of Inert Particles. Drying Technol. 2004, 22, 1793–1812. DOI: 10.1081/DRT-200032742.
  • Sogi, D.; Shivhare, U.; Garg, S.; Bawa, A. Water Sorption Isotherm and Drying Characteristics of Tomato Seeds. Biosyst. Eng. 2003, 84, 297–301. DOI: 10.1016/S1537-5110(02)00275-1.
  • Kaur, D.; Wani, A. A.; Sogi, D.; Shivhare, U. Sorption Isotherms and Drying Characteristics of Tomato Peel Isolated from Tomato Pomace. Drying Technol. 2006, 24, 1515–1520. DOI: 10.1080/07373930600961371.
  • Albanese, D.; Adiletta, G.; D′ Acunto, M.; Cinquanta, L.; Di Matteo, M. Tomato Peel Drying and Carotenoids Stability of the Extracts. Int. J. Food Sci. Technol. 2014, 49, 2458–2463. DOI: 10.1111/ijfs.12602.
  • Chawla, C.; Kaur, D.; Oberoi, D.; Sogi, D. Drying Characteristics, Sorption Isotherms, and Lycopene Retention of Tomato Pulp. Drying Technol. 2008, 26, 1257–1264. DOI: 10.1080/07373930802307225.
  • Freire, J.; Ferreira, M.; Freire, F.; Nascimento, B. A Review on Paste Drying with Inert Particles as Support Medium. Drying Technol. 2012, 30, 330–341. DOI: 10.1080/07373937.2011.638149.
  • Bhandari, B. Handbook of Industrial Drying, Edited by AS Mujumdar: CRC Press: Boca Raton, FL; 2015. ISBN: 978-1-4665-9665-8. 2015, Taylor & Francis.
  • Pallai-Varsányi, E.; Tóth, J.; Gyenis, J. Drying of Suspensions and Solutions on Inert Particle Surface in Mechanically Spouted Bed Dryer. China Particuol. 2007, 5, 337–344. DOI: 10.1016/j.cpart.2007.06.003.
  • Arsenijević, Z. L.; Grbavčić, ŽB.; Garić-Grulović, R. V. Drying of Solutions and Suspensions in the Modified Spouted Bed with Draft Tube. Thermal Sci. 2002, 6, 47–70. DOI: 10.2298/TSCI0202047A.
  • Corrêa, N.; Corrêa, R.; Freire, J. Adaptive Control of Paste Drying in Spouted Bed Using the GPC Algorithm. Braz. J. Chem. Eng. 2000, 17, 639–648. DOI: 10.1590/S0104-66322000000400028.
  • Almeida, A.; Freire, F.; Freire, J. Transient Analysis of Pasty Material Drying in a Spouted Bed of Inert Particles. Drying Technol. 2010, 28, 330–340. DOI: 10.1080/07373931003627189.
  • Szentmarjay, T.; Pallai, E.; Regényi, Z. Short-Time Drying of Beatsensitwe. Biologically Active Pulps and Pastes. Drying Technol. 1996, 14, 2091–2115. DOI: 10.1080/07373939608917197.
  • Faria da Rocha, S.; Kappaun Rodrigues, M. C.; Legemann Monte, M.; Quites Larrosa, A. P.; de Almeida Pinto, L. A. Product Characteristics and Quality of Bovine blood-enriched dried vegetable paste. J. Sci. Food Agric. 2014, 94, 3255–3262. DOI: 10.1002/jsfa.6678.
  • Askari, G.; Emam-Djomeh, Z.; Mousavi, S. An Investigation of the Effects of Drying Methods and Conditions on Drying Characteristics and Quality Attributes of Agricultural Products during Hot Air and Hot Air/Microwave-Assisted Dehydration. Drying Technol. 2009, 27, 831–841. DOI: 10.1080/07373930902988106.
  • Abano, E.; Ma, H.; Qu, W. Influence of Combined Microwave‐Vacuum Drying on Drying Kinetics and Quality of Dried Tomato Slices. J. Food Qual. 2012, 35, 159–168. DOI: 10.1111/j.1745-4557.2012.00446.x.
  • Izli, N.; Isik, E. Color and Microstructure Properties of Tomatoes Dried by Microwave, Convective, and Microwave-Convective Methods. Int. J. Food Prop. 2015, 18, 241–249. DOI: 10.1080/10942912.2013.829492.
  • Celen, S.; Kahveci, K. Microwave Drying Behaviour of Tomato Slices. Czech J. Food Sci. 2013, 31, 132–138. DOI: 10.17221/30/2012-CJFS.
  • Koné, K. Y.; Druon, C.; Gnimpieba, E. Z.; Delmotte, M.; Duquenoy, A.; Laguerre, J. C. Power Density Control in Microwave Assisted Air Drying to Improve Quality of Food. J. Food Eng. 2013, 119, 750–757. DOI: 10.1016/j.jfoodeng.2013.06.044.
  • Poonnoy, P.; Tansakul, A.; Chinnan, M. Artificial Neural Network Modeling for Temperature and Moisture Content Prediction in Tomato Slices Undergoing microwave-vacuum drying. J. Food Sci. 2007, 72, E042–E047. DOI: 10.1111/j.1750-3841.2006.00220.x.
  • Sakare, P.; Prasad, N.; Thombare, N.; Singh, R.; Sharma, S. C. Infrared Drying of Food Materials: Recent Advances. Food Eng. Rev. 2020, 12, 381–398. DOI: 10.1007/s12393-020-09237-w.
  • Kipcak, A. S.; Doymaz, İ. Microwave and Infrared Drying Kinetics and Energy Consumption of Cherry Tomatoes. Chem. Ind. Chem. Eng. 2020, 26(2), 203–212. DOI: 10.2298/CICEQ190916039K.
  • Kocabiyik, H.; Yilmaz, N.; Tuncel, N. B.; Sumer, S. K.; Buyukcan, M. B. Drying, Energy, and Some Physical and Nutritional Quality Properties of Tomatoes Dried with Short-Infrared Radiation. Food Bioprocess Technol. 2015, 8, 516–525. DOI: 10.1007/s11947-014-1418-3.
  • Kocabiyik, H.; Yilmaz, N.; Tuncel, N. B.; Sumer, S. K.; Burak Buyukcan, M. The Effects of Middle Infrared Radiation Intensity on the Quality of Dried Tomato Products. Int. J. Food Sci. Technol. 2014, 49, 703–710. DOI: 10.1111/ijfs.12353.
  • Sadin, R.; Chegini, G.; Khodadadi, M. Drying Characteristics and Modeling of Tomato Thin Layer Drying in Combined Infrared-Hot Air Dryer. Agric. Eng. Int. CIGR J. 2017, 19, 150–157.
  • Kocabiyik, H.; Yilmaz, N.; Tuncel, N.; Sumer, S.; Buyukcan, M. Foods, Quality Properties, Mass Transfer Characteristics and Energy Consumption during Shortwave Infrared Radiation Drying of Tomato. Qual. Assur. Saf. Crops Foods 2016, 8, 447–456. DOI: 10.3920/QAS2014.0550.
  • Georgé, S.; Tourniaire, F.; Gautier, H.; Goupy, P.; Rock, E.; Caris-Veyrat, C. Changes in the Contents of Carotenoids, Phenolic Compounds and Vitamin C during Technical Processing and Lyophilisation of Red and Yellow Tomatoes. Food Chem. 2011, 124, 1603–1611. DOI: 10.1016/j.foodchem.2010.08.024.
  • Lopez‐Quiroga, E.; Prosapio, V.; Fryer, P. J.; Norton, I. T.; Bakalis, S. Model Discrimination for Drying and Rehydration Kinetics of Freeze‐Dried Tomatoes. J. Food Process Eng. 2020, 43, e13192. DOI: 10.1111/jfpe.13192.
  • Bilek, S. E.; Değirmenci, A.; Tekin, İ.; Yılmaz, F. M. Combined Effect of Vacuum and Different Freezing Methods on the Quality Parameters of Cherry Tomato (Lycopersicon esculentum Var. Cerasiforme). Food Measure. 2019, 13, 2218–2229. DOI: 10.1007/s11694-019-00142-3.
  • Tan, S.; Ke, Z.; Chai, D.; Miao, Y.; Luo, K.; Li, W. Lycopene, Polyphenols and Antioxidant Activities of Three Characteristic Tomato Cultivars Subjected to Two Drying Methods. Food Chem. 2021, 338, 128062. DOI: 10.1016/j.foodchem.2020.128062.
  • Tonon, R. V.; Baroni, A. F.; Hubinger, M. D. Osmotic Dehydration of Tomato in Ternary Solutions: Influence of Process Variables on Mass Transfer Kinetics and an Evaluation of the Retention of Carotenoids. J. Food Eng 2007, 82, 509–517. DOI: 10.1016/j.jfoodeng.2007.03.008.
  • Souza, J. S.; Medeiros, M. F.; Magalhães, M. M.; Rodrigues, S.; Fernandes, F. A. Optimization of Osmotic Dehydration of Tomatoes in a Ternary System Followed by Air-Drying. J. Food Eng. 2007, 83, 501–509. DOI: 10.1016/j.jfoodeng.2007.03.038.
  • Escher, G. B.; Coelho, S. R. M.; Christ, D. Optimization of Osmo‐Convective Dehydration Process for Dry Tomato Production. J. Food Proc. Pres. 2017, 41, e12932. DOI: 10.1111/jfpp.12932.
  • Pani, P.; Leva, A. A.; Riva, M.; Maestrelli, A.; Torreggiani, D. Influence of an Osmotic Pre-Treatment on Structure-Property Relationships of Air-Dehydrated Tomato Slices. J. Food Eng. 2008, 86, 105–112. DOI: 10.1016/j.jfoodeng.2007.09.017.
  • Goula, A. M.; Lazarides, H. N. Modeling of Mass and Heat Transfer during Combined Processes of Osmotic Dehydration and Freezing (Osmo-Dehydro-Freezing). Chem. Eng. Sci. 2012, 82, 52–61. DOI: 10.1016/j.ces.2012.07.023.
  • Dermesonlouoglou, E. K.; Pantelaiaki, K.; Andreou, V.; Katsaros, G. J.; Taoukis, P. S. Osmotic Pretreatment for the Production of Novel Dehydrated Tomatoes and Cucumbers. J. Food Proc. Pres. 2019, 43, e13968. DOI: 10.1111/jfpp.13968.
  • Al-Muhtaseb, A. a H.; Al-Harahsheh, M.; Hararah, M.; Magee, T. Drying Characteristics and Quality Change of Unutilized-Protein Rich-Tomato Pomace with and without Osmotic Pre-Treatment. Ind. Crops Prod. 2010, 31, 171–177. DOI: 10.1016/j.indcrop.2009.10.002.
  • Brooks, M. S.; Ghaly, A. E.; Abou El-Hana, N. H. Drying Kinetics of Osmotically Pre-Treated Plum Tomato Pieces. Int. J. Food Eng. 2008, 4(8). DOI: 10.2202/1556-3758.1517.
  • Siriamornpun, S.; Ratseewo, J.; Kaewseejan, N.; Meeso, N. Effect of Osmotic Treatments and Drying Methods on Bioactive Compounds in Papaya and Tomato. RSC Adv. 2015, 5, 18579–18587. DOI: 10.1039/C4RA16927A.
  • Heredia, A.; Peinado, I.; Rosa, E.; Andrés, A.; Escriche, I. Volatile Profile of Dehydrated Cherry Tomato: Influences of Osmotic Pre-Treatment and Microwave Power. Food Chem. 2012, 130, 889–895. DOI: 10.1016/j.foodchem.2011.08.003.
  • Corrêa, J.; Viana, A. D.; de Mendonça, K. S.; Justus, A. Optimization of Pulsed Vacuum Osmotic Dehydration of Sliced Tomato. Drying Energy Technol. 2016, 63, 207–228. DOI: 10.1007/978-3-319-19767-8_11.
  • Corrêa, J. L.; Justus, A.; de Oliveira, L. F.; Alves, G. E. Osmotic Dehydration of Tomato Assisted by Ultrasound: evaluation of the Liquid Media on Mass Transfer and Product Quality. Int. J. Food Eng. 2015, 11, 505–516. DOI: 10.1515/ijfe-2015-0083.
  • Esehaghbeygi, A.; Basiry, M. Electrohydrodynamic (EHD) Drying of Tomato Slices (Lycopersicon esculentum). J. Food Eng. 2011, 104, 628–631. DOI: 10.1016/j.jfoodeng.2011.01.032.
  • Andritsos, N.; Dalampakis, P.; Kolios, N. Use of Geothermal Energy for Tomato Drying. GHC Bull. 2003, 24.
  • Hosainpour, A.; Darvishi, H.; Nargesi, F.; Fadavi, A. Ohmic Pre-Drying of Tomato Paste. Food Sci. Technol. Int. 2014, 20, 193–204. DOI: 10.1177/1082013213480360.
  • Haile, M. Microwave-Vacuum Drying Effect on Drying Kinetics, Lycopene and Ascorbic Acid Content of Tomato Slices. J. Stored Prod. Postharvest Res. 2013, 4, 11–22. DOI: 10.5897/JSPPR12.030.
  • Al-Asheh, S.; Jumah, R.; Banat, F.; Hammad, S. The Use of Experimental Factorial Design for Analysing the Effect of Spray Dryer Operating Variables on the Production of Tomato Powder. Food Bioprod. Process. 2003, 81, 81–88. DOI: 10.1205/096030803322088215.
  • Aswathy, S.; Suresha, G.; Sneha, N.; Sadananda, G. Microencapsulation of Lycopene Rich Cherry Tomato Powder Using Spray Drying. IJCS 2019, 7, 2270–2277.
  • Montiel-Ventura, J.; Luna-Guevara, J.; Tornero-Campante, M.; Delgado-Alvarado, A.; Luna-Guevara, M. Study of Encapsulation Parameters to Improve Content of Lycopene in Tomato (Solanum Lycopersicum L.) Powders. Acta Alimentaria 2018, 47, 135–142. DOI: 10.1556/066.2018.47.2.1.
  • Goula, A. M.; Adamopoulos, K. G. Spray Drying of Tomato Pulp: effect of Feed Concentration. Drying Technol. 2004, 22, 2309–2330. DOI: 10.1081/DRT-200040007.
  • Corrêa-Filho, L. C.; Lourenço, S. C.; Duarte, D. F.; Moldão-Martins, M.; Alves, V. D. Microencapsulation of Tomato (Solanum Lycopersicum L.) Pomace Ethanolic Extract by Spray Drying: Optimization of Process Conditions. Appl. Sci. 2019, 9, 612. DOI: 10.3390/app9030612.
  • Tontul, I.; Topuz, A.; Ozkan, C.; Karacan, M. Effect of Vegetable Proteins on Physical Characteristics of Spray-Dried Tomato Powders. Food Sci. Technol. Int. 2016, 22, 516–524. DOI: 10.1177/1082013216629528.
  • Parisotto, E. I.; Teleken, J. T.; Laurindo, J. B.; Carciofi, B. A. Mathematical Modeling and Experimental Assessment of the Cast-Tape Drying. Drying Technol. 2020, 38, 1024–1035. DOI: 10.1080/07373937.2019.1610768.
  • Castoldi, M.; Zotarelli, M.; Durigon, A.; Carciofi, B.; Laurindo, J. Production of Tomato Powder by Refractance Window Drying. Drying Technol. 2015, 33, 1463–1473. DOI: 10.1080/07373937.2014.989327.
  • Durigon, A.; Parisotto, E. I. B.; Carciofi, B. A. M.; Laurindo, J. B. Heat Transfer and Drying Kinetics of Tomato Pulp Processed by Cast-Tape Drying. Drying Technol. 2018, 36, 160–168. DOI: 10.1080/07373937.2017.1304411.
  • Durigon, A.; de Souza, P. G.; Carciofi, B. A. M.; Laurindo, J. B. Cast-Tape Drying of Tomato Juice for the Production of Powdered Tomato. Food Bioprod. Process. 2016, 100, 145–155. DOI: 10.1016/j.fbp.2016.06.019.
  • Trojosky, M. Rotary Drums for Efficient Drying and Cooling. Drying Technol. 2019, 37, 632–651. DOI: 10.1080/07373937.2018.1552597.
  • Milczarek, R. R.; Ferry, J. J.; Alleyne, F. S.; Olsen, C. W.; Olson, D. A.; Winston, R. Solar Thermal Drum Drying Performance of Prune and Tomato Pomaces. Food Bioprod. Process. 2017, 106, 53–64. DOI: 10.1016/j.fbp.2017.08.009.
  • Olorunda, A.; Aworh, O.; Onuoha, U. Upgrading Quality of Dried Tomato: Effects of Drying Methods, Conditions and Pre‐Drying Treatments.. J. Sci. Food Agric. 1990, 52, 447–454. DOI: 10.1002/jsfa.2740520403.
  • Qiu, J.; Acharya, P.; Jacobs, D. M.; Boom, R. M.; Schutyser, M. A. A Systematic Analysis on Tomato Powder Quality Prepared by Four Conductive Drying Technologies. Innovative Food Sci. Emerging Technol. 2019, 54, 103–112. DOI: 10.1016/j.ifset.2019.03.013.
  • Ratti, C.; Kudra, T. Drying of Foamed Biological Materials: opportunities and Challenges. Drying Technol. 2006, 24, 1101–1108. DOI: 10.1080/07373930600778213.
  • Kadam, D. M.; Balasubramanian, S. Foam Mat Drying of Tomato Juice. J. Food Process. Preserv. 2011, 35, 488–495. DOI: 10.1111/j.1745-4549.2010.00492.x.
  • Chaux-Gutiérrez, A. M.; Santos, A. B.; Granda-Restrepo, D. M.; Mauro, M. A. Foam Mat Drying of Mango: Effect of Processing Parameters on the Drying Kinetic and Product Quality. Drying Technol. 2017, 35, 631–641. DOI: 10.1080/07373937.2016.1201486.
  • Olaniyan, A. M.; Adeoti, J. A.; Sunmonu, M. O. Computing Scientific, Effect of Foaming Agent, Foam Stabilizer and Whipping Time on Drying Process of Tomato Paste under Different Drying Equipment. Int. J. Model. Simul. Sci. Comput. 2017, 08, 1740004. DOI: 10.1142/S1793962317400049.
  • Kadam, D. M.; Wilson, R. A.; Kaur, S. Manisha, Influence of Foam Mat Drying on Quality of Tomato Powder. Int. J. Food Prop. 2012, 15, 211–220. DOI: 10.1080/10942911003763701.
  • Sramek, M.; Schweiggert, R. M.; van Kampen, A.; Carle, R.; Kohlus, R. Preparation of High-Grade Powders from Tomato Paste Using a Vacuum Foam Drying Method. J. Food Sci. 2015, 80, E1755–E1762. DOI: 10.1111/1750-3841.12965.
  • Lavelli, V.; Torresani, M. C. Modelling the Stability of Lycopene-Rich by-Products of Tomato Processing. Food Chem. 2011, 125, 529–535. DOI: 10.1016/j.foodchem.2010.09.044.
  • Silva, Y. P.; Ferreira, T. A.; Celli, G. B.; Brooks, M. S. Optimization of Lycopene Extraction from Tomato Processing Waste Using an Eco-Friendly Ethyl Lactate–Ethyl Acetate Solvent: A Green Valorization Approach. Waste Biomass Valor. 2019, 10, 2851–2861. DOI: 10.1007/s12649-018-0317-7.
  • Mounir, S.; Allaf, T.; Mujumdar, A. S.; Allaf, K. Swell Drying: Coupling Instant Controlled Pressure Drop DIC to Standard Convection Drying Processes to Intensify Transfer Phenomena and Improve Quality—an Overview. Drying Technol. 2012, 30, 1508–1531. DOI: 10.1080/07373937.2012.693145.
  • Louka, N.; Juhel, F.; Allaf, K. Quality Studies on Various Types of Partially Dried Vegetables Texturized by Controlled Sudden Decompression: General Patterns for the Variation of the Expansion Ratio. J. Food Eng. 2004, 65, 245–253. DOI: 10.1016/j.jfoodeng.2004.01.021.
  • Goula, A. M.; Adamopoulos, K. G. Stability of Lycopene during Spray Drying of Tomato Pulp. LWT-Food Sci. Technol. 2005, 38, 479–487. DOI: 10.1016/j.lwt.2004.07.020.
  • Goula, A. M.; Adamopoulos, K. G. Spray Drying Performance of a Laboratory Spray Dryer for Tomato Powder Preparation. Drying Technol. 2003, 21, 1273–1289. DOI: 10.1081/DRT-120023180.
  • Goula, A. M.; Adamopoulos, K. G. Effect of Maltodextrin Addition during Spray Drying of Tomato Pulp in Dehumidified Air: II. Powder Properties. Drying Technol. 2008, 26, 726–737. DOI: 10.1080/07373930802046377.
  • Qiu, J.; Boom, R. M.; Schutyser, M. A. Agitated Thin-Film Drying of Foods. Drying Technol. 2019, 37, 735–744. DOI: 10.1080/07373937.2018.1458037.
  • Borguini, R. G.; Ferraz da Silva Torres, E. A. Tomatoes and Tomato Products as Dietary Sources of Antioxidants. Food Rev. Inter. 2009, 25, 313–325. DOI: 10.1080/87559120903155859.
  • Shi, J.; Maguer, M. L. Lycopene in Tomatoes: chemical and Physical Properties Affected by Food Processing. Crit Rev Food Sci Nutr. 2000, 40, 1–42. DOI: 10.1080/10408690091189275.
  • Chang, C.; Liu, Y. Study on Lycopene and Antioxidant Contents Variations in Tomatoes under air-drying process. J. Food Sci. 2007, 72, E532–E540. DOI: 10.1111/j.1750-3841.2007.00570.x.
  • Mendelová, A.; Mendel, Ľ.; Fikselová, M.; Czako, P. Effect of Drying Temperature on Lycopene Content of Processed Tomatoes. Potravinarstvo Slovak J. Food Sci. 2013, 7(1), 141–145. DOI: 10.5219/300.
  • da Cruz, P. M. F.; Braga, G. C.; de Grandi, A. M. Chemical Composition, Color and Sensory Quality of Tomato Dried at Different Temperatures. Sem. Ci. Agr. 2012, 33, 1475–1486. DOI: 10.1007/s00231-016-1946-7.
  • Sahin, F. H.; Aktas, T.; Orak, H.; Ulger, P.; Sahin, H.; Aktas, T.; Ulger, P. Influence of Pretreatments and Different Drying Methods on Color Parameters and Lycopene Content of Dried Tomato. Bulga. J. Agric. Sci. 2011, 17, 867–881.
  • Kerkhofs, N.; Lister, C.; Savage, G. Change in Colour and Antioxidant Content of Tomato Cultivars following Forced-Air Drying. Plant Foods Hum. Nutr. 2005, 60, 117–121. DOI: 10.1007/s11130-005-6839-8.
  • Martínez-Hernández, G. B.; Boluda-Aguilar, M.; Taboada-Rodríguez, A.; Soto-Jover, S.; Marín-Iniesta, F.; López-Gómez, A. Processing, Packaging, and Storage of Tomato Products: influence on the Lycopene Content. Food Eng. Rev. 2016, 8, 52–75. DOI: 10.1007/s12393-015-9113-3.
  • Davoodi, M. G.; Vijayanand, P.; Kulkarni, S.; Ramana, K. Effect of Different Pre-Treatments and Dehydration Methods on Quality Characteristics and Storage Stability of Tomato Powder. LWT-Food Sci. Technol 2007, 40, 1832–1840. DOI: 10.1016/j.lwt.2006.12.004.
  • Jorge, A.; Almeida, D. M.; Canteri, M. H. G.; Sequinel, T.; Kubaski, E. T.; Tebcherani, S. M. Evaluation of the Chemical Composition and Colour in Long‐Life Tomatoes (Lycopersicon esculentum Mill) Dehydrated by Combined Drying Methods. Int. J. Food Sci. Technol. 2014, 49, 2001–2007. DOI: 10.1111/ijfs.12501.
  • Mwende, R.; Owino, W.; Imathiu, S. Effects of Pretreatment during Drying on the Antioxidant Properties and Color of Selected Tomato Varieties. Food Sci. Nutr. 2018, 6, 503–511. DOI: 10.1002/fsn3.581.
  • Surendar, J.; Dm, S.; Pd, S. Effect of Drying on Quality Characteristics of Dried Tomato Powder. J. Pharma. Phytochem. 2018, 7, 2690–2694.
  • Bradshaw, M. P.; Barril, C.; Clark, A. C.; Prenzler, P. D.; Scollary, G. R. Ascorbic Acid: A Review of Its Chemistry and Reactivity in Relation to a Wine Environment. Crit. Rev. Food Sci. Nutr. 2011, 51, 479–498. DOI: 10.1080/10408391003690559.
  • Abbas, S.; Da Wei, C.; Hayat, K.; Xiaoming, Z. Ascorbic Acid: Microencapsulation Techniques and trends - A Review. Food Rev. Inter 2012, 28, 343–374. DOI: 10.1080/87559129.2011.635390.
  • Kaur, R.; Kaur, K.; Ahluwalia, P. Effect of Drying Temperatures and Storage on Chemical and Bioactive Attributes of Dried Tomato and Sweet Pepper. LWT-Food Sci. Technol. 2020, 117, 108604. DOI: 10.1016/j.lwt.2019.108604.
  • Arslan, D., and M. M. Özcan. Drying of tomato slices: changes in drying kinetics, mineral contents, antioxidant activity and color parameters. CyTA-J. Food 2011, 9.3, 229–236. DOI: 10.1080/19476337.2010.522734.
  • Joshi, N.; Gariepy, Y.; Raghavan, G. V. Comparative Evaluation of Different Pretreatments on Tomato Slices Dried in a Cabinet Air Drier. Int. J. Food Eng. 2008, 4(7). DOI: 10.2202/1556-3758.1261.
  • Askari, G. R.; Emam‐Djomeh, Z.; Tahmasbi, M. Effect of Various Drying Methods on Texture and Color of Tomato Halves. J. Texture Stud. 2009, 40, 371–389. DOI: 10.1111/j.1745-4603.2009.00187.x.
  • Durance, T.; Wang, J. Energy Consumption, Density, and Rehydration Rate of Vacuum Microwave‐and Hot‐Air Convection‐Dehydrated Tomatoes. J. Food Sci. 2002, 67, 2212–2216. DOI: 10.1111/j.1365-2621.2002.tb09529.x.
  • Moreno, G.,D. C.; Díaz-Moreno, A. C. Effect of Air Drying Process on the Physicochemical, Antioxidant, and Microstructural Characteristics of Tomato cv. Chonto. Agronomía Colombiana 2017, 35, 100–106. DOI: 10.15446/agron.colomb.v35n1.57727.
  • Petro‐Turza, M. Flavor of Tomato and Tomato Products. Food Rev. Int. 1986, 2, 309–351. DOI: 10.1080/87559128609540802.
  • Marković, K.; Vahčić, N.; Ganić, K. K.; Banović, M. Aroma Volatiles of Tomatoes and Tomato Products Evaluated by Solid‐Phase Microextraction. Flavour Fragr. J. 2007, 22, 395–400. DOI: 10.1002/ffj.1811.
  • Kelebek, H.; Kesen, S.; Sonmezdag, A. S.; Cetiner, B.; Kola, O.; Selli, S. Characterization of the Key Aroma Compounds in Tomato Pastes as Affected by Hot and Cold Break Process. Food Measure. 2018, 12, 2461–2474. DOI: 10.1007/s11694-018-9863-8.
  • Paolo, D.; Bianchi, G.; Morelli, C. F.; Speranza, G.; Campanelli, G.; Kidmose, U.; Scalzo, R. L. Impact of Drying Techniques, Seasonal Variation and Organic Growing on Flavor Compounds Profiles in Two Italian Tomato Varieties. Food Chem. 2019, 298, 125062 DOI: 10.1016/j.foodchem.2019.125062.
  • Rajkumar, G.; Rajan, M.; Araujo, H.; Jesus, M.; Leite Neta, M.; Sandes, R.; Narain, N. Comparative Evaluation of Volatile Profile of Tomato Subjected to Hot Air, Freeze, and Spray Drying. Drying Technol. 2021, 39(3), 383–391. DOI: 10.1080/07373937.2020.1842441.
  • Sarkar, A.; Kaul, P. Evaluation of Tomato Processing by‐Products: A Comparative Study in a Pilot Scale Setup. J. Food Process. Eng. 2014, 37, 299–307. DOI: 10.1111/jfpe.12086.
  • Sinha, K.; Khare, V. Review on: Antinutritional Factors in Vegetable Crops. The Pharma Inno. J. 2017, 6, 353–358.
  • Friedman, M. Tomato Glycoalkaloids: role in the Plant and in the diet. J. Agric. Food Chem. 2002, 50, 5751–5780. DOI: 10.1021/jf020560c.
  • Allergen Nomenclature WHO/IUIS Allergen Nomenclature Sub-Committee, 2019, From: http://www.allergen.org/search.php?allergenname=&allergensource=tomato&TaxSource=&TaxOrder=&foodallerg=1&bioname=., Retrieved on 30/08/2020.
  • Scott H. Sicherer, M. Hugh, A.; Sampson, M. Food Allergy. J. Allergy Clin. Immunol. 2010, 125, S116–S125. DOI: 10.1016/j.jaci.2009.08.028.
  • Kurze, E.; Lo Scalzo, R.; Campanelli, G.; Schwab, W. Effect of Tomato Variety, Cultivation, Climate and Processing on Sola l 4, an Allergen from Solanum Lycopersicum. Plos One. 2018, 13, e0197971 DOI: 10.1371/journal.pone.0197971.
  • Kiyota, K.; Yoshimitsu, M.; Satsuki-Murakami, T.; Akutsu, K.; Kajimura, K.; Yamano, T. Detection of the Tomato Allergen Sola l 1 and Evaluation of Its Reactivity after Heat and Papain Treatment. Food Agric. Immunol. 2017, 28, 1450–1459. DOI: 10.1080/09540105.2017.1347914.
  • Hnin, K. K.; Zhang, M.; Mujumdar, A. S.; Zhu, Y. Emerging Food Drying Technologies with Energy-Saving Characteristics: A Review. Drying Technol. 2019, 37(12), 1465–1480. DOI: 10.1080/07373937.2018.1510417.
  • Örvös, M.; Gyula, S.; Zsombor, V. Energy Consumption of Tomato Drying. International Scientific Conference on Advances in Mechanical Engineering 2014, 2, 1–6.
  • Allison, B. J.; Simmons, C. W. Valorization of Tomato Pomace by Sequential Lycopene Extraction and Anaerobic Digestion. Biomass Bioenergy 2017, 105, 331–341. DOI: 10.1016/j.biombioe.2017.07.019.
  • Belović, M.; Torbica, A.; Lijaković, I. P.; Tomić, J.; Lončarević, I.; Petrović, J. Tomato Pomace Powder as a Raw Material for Ketchup Production. Food Biosci. 2018, 26, 193–199. DOI: 10.1016/j.fbio.2018.10.013.
  • Farahnaky, A.; Abbasi, A.; Jamalian, J.; Mesbahi, G. The Use of Tomato Pulp Powder as a Thickening Agent in the Formulation of Tomato Ketchup. J. Texture Studies 2008, 39, 169–182. DOI: 10.1111/j.1745-4603.2008.00136.x.
  • Concha‐Meyer, A. A.; Durham, C. A.; Colonna, A. E.; Hasenbeck, A.; Sáez, B.; Adams, M. R. Consumer Response to Tomato Pomace Powder as an Ingredient in Bread: impact of Sensory Liking and Benefit Information on Purchase Intent. J. Food Sci. 2019, 84, 3774–3783. DOI: 10.1111/1750-3841.14932.
  • Majzoobi, M.; Ghavi, F. S.; Farahnaky, A.; Jamalian, J.; Mesbahi, G. Effect of Tomato Pomace Powder on the Physicochemical Properties of Flat Bread (Barbari Bread). J. Food Process. Preserv. 2011, 35, 247–256. DOI: 10.1111/j.1745-4549.2009.00447.x.
  • Qiu, Z. Z.; Chin, K. B. Physicochemical Properties and Shelf-Life of Regular-Fat Sausages with Various Levels of Grape Tomato Powder Prepared by Different Drying Methods. Food Sci. Anim. Resour. 2020, 40, 722–733. DOI: 10.5851/KOSFA.2020.E47.
  • Savadkoohi, S.; Hoogenkamp, H.; Shamsi, K.; Farahnaky, A. Color, Sensory and Textural Attributes of Beef Frankfurter, Beef Ham and Meat-Free Sausage Containing Tomato Pomace. Meat Sci. 2014, 97, 410–418. DOI: 10.1016/j.meatsci.2014.03.017.
  • Galvão, A. M. M. T.; de Oliveira Araújo, A. W.; Carneiro, S. V.; Zambelli, R. A.; Bastos, M. d S. R. Coating Development with Modified Starch and Tomato Powder for Application in Frozen Dough. Food Packa. Shelf Life 2018, 16, 194–203. DOI: 10.1016/j.fpsl.2018.04.003.
  • Mallampati, R.; Valiyaveettil, S. Application of Tomato Peel as an Efficient Adsorbent for Water Purification—Alternative Biotechnology. RSC Adv. 2012, 2, 9914–9920. DOI: 10.1039/c2ra21108d.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.