1,062
Views
29
CrossRef citations to date
0
Altmetric
Research Article

Hybrid drying of food and bioproducts: a review

ORCID Icon, ORCID Icon, , &
Pages 1554-1576 | Received 07 Mar 2021, Accepted 31 Mar 2021, Published online: 01 Jun 2021

References

  • Mujumdar, A. S. Handbook of Industrial Drying, 2nd ed.; Marcel Dekker Inc: New York, 1995; pp 1–160.
  • Sagar, V. R.; Suresh Kumar, P. Recent Advances in Drying and Dehydration of Fruits and Vegetables: A Review. J. Food Sci. Technol. 2010, 47, 15–26. DOI: 10.1007/s13197-010-0010-8.
  • Hii, C. L.; Jangam, S. V.; Ong, S. P.; Show, P. L.; Mujumdar, A. S. Processing of Foods, Vegetables, and Fruits: Recent Advances; Transport Processes Research Group: https://arunmujumdar.com/ebooks/, 2015; pp. 63–68.
  • Hii, C. L.; Law, C. L.; Cloke, M. Modeling Using a New Thin Layer Drying Model and Product Quality of Cocoa. J. Food Eng. 2009, 90, 191–198. DOI: 10.1016/j.jfoodeng.2008.06.022.
  • Santos, P. H. S.; Silva, M. A. Retention of Vitamin C in Drying Processes of Fruits and Vegetables—a Review. Dry. Technol. 2008, 26, 1421–1437. DOI: 10.1080/07373930802458911.
  • Martynenko, A.; Janaszek, M. A. Texture Changes during Drying of Apple Slices. Dry. Technol. 2014, 32, 567–577. DOI: 10.1080/07373937.2013.845573.
  • Gaware, T. J.; Sutar, N.; Thorat, B. N. Drying of Tomato Using Different Methods: Comparison of Dehydration and Rehydration Kinetics. Dry. Technol. 2010, 28, 651–658. DOI: 10.1080/07373931003788759.
  • Ratti, C. Hot Air and Freeze-Drying of High-Value Foods: A Review. J. Food Eng. 2001, 49, 311–319. DOI: 10.1016/S0260-8774(00)00228-4.
  • Hii, C. L.; Law, C. L.; Cloke, M.; Sharif, S. Improving Malaysian Cocoa Quality through the Use of Dehumidified Air under Mild Drying Conditions. J. Sci. Food Agric. 2011, 91, 239–246. DOI: 10.1002/jsfa.4176.
  • Patel, S. K.; Bade, M. H. Superheated Steam Drying and Its Applicability for Various Types of the Dryer: The State of Art. Dry. Technol. 2021, 39, 284–305. DOI: 10.1080/07373937.2020.1847139.
  • Chua, K. J.; Chou, S. K. Recent Advances in Hybrid Drying Technologies. In Emerging Technologies for Food Processing, 2nd ed.; Sun, D., Ed.; Academic Press, Cambridge, Massachusetts, USA, 2015; pp 447–459. DOI: 10.1016/C2012-0-07021-4.
  • Feng, L.; Zhang, M.; Adhikari, B. Effect of Water on the Quality of Dehydrated Products: A Review of Novel Characterization Methods and Hybrid Drying Technologies. Dry. Technol. 2014, 32, 1872–1884. DOI: 10.1080/07373937.2014.963205.
  • Zhang, M.; Chen, H.; Mujumdar, A. S.; Tang, J.; Miao, S.; Wang, Y. Recent Developments in High-Quality Drying of Vegetables, Fruits, and Aquatic Products. Crit. Rev. Food Sci. 2017, 57, 1239–1255. DOI: 10.1080/10408398.2014.979280.
  • Onwude, D. I.; Hashim, N.; Janius, R.; Abdan, K.; Chen, G.; Oladejo, A. O. Non-Thermal Hybrid Drying of Fruits and Vegetables: A Review of Current Technologies. Innov. Food Sci. Emerg 2017, 43, 223–238. DOI: 10.1016/j.ifset.2017.08.010.
  • Li, K.; Zhang, M.; Mujumdar, A. S.; Chitrakar, B. Recent Developments in Physical Field-Based Drying Techniques for Fruits and Vegetables. Dry. Technol. 2019, 37, 1954–1973. DOI: 10.1080/07373937.2018.1546733.
  • Kudra, T.; Mujumdar, A. S. Advanced Drying Technologies; CRC press: Boca Raton, 2009; pp 1–9.
  • Jiang, H.; Zhang, M.; Mujumdar, A. S. Microwave Freeze-Drying Characteristics of Banana Crisps. Dry. Technol. 2010, 28, 1377–1384. DOI: 10.1080/07373937.2010.482702.
  • Motevali, A.; Jafari, H.; Hashemi, J. S. Effect of IR Intensity and Air Temperature on Exergy and Energy at Hybrid Infrared-Hot Air Dryer. Chem. Ind. Chem. Eng. Q. 2018, 24, 31–42. DOI: 10.2298/CICEQ170123015M.
  • Borompichaichartkul, C.; Luengsode, K.; Chinprahast, N.; Devahastin, S. Improving Quality of Macadamia Nut (Macadamia integrifolia) through the Use of Hybrid Drying Process. J. Food Eng. 2009, 93, 348–353. DOI: 10.1016/j.jfoodeng.2009.01.035.
  • Phatanayindee, S.; Borompichaichartkul, C.; Srzednicki, G.; Craske, J.; Wootton, M. Changes of Chemical and Physical Quality Attributes of Macadamia Nuts during Hybrid Drying and Processing. Dry. Technol. 2012, 30, 1870–1880. DOI: 10.1080/07373937.2012.703275.
  • Horuz, E.; Bozkurt, H.; Karataş, H.; Maskan, M. Effects of Hybrid (Microwave-Convectional) and Convectional Drying on Drying Kinetics, Total Phenolics, Antioxidant Capacity, Vitamin C, Color and Rehydration Capacity of Sour Cherries. Food Chem. 2017, 230, 295–305. DOI: 10.1016/j.foodchem.2017.03.046.
  • Choo, C. O.; Chua, B. L.; Figiel, A.; Jałoszyński, K.; Wojdyło, A.; Szumny, A.; Łyczko, J.; Chong, C. H. Hybrid Drying of Murraya Koenigii Leaves: Energy Consumption, Antioxidant Capacity, Profiling of Volatile Compounds and Quality Studies. Processes 2020, 8, 240. DOI: 10.3390/pr8020240.
  • Khoshtaghaza, M. H.; Darvishi, H.; Minaei, S. Effects of Microwave - Fluidized Bed Drying on Quality, Energy Consumption and Drying Kinetics of Soybean Kernels. J. Food Sci. Technol. 2015, 52, 4749–4760. DOI: 10.1007/s13197-014-1557-6.
  • Azarpazhooh, E.; Ramaswamy, H. S. Microwave-Osmotic Dehydration of Apples under Continuous Flow Medium Spray Conditions: Comparison with Other. Methods. Dry. Technol. 2009, 28, 49–56. DOI: doi: doi.org/10.1080/07373930903430611.
  • Wang, J.; Sheng, K. Far-Infrared and Microwave Drying of Peach. LWT 2006, 39, 247–255. DOI: 10.1016/j.lwt.2005.02.001.
  • Dondee, S.; Meeso, N.; Soponronnarit, S.; Siriamornpun, S. Reducing Cracking and Breakage of Soybean Grains under Combined near-Infrared Radiation and Fluidized-Bed Drying. J. Food Eng. 2011, 104, 6–13. DOI: 10.1016/j.jfoodeng.2010.11.018.
  • Deng, Y.; Wu, J.; Su, S.; Liu, Z.; Ren, L.; Zhang, Y. Effect of Far-Infrared Assisted Heat Pump Drying on Water Status and Moisture Sorption Isotherm of Squid (Illex Illecebrosus) Fillets. Dry. Technol. 2011, 29, 1580–1586. DOI: 10.1080/07373937.2011.584255.
  • Rodríguez, Ó.; Santacatalina, J. V.; Simal, S.; Garcia-Perez, J. V.; Femenia, A.; Rosselló, C. Influence of Power Ultrasound Application on Drying Kinetics of Apple and Its Antioxidant and Microstructural Properties. J. Food Eng. 2014, 129, 21–29. DOI: 10.1016/j.jfoodeng.2014.01.001.
  • Khaire, R. A.; Gogate, P. R. Novel Approaches Based on Ultrasound for Spray Drying of Food and Bioactive Compounds. Dry. Technol. 2020. DOI: 10.1080/07373937.2020.1804926.
  • Mierzwa, D.; Kowalski, S. J.; Kroehnke, J. Hybrid Drying of Carrot Preliminary Processed with Ultrasonically Assisted Osmotic Dehydration. Food Technol. Biotech. 2017, 55, 197–205. DOI: 10.17113/ftb.55.02.17.4942.
  • Roknul, A. S. M.; Zhang, M.; Mujumdar, A. S.; Wang, Y. A Comparative Study of Four Drying Methods on Drying Time and Quality Characteristics of Stem Lettuce Slices (Lactuca sativa l.). Dry. Technol. 2014, 32, 657–666. DOI: 10.1080/07373937.2013.850435.
  • Mierzwa, D.; Szadzińska, J.; Pawłowski, A.; Pashminehazar, R.; Kharaghani, A. Nonstationary Convective Drying of Raspberries Assisted by Microwaves and Ultrasound. Dry. Technol. 2019, 37, 988–1001. DOI: 10.1080/07373937.2018.1481087.
  • Mothibe, K. J.; Wang, C. Y.; Mujumdar, A. S.; Zhang, M. Microwave-Assisted Pulse-Spouted Vacuum Drying of Apple Cubes. Dry. Technol. 2014, 32, 1762–1768. DOI: 10.1080/07373937.2014.934830.
  • Deepika, S.; Sutar, P. P. Combining Osmotic–Steam Blanching with Infrared–Microwave–Hot Air Drying: Production of Dried Lemon (Citrus Limon L.) Slices and Enzyme Inactivation. Dry. Technol. 2018, 36, 1719–1737. DOI: 10.1080/07373937.2017.1422744.
  • Gan, S. H.; Ong, S. P.; Chin, N. L.; Law, C. L. Color Changes, Nitrite Content, and Rehydration Capacity of Edible Bird's Nest by Advanced Drying Method. Dry. Technol. 2016, 34, 1330–1342. DOI: 10.1080/07373937.2015.1106552.
  • Wiktor, A.; Iwaniuk, M.; Śledź, M.; Nowacka, M.; Chudoba, T.; Witrowa-Rajchert, D. Drying Kinetics of Apple Tissue Treated by Pulsed Electric Field. Dry. Technol. 2012, 31, 112–119. DOI: 10.1080/07373937.2012.724128.
  • Phimphilai, S.; Maimamuang, S.; Phimphilai, K. Application of Ultraviolet Radiation in the Drying Process of Longan (Dimocarpus Longan 'Daw). IV International Symposium on Lychee, Longan and Other Sapindaceae Fruits. 2012, 1029, 385–391. DOI: 10.17660/ActaHortic.2014.1029.49.
  • Chimsook, T. Microwave Assisted Extraction of Avocado Oil from Avocado Skin and Encapsulation Using Spray Drying. Key Eng. Mater 2017, 737, 341–346. DOI: 10.4028/www.scientific.net/KEM.737.341.
  • Sui, Y.; Yang, J.; Ye, Q.; Li, H.; Wang, H. Infrared, Convective, and Sequential Infrared and Convective Drying of Wine Grape Pomace. Dry. Technol. 2014, 32, 686–694. DOI: 10.1080/07373937.2013.853670.
  • Chakraborty, R.; Mukhopadhyay, P.; Bera, M.; Suman, S. Infrared-Assisted Freeze Drying of Tiger Prawn: parameter Optimization and Quality Assessment. Dry. Technol. 2011, 29, 508–519. DOI: 10.1080/07373937.2010.513214.
  • Barzegar, M.; Zare, D.; Stroshine, R. L. An Integrated Energy and Quality Approach to Optimization of Green Peas Drying in a Hot Air Infrared-Assisted Vibratory Bed Dryer. J. Food Eng. 2015, 166, 302–315. DOI: 10.1016/j.jfoodeng.2015.06.026.
  • La Fuente, C. I. A.; Zabalaga, R. F.; Tadini, C. C. Combined Effects of Ultrasound and Pulsed-Vacuum on Air-Drying to Obtain Unripe Banana Flour. Innov. Food Sci. Emerg. Technol. 2017, 44, 123–130. DOI: 10.1016/j.ifset.2017.07.005.
  • Schössler, K.; Jäger, H.; Knorr, D. Novel Contact Ultrasound System for the Accelerated Freeze-Drying of Vegetables. Innov. Food Sci. Emerg. Technol. 2012, 16, 113–120. DOI: 10.1016/j.ifset.2012.05.010.
  • Gan, S. H.; Ng, M. X.; Tham, T. C.; Chua, L. S.; Aziz, R.; Baba, M. R.; Abdullah, L. C.; Ong, S. P.; Law, C. L. Drying Characteristics of Orthosiphon Stamineus Benth by Solar-Assisted Heat Pump Drying. Dry. Technol. 2017, 35, 1755–1764. DOI: 10.1080/07373937.2016.1275673.
  • Amankwah, E.; Kyere, G.; Kyeremateng, H.; Van Boxtel, A. Experimental Verification of Yam (Dioscorea Rotundata) Drying with Solar Adsorption Drying. Appl. Sci. 2019, 9, 3927. DOI: 10.3390/app9183927.
  • Alves-Filho, O.; Eikevik, T.; Mulet, A.; Garau, C.; Rossello, C. Kinetics and Mass Transfer during Atmospheric Freeze Drying of Red Pepper. Dry. Technol. 2007, 25, 1155–1161. DOI: 10.1080/07373930701438469.
  • Lee, D. J.; Jangam, S.; Mujumdar, A. S. Some Recent Advances in Drying Technologies to Produce Particulate Solids. Kona Powder Part J. 2013, 30, 69–83. DOI: 10.14356/kona.2013010.
  • Danilov, O. L.; Leontchik, B. I. Energy Economics in Thermal Drying; Energoatomizdat: Moscow, 1986.
  • Marcotte, M.; Grabowski, S. Minimising Energy Consumption Associated with Drying, Baking and Evaporation. In Handbook of Water and Energy Management in Food Processing; Klemes, J., Smith, R., Kim, J. K., Eds.; Woodhead Publishing: Cambridge, England, 2008; pp 481–522.
  • Raghavan, G. V.; Rennie, T. J.; Sunjka, P. S.; Orsat, V.; Phaphuangwittayakul, W.; Terdtoon, P. Overview of New Techniques for Drying Biological Materials with Emphasis on Energy Aspects. Braz. J. Chem. 2005, 22, 195–201. DOI: 10.1590/S0104-66322005000200005.
  • Menon, A.; Stojceska, V.; Tassou, S. A Systematic Review on the Recent Advances of the Energy Efficiency Improvements in Non-Conventional Food Drying Technologies. Trends Food Sci. Technol. 2020, 100, 67–76. DOI: 10.1016/j.tifs.2020.03.014.
  • Pakowski, Z.; Mujumdar, A. S. Basic Process Calculations and Simulations in Drying. In Handbook of Industrial Drying; Mujumdar, A.S., Ed.; CRC Press, Taylors and Francis, 2014.
  • Perera, C. O.; Rahman, M. S. Heat Pump Dehumidifier Drying of Food. Trends Food Sci. Technol. 1997, 8, 75–79. DOI: 10.1016/S0924-2244(97)01013-3.
  • Maftoonazad, N.; Dehghani, M. R.; Ramaswamy, H. S. Hybrid Microwave-Hot Air Tunnel Drying of Onion Slices: Drying Kinetics, Energy Efficiency, Product Rehydration, Color, and Flavor Characteristics. Dry. Technol. 2020. DOI: 10.1080/07373937.2020.1841790.
  • Kowalski, S. J.; Mierzwa, D. Hybrid Drying of Red Bell Pepper: Energy and Quality Issues. Dry. Technol. 2011, 29, 1195–1203. DOI: 10.1080/07373937.2011.578231.
  • Bantle, M.; Eikevik, T. M. A Study of the Energy Efficiency of Convective Drying Systems Assisted by Ultrasound in the Production of Clipfish. J. Clean. Prod. 2014, 65, 217–223. DOI: 10.1016/j.jclepro.2013.07.016.
  • Stępień, A. E.; Gorzelany, J.; Matłok, N.; Lech, K.; Figiel, A. The Effect of Drying Methods on the Energy Consumption, Bioactive Potential and Colour of Dried Leaves of Pink Rock Rose (Cistus Creticus). J. Food Sci. Technol. 2019, 56, 2386–2394. DOI: 10.1007/s13197-019-03656-2.
  • Nalawade, S.; Sinha, A.; Hebbar, U. Infrared Based Dry Blanching and Hybrid Drying of Bitter Gourd Slices: Process Efficiency Evaluation. J. Food Process Eng. 2018, 41, e12672. DOI: 10.1111/jfpe.12672.
  • Mortezapour, H.; Ghobadian, B.; Minaei, S.; Khoshtaghaza, M. H. Saffron Drying with a Heat Pump–Assisted Hybrid Photovoltaic–Thermal Solar Dryer. Dry. Technol. 2012, 30, 560–566. DOI: 10.1080/07373937.2011.645261.
  • Aktaş, M.; Khanlari, A.; Amini, A.; Şevik, S. Performance Analysis of Heat Pump and Infrared–Heat Pump Drying of Grated Carrot Using Energy-Exergy Methodology. Energy Convers. Manag. 2017, 132, 327–338. DOI: 10.1016/j.enconman.2016.11.027.
  • Antal, T. Comparative Study of Three Drying Methods: Freeze, Hot Air Assisted Freeze and Infrared-Assisted Freeze Modes. Agron. Res. 2015, 13, 863–878.
  • Aktaş, M.; Şevik, S.; Aktekeli, B. Development of Heat Pump and Infrared-Convective Dryer and Performance Analysis for Stale Bread Drying. Energy Convers. Manag. 2016, 113, 82–94. DOI: 10.1016/j.enconman.2016.01.028.
  • Onwude, D. I.; Hashim, N.; Abdan, K.; Janius, R.; Chen, G. The Effectiveness of Combined Infrared and Hot-Air Drying Strategies for Sweet Potato. J. Food Eng. 2019, 241, 75–87. DOI: 10.1016/j.jfoodeng.2018.08.008.
  • Song, X.; Hu, H.; Zhang, B. Drying Characteristics of Chinese Yam (Dioscorea Opposita Thunb.) by Far-Infrared Radiation and Heat Pump. J. Saudi Soc. Agric. Sci. 2018, 17, 290–296. DOI: 10.1016/j.jssas.2016.05.008.
  • Younis, M.; Abdelkarim, D.; El-Abdein, A. Z. Kinetics and Mathematical Modeling of Infrared Thin-Layer Drying of Garlic Slices. Saudi J. Biol. Sci. 2018, 25, 332–338. DOI: 10.1016/j.sjbs.2017.06.011.
  • Salehi, F.; Kashaninejad, M. Modeling of Moisture Loss Kinetics and Color Changes in the Surface of Lemon Slice during the Combined Infrared-Vacuum Drying. Inf. Process. Agric 2018, 5, 516–523. DOI: 10.1016/j.inpa.2018.05.006.
  • Nathakaranakule, A.; Paengkanya, S.; Soponronnarit, S. Durian Chips Drying Using Combined Microwave Techniques with Step-down Microwave Power Input. Food Bioprod Process 2019, 116, 105–117. DOI: 10.1016/j.fbp.2019.04.010.
  • Monteiro, R. L.; Gomide, A. I.; Link, J. V.; Carciofi, B. A. M.; Laurindo, J. B. Microwave Vacuum Drying of Foods with Temperature Control by Power Modulation. Innov. Food Sci. Emerg. Technol 2020, 65, 102473. DOI: 10.1016/j.ifset.2020.102473.
  • Raj, G. V. S. B.; Dash, K. K. Microwave Vacuum Drying of Dragon Fruit Slice: Artificial Neural Network Modelling, Genetic Algorithm Optimization, and Kinetics Study. Comput. Electron. Agric 2020, 178, 105814. DOI: 10.1016/J.COMPAG.2020.105814.
  • Srinivas, Y.; Mathew, S. M.; Kothakota, A.; Sagarika, N.; Pandiselvam, R. Microwave Assisted Fluidized Bed Drying of Nutmeg Mace for Essential Oil Enriched Extracts: An Assessment of Drying Kinetics, Process Optimization and Quality. Innov. Food Sci. Emerg. Technol 2020, 66, 102541. DOI: 10.1016/j.ifset.2020.102541.
  • Tao, Y.; Zhang, J.; Jiang, S.; Xu, Y.; Show, P. L.; Han, Y.; Ye, X.; Ye, M. Contacting Ultrasound Enhanced Hot-Air Convective Drying of Garlic Slices: Mass Transfer Modeling and Quality Evaluation. J. Food Eng 2018, 235, 79–88. DOI: 10.1016/j.jfoodeng.2018.04.028.
  • Kowalski, S. J.; Pawłowski, A. Intensification of Apple Drying Due to Ultrasound Enhancement. J. Food Eng 2015, 156, 1–9. DOI: 10.1016/j.jfoodeng.2015.01.023.
  • Beck, S. M.; Sabarez, H.; Gaukel, V.; Knoerzer, K. Enhancement of Convective Drying by Application of Airborne Ultrasound– a Response Surface Approach. Ultrason Sonochem 2014, 21, 2144–2150. DOI: 10.1016/j.ultsonch.2014.02.013.
  • Tao, Y.; Li, D.; Chai, W. S.; Show, P. L.; Yang, X.; Manickam, S.; Xie, G.; Han, Y. Comparison between Airborne Ultrasound and Contact Ultrasound to Intensify Air Drying of Blackberry: Heat and Mass Transfer Simulation, Energy Consumption and Quality Evaluation. Ultrason Sonochem 2021, 72, 105410. DOI: 10.1016/j.ultsonch.2020.105410.
  • Ran, X. L.; Zhang, M.; Wang, Y.; Liu, Y. A Comparative Study of Three Drying Methods on Drying Time and Physicochemical Properties of Chicken Powder. Dry. Technol. 2019, 37, 373–386. DOI: 10.1080/07373937.2018.1458734.
  • Peng, J.; Yin, X.; Jiao, S.; Wei, K.; Tu, K.; Pan, L. Air Jet Impingement and Hot Air-Assisted Radio Frequency Hybrid Drying of Apple Slices. LWT 2019, 116, 108517. DOI: 10.1016/j.lwt.2019.108517.
  • Shewale, S. R.; Hebbar, H. U. Low Humidity Air and Radio Frequency Wave Based Sequential Drying of Rosmarinus Officinalis for Improvement of Quality. Ind. Crops Prod 2021, 162, 113303. DOI: 10.1016/j.indcrop.2021.113303.
  • Tham, T. C.; Ng, M. X.; Gan, S. H.; Chua, L. S.; Aziz, R.; Chuah, L. A.; Hii, C. L.; Ong, S. P.; Chin, N. L.; Law, C. L. Effect of Ambient Conditions on Drying of Herbs in Solar Greenhouse Dryer with Integrated Heat Pump. Dry. Technol 2017, 35, 1721–1732. DOI: 10.1080/07373937.2016.1271984.
  • Yahya, M.; Fudholi, A.; Sopian, K. Energy and Exergy Analyses of Solar-Assisted Fluidized Bed Drying Integrated with Biomass Furnace. Renew. Energy 2017, 105, 22–29. DOI: 10.1016/j.renene.2016.12.049.
  • Boateng, I. D.; Yang, X. M.; Li, Y. Y. Optimization of Infrared-Drying Parameters for Ginkgo Biloba L. Seed and Evaluation of Product Quality and Bioactivity. Ind. Crop. Prod. 2020, 160, 113108. DOI: 10.1016/j.indcrop.2020.113108.
  • Wu, X. F.; Zhang, M.; Li, Z. Influence of Infrared Drying on the Drying Kinetics, Bioactive Compounds and Flavor of Cordyceps militaris. LWT 2019, 111, 790–798. DOI: 10.1016/j.lwt.2019.05.108.
  • Chandrasekaran, S.; Ramanathan, S.; Basak, T. Microwave Food Processing - A Review. Food Res. Int 2013, 52, 243–261. DOI: 10.1016/j.foodres.2013.02.033.
  • Musielak, G.; Mierzwa, D.; Kroehnke, J. Food Drying Enhancement by Ultrasound–a Review. Trends Food Sci. Technol 2016, 56, 126–141. DOI: 10.1016/j.tifs.2016.08.003.
  • Huang, D.; Men, K.; Li, D.; Wen, T.; Gong, Z.; Sunden, B.; Wu, Z. Application of Ultrasound Technology in the Drying of Food Products. Ultrason Sonochem 2020, 63, 104950. DOI: 10.1016/j.ultsonch.2019.104950.
  • Guo, Y.; Wu, B.; Guo, X.; Ding, F.; Pan, Z.; Ma, H. Effects of Power Ultrasound Enhancement on Infrared Drying of Carrot Slices: Moisture Migration and Quality Characterizations. LWT 2020, 126, 109312. DOI: 10.1016/j.lwt.2020.109312.
  • Ambros, S.; Vollmer, A. H.; Youssef, N. N.; Kulozik, U. Structural Basis of the Impact of Microwave Drying on Survival and Shelf Life of Lactobacillus paracasei. LWT 2018, 98, 291–298. DOI: 10.1016/j.lwt.2018.08.051.
  • Mortezapour, H.; Ghobadian, B.; Khoshtaghaza, M. H.; Minaei, S. Drying Kinetics and Quality Characteristics of Saffron Dried with a Heat Pump Assisted Hybrid Photovoltaic-Thermal Solar Dryer. J. Agric. Sci. Technol 2014, 16, 33–45.
  • McMinn, W. A. M.; Magee, T. R. A. Principles, Methods and Applications of the Convective Drying of Foodstuffs. Food Bioprod. Process 1999, 77, 175–193. DOI: 10.1205/096030899532466.
  • Hii, C. L.; Law, C. L.; Law, M. C. Simulation of Heat and Mass Transfer of Cocoa Beans under Stepwise Drying Conditions in a Heat Pump Dryer. Appl. Therm. Eng. 2013, 54, 264–271. DOI: 10.1016/j.applthermaleng.2013.02.010.
  • Asiah, N.; Djaeni, M.; Hii, C. L. Moisture Transport Mechanism and Drying Kinetic of Fresh Harvested Red Onion Bulbs under Dehumidified Air. Int. J. Food Eng 2017, 13. DOI: 10.1515/ijfe-2016-0401.
  • Compaore, A.; Dissa, A. O.; Rogaume, Y.; Putranto, A.; Chen, X. D.; Mangindaan, D.; Zoulalian, A.; Rémond, R.; Tiendrebeogo, E. Application of the Reaction Engineering Approach (REA) for Modeling of the Convective Drying of Onion. Dry. Technol 2017, 35, 500–508. DOI: 10.1080/07373937.2016.1192189.
  • Mohd Yusof, H. A.; Ng, J. L.; Ng, S. C.; Lee, Y. J.; Hii, C. L.; Putranto, A. Modeling of Convective Drying of Sawdust Using a Reaction Engineering Approach. Chem Eng Technol 2020, 43, 1802–1812. DOI: 10.1002/ceat.202000013.
  • Putranto, A.; Chen, X. D. Reaction Engineering Approach Modeling of Intensified Drying of Fruits and Vegetables Using Microwave, Ultrasonic and Infrared-Heating. Dry. Technol 2020, 38, 747–757. DOI: 10.1080/07373937.2019.1708750.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.