Publication Cover
Drying Technology
An International Journal
Volume 40, 2022 - Issue 14
198
Views
0
CrossRef citations to date
0
Altmetric
Articles

The length of axially segmented lifters in flighted rotary drums: influence on solid transport

, , &
Pages 3003-3020 | Received 22 Feb 2021, Accepted 13 Oct 2021, Published online: 18 Nov 2021

References

  • Blumberg, W. ; Schlünder, E.-U. Transversale Schüttgutbewegung Und Konvektiver Stoffübergang in Drehrohren. Teil 2: Mit Hubschaufeln. Chem. Eng. Process 1996, 35 , 405–411. DOI: 10.1016/S0255-2701(96)04151-7.
  • Boateng, A. A. Rotary Kilns: Transport Phenomena and Transport Processes ; Elsevier/Butterworth-Heinemann: Amsterdam, 2008.
  • Baker, C. The Design of Flights in Cascading Rotary Dryers. Drying Technol. 1988, 6 , 631–653. DOI: 10.1080/07373938808916402.
  • Ajayi, O. O. ; Sheehan, M. E. Design Loading of Free Flowing and Cohesive Solids in Flighted Rotary Dryers. Chem. Eng. Sci. 2012, 73 , 400–411. DOI: 10.1016/j.ces.2012.01.033.
  • Lee, A. ; Sheehan, M. E. Development of a Geometric Flight Unloading Model for Flighted Rotary Dryers. Powder Technol. 2010, 198 , 395–403. DOI: 10.1016/j.powtec.2009.12.004.
  • Lee, H. ; Choi, S. Lifter Design for Enhanced Heat Transfer in a Rotary Kiln Reactor. J. Mech. Sci. Technol. 2013, 27 , 3191–3197. DOI: 10.1007/s12206-013-0841-0.
  • Revol, D. ; Briens, C. ; Chabagno, J. The Design of Flights in Rotary Dryers. Powder Technol. 2001, 121 , 230–238. DOI: 10.1016/S0032-5910(01)00362-X.
  • Nascimento, S. M. ; Duarte, C. R. ; Barrozo, M. A. S. Analysis of the Design Loading in a Flighted Rotating Drum Using High Rotational Speeds. Drying Technol. 2018, 36 , 1200–1208. DOI: 10.1080/07373937.2017.1392972.
  • Kelly, J. Flight Design in Rotary Dryers. Drying Technol. 1992, 10 , 979–993. DOI: 10.1080/07373939208916491.
  • Karali, M. A. ; Herz, F. ; Specht, E. ; Mallmann, J. Comparison of Image Analysis Methods to Determine the Optimum Loading of Flighted Rotary Drums. Powder Technol. 2016, 291 , 147–153. DOI: 10.1016/j.powtec.2015.11.053.
  • Karali, M. A. ; Specht, E. ; Herz, F. ; Mellmann, J. Different Camera and Light Positions to Facilitate Image Analysis Processing in Rotary Drums Studies. Powder Technol. 2017, 306 , 55–60. DOI: 10.1016/j.powtec.2016.10.013.
  • Ajayi, O. O. ; Sheehan, M. E. Application of Image Analysis to Determine Design Loading in Flighted Rotary Dryers. Powder Technol. 2012, 223 , 123–130. DOI: 10.1016/j.powtec.2011.05.013.
  • Debacq, M. ; Vitu, S. ; Ablitzer, D. ; Houzelot, J.-L. ; Patisson, F. Transverse Motion of Cohesive Powders in Flighted Rotary Kilns: experimental Study of Unloading at Ambient and High Temperatures. Powder Technol. 2013, 245 , 56–63. DOI: 10.1016/j.powtec.2013.04.007.
  • Cronin, K. ; Catak, M. ; Bour, J. ; Collins, A. ; Smee, J. Stochastic Modelling of Particle Motion along a Rotary Drum. Powder Technol. 2011, 213 , 79–91. DOI: 10.1016/j.powtec.2011.07.009.
  • Bongo Njeng, A. S. ; Vitu, S. ; Clausse, M. ; Dirion, J.-L. ; Debacq, M. Effect of Lifter Shape and Operating Parameters on the Flow of Materials in a Pilot Rotary Kiln: Part I. Experimental RTD and Axial Dispersion Study. Powder Technol. 2015, 269 , 554–565. DOI: 10.1016/j.powtec.2014.03.066.
  • Bongo Njeng, A. S. ; Vitu, S. ; Clausse, M. ; Dirion, J.-L. ; Debacq, M. Effect of Lifter Shape and Operating Parameters on the Flow of Materials in a Pilot Rotary Kiln: Part II. Experimental Hold-up and Mean Residence Time Modeling. Powder Technol. 2015, 269 , 566–576. DOI: 10.1016/j.powtec.2014.05.070.
  • Hatzilyberis, K. S. ; Androutsopoulos, G. P. An RTD Study for the Flow of Lignite Particles through a Pilot Rotary Dryer Part II: flighted Drum Case. Drying Technol. 1999, 17 , 759–774. DOI: 10.1080/07373939908917568.
  • Pan, J.-P. ; Wang, T.-J. ; Yao, J.-J. ; Jin, Y. Granule Transport and Mean Residence Time in Horizontal Drum with Inclined Flights. Powder Technol. 2006, 162 , 50–58. DOI: 10.1016/j.powtec.2005.12.004.
  • Baker, C. Air-Solids Drag in Cascading Rotary Dryers. Drying Technol. 1992, 10 , 365–393. DOI: 10.1080/07373939208916442.
  • Renaud, M. ; Thibault, J. ; Trusiak, A. Solids Transportation Model of an Industrail Rotary Dryer. Drying Technol. 2000, 18 , 843–865. DOI: 10.1080/07373930008917741.
  • Karali, M. A. ; Specht, E. ; Mellmann, J. ; Refaey, H. A. ; Salem, M. R. ; Elbanhawy, A. Y. Granular Transport through Flighted Rotary Drums Operated at Optimum-Loading: Mathematical Model. Drying Technol. 2020, 38 , 495–505. DOI: 10.1080/07373937.2019.1582062.
  • Thibault, J. ; Alvarez, P. I. ; Blasco, R. ; Vega, R. Modeling the Mean Residence Time in a Rotary Dryer for Various Types of Solids. Drying Technol. 2010, 28 , 1136–1141. DOI: 10.1080/07373937.2010.483045.
  • Karali, M. A. Analysis Study of the Axial Transport and Heat Transfer of a Flighted Rotary Drum Operated at Optimum Loading. Dissertation: Magdeburg, 2015.
  • Piton, M. ; Huchet, F. ; Le Corre, O. ; Le Guen, L. ; Cazacliu, B. A Coupled Thermal-Granular Model in Flights Rotary Kiln: Industrial Validation and Process Design. Appl. Therm. Eng. 2015, 75 , 1011–1021. DOI: 10.1016/j.applthermaleng.2014.10.052.
  • Fernandes, N. J. ; Ataide, C. H. ; Barrozo, M. A. S. Modeling and Experimental Study of Hydrodynamic and Drying Characteristics fo an Industrial Rotary Dryer. Braz. J. Chem. Eng. 2009, 26 , 331–341. DOI: 10.1590/S0104-66322009000200010.
  • Hwan, I. H. Heat Transfer Mechanisms in an Indirectly Heated Rotary Kiln with Lifters and Its Role in Scaling. Dissertation: Perth, 2009.
  • Priessen, J. ; Kreutzer, T. ; Irgat, G. ; Behrens, M. ; Schultz, H. J. Solid Flow in Rotary Drums with Sectional Internals: An Experimental Investigation. Chem. Eng. Technol. 2021, 44 , 300–309. DOI: 10.1002/ceat.202000148.
  • Priessen, J. ; Kawka, T. ; Alisic, J. ; Behrens, M. ; Schultz, H. J. Rotary Drums with Sectional Internals: Experimental Investigation on the Influence of Section Number and Section Length. Powder Technol. 2021, 386 , 262–274. DOI: 10.1016/j.powtec.2021.03.031.
  • Priessen, J. ; Kawka, T. ; Behrens, M. ; Schultz, H. J. Cross-Section-Phenomena in Rotary Drums with Sectional Internals. Powder Technol. 2021, 381 , 229–244. DOI: 10.1016/j.powtec.2020.11.048.
  • Sai, P. S. T. Drying of Solids in a Rotary Dryer. Drying Technol. 2013, 31 , 213–223. DOI: 10.1080/07373937.2012.711406.
  • Sherritt, R. G. ; Chaouki, J. ; Mehrotra, A. K. ; Behie, L. A. Axial Dispersion in the Three-Dimensional Mixing of Particles in a Rotating Drum Reactor. Chem. Eng. Sci. 2003, 58 , 401–415. DOI: 10.1016/S0009-2509(02)00551-1.
  • Nauman, E. B. Residence Time Theory. Ind. Eng. Chem. Res. 2008, 47 , 3752–3766. DOI: 10.1021/ie071635a.
  • Gao, Y. ; Muzzio, F. J. ; Ierapetritou, M. G. A Review of the Residence Time Distribution (RTD) Applications in Solid Unit Operations. Powder Technol. 2012, 228 , 416–423. DOI: 10.1016/j.powtec.2012.05.060.
  • Levenspiel, O. Chemical Reaction Engineering , 3rd ed.; Wiley: Hoboken, 1999.
  • Levenspiel, O. ; Smith, W. K. Notes on the Diffusion-Type Model for the Longitudinal Mixing of Fluids in Flow. Chem. Eng. Sci. 1957, 6 , 227–235. DOI: 10.1016/0009-2509(57)85021-0.
  • Chatterjee, A. ; Sathe, A. V. ; Mukhopadhyay, P. K. Flow of Materials in Rotary Kilns Used for Sponge Iron Manufacture: Part II. Effect of Kiln Geometry. MTB 1983, 14 , 383–392. DOI: 10.1007/BF02654357.
  • Liu, X. Y. ; Specht, E. Mean Residence Time and Hold-up of Solids in Rotary Kilns. Chem. Eng. Sci. 2006, 61 , 5176–5181. DOI: 10.1016/j.ces.2006.03.054.
  • Sai, P. S. T. ; Surender, G. D. ; Damodaran, A. D. ; Suresh, V. ; Philip, Z. G. ; Sankaran, K. Residence Time Distribution and Material Flow Studies in a Rotary Kiln. MTB 1990, 21 , 1005–1011. DOI: 10.1007/BF02670271.
  • Prießen, J. ; Behrens, M. ; Schultz, H. J. Mixing and Segregation in Rotary Drums with Sectional Internals. Chem. Ing. Tech. 2020, 92 , 1313–1314. DOI: 10.1002/cite.202055135.
  • Prießen, J. ; Behrens, M. ; Schultz, H. J. Solid Transport in Rotary Drums with Different Internals. Chem. Ing. Tech. 2020, 92 , 1302–1302. DOI: 10.1002/cite.202055139.
  • Prießen, J. ; Graf, K. ; Behrens, M. ; Schultz, H. J. Changes of Phase Interfaces in Rotary Drums with Sectional Internals. Chem. Ing. Tech. 2020, 92 , 1313–1313. DOI: 10.1002/cite.202055134.
  • Prießen, J. ; Schultz, H. J. Untersuchung Und Optimierung Eines Industriellen Drehrohrofenprozesses Zur Pigmentherstellung. Chem. Ing. Tech. 2018, 90 , 1175–1175. DOI: 10.1002/cite.201855096.
  • Driver, J. ; Hardin, M. T. ; Howes, T. ; Palmer, G. Effect of Lifter Design on Drying Performance in Rotary Dryers. Drying Technol. 2003, 21 , 369–381. DOI: 10.1081/DRT-120017756.
  • Seidenbecher, J. ; Herz, F. ; Meitzner, C. ; Specht, E. ; Wirtz, S. ; Scherer, V. ; Liu, X. Temperature Analysis in Flighted Rotary Drums and the Influence of Operating Parameters. Chem. Eng. Sci. 2021, 229 , 115972. DOI: 10.1016/j.ces.2020.115972.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.