Publication Cover
Drying Technology
An International Journal
Volume 40, 2022 - Issue 15
4,889
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Experimental analysis of spray drying in a process intensified counter flow dryer

, &
Pages 3128-3148 | Received 10 Mar 2021, Accepted 04 Nov 2021, Published online: 08 Dec 2021

References

  • OECD-FAO. “Outlook for milk production growth” [Internet]. Paris; 2012. DOI: 10.1787/agr_outlook-2012-graph96-en.
  • FAO. The future of food and agriculture [Internet]. 2009. http://www.fao.org/3/a-i6583e.pdf.
  • Masters, K. Spray Drying Handbook; George Godwin Ltd: London, UK, 1985, pp 668.
  • Mujumdar, A. S. Handbook of Industrial Drying, 3rd ed.; CRC press: Boca Raton; 2006, pp 1312.
  • Bellinghausen R. Spray Drying from Yesterday to Tomorrow: An Industrial Perspective. Drying Technol. 2018, 37(5), 612–622.
  • Woo, M. W.; Bhandari, B. Spray Drying for Food Powder Production. In Handbook of Food Powders, Bhandari, B., Bansal, N., Zhang, M., Schuck, P., Eds.; Cambridge, UK: Woodhead Publishing limited, 2013; pp 29–56. doi: 10.1533/9780857098672.1.29
  • Huang, X.; Sormoli, M. E.; Langrish, T. A. G. Review of Some Common Commercial and Noncommercial Lab-Scale Spray Dryers and Preliminary Tests for a Prototype New Spray Dryer. Drying Technol. 2018, 36, 1900–1912. [cited 2019 Jun 6]. https://www.tandfonline.com/action/journalInformation?journalCode=ldrt20. DOI: 10.1080/07373937.2018.1459679.
  • Kudra, T.; Mujumdar, A. S. Advanced Drying Technologies, 2nd ed.; CRC press: Boca Raton; 2009, pp 480.
  • Zbicinski, I.; Piatkowski, M. Continuous and Discrete Phase Behavior in Countercurrent Spray Drying Process. Drying Technol. 2009, 27(12), 1353–1362. doi: 10.1080/07373930903383661
  • Ali, M.; Mahmud, T.; Heggs, P. J.; Ghadiri, M.; Bayly, A.; Ahmadian, H.; Martin de Juan, L. CFD Modeling of a Pilot-Scale Countercurrent Spray Drying Tower for the Manufacture of Detergent Powder. Drying Technol. 2017, 35, 281–299. [cited 2020 Apr 22]. https://www.tandfonline.com/action/journalInformation?journalCode=ldrt20. DOI: 10.1080/07373937.2016.1163576.
  • Huntington, D. H. The Influence of the Spray Drying Process on Product Properties. Drying Technol. 2004, 22(6), 1261–1287. doi: 10.1081/DRT-120038730
  • Wawrzyniak, P.; Jaskulski, M.; Piatkowski, M.; Sobulska, M.; Zbicinski, I.; Egan, S. Experimental Detergent Drying Analysis in a Counter-Current Spray Dryer with Swirling Air Flow. Drying Technol. 2020, 38, 108–116. DOI: 10.1080/07373937.2019.1626878.
  • Ali, M.; Mahmud, T.; Heggs, P. J.; Ghadiri, M.; Djurdjevic, D.; Ahmadian, H.; de Juan, L. M.; Amador, C.; Bayly, A. A One-Dimensional Plug-Flow Model of a Counter-Current Spray Drying Tower. Chem. Eng. Res. Des. 2014, 92(5), 826–841. doi: 10.1016/j.cherd.2013.08.010.
  • Jubaer, H.; Xiao, J.; Chen, X. D.; Selomulya, C.; Woo, M. W. Identification of Regions in a Spray Dryer Susceptible to Forced Agglomeration by CFD Simulations. Powder Technol. 2019, 346, 23–37. DOI: 10.1016/j.powtec.2019.01.088.
  • Razmi, R.; Yu, W.; Young, B.; Woo, M. W. What Is Important in the Design of Counter Current Spray Drying Towers?. In Chemeca 2019: Chemical Engineering Megatrends and Elements; Engineers Australia: Sydney, Australia, 2019; pp. 5–15.
  • Shakiba, S.; Mansouri, S.; Selomulya, C.; Woo, M. W. In-Situ Crystallization of Particles in a Counter-Current Spray Dryer. Adv. Powder Technol. 2016, 27, 2299–2307. DOI: 10.1016/j.apt.2016.07.001.
  • Moejes, S. N.; Visser, Q.; Bitter, J. H.; Van Boxtel, A. J. B. Closed-Loop Spray Drying Solutions for Energy Efficient Powder Production. Innov. Food Sci. Emerg. Technol. 2018, 47, 24–37. doi: 10.1016/j.ifset.2018.01.005.
  • Langrish, T. A. G.; Fletcher, D. F. Spray Drying of Food Ingredients and Applications of CFD in Spray Drying. Chem. Eng. Process. Process Intensif. 2001, 40(4), 345–354. doi: 10.1016/S0255-2701(01)00113-1
  • Benali, M.; Kudra, T. Process Intensification for Drying and Dewatering. Drying Technol. 2010, 28(10), 1127–1135. doi: 10.1080/07373937.2010.502604
  • Benali, M.; Kudra, T. Drying Process Intensification: Application to Food Processing, 2008. Available at: https://www.researchgate.net/publication/266211018 (accessed Nov 11, 2018).
  • Comission, E. 2015 low-carbon economy [Internet]; 2016. https://www-europarl-europa-eu.ezproxy2.utwente.nl/RegData/docs_autres_institutions/commission_europeenne/com/2016/0500/COM_COM(2016)0500_EN.pdf.
  • Creative Energy. European Roadmap for Process Intensification. Creative Energy. European Roadmap for Process Intensificatio [Internet]. The Netherlands; 2008 [cited 2021 Jul 16]. http://www.creative-energy.org.
  • Frydman, A.; Vasseur, J.; Ducept, F.; Sionneau, M.; Moureh, J. Simulation of Spray Drying in Superheated Steam Using Computational Fluid Dynamics. Drying Technol. 1999, 17, 1313–1326. DOI: 10.1080/07373939908917617.
  • Frydman, A.; Vasseur, J.; Moureh, J.; Sionneau, M.; Tharrault, P. Comparison of Superheated Steam and Air Operated Spray Dryers Using Computational Fluid Dynamics. Drying Technol. 1998, 16, 1305–1338. [cited 2019 Jan 11]. http://www.tandfonline.com/action/journalInformation?journalCode=ldrt20. DOI: 10.1080/07373939808917464.
  • Linke T.; Happe, J.; Kohlus, R. Laboratory-Scale Superheated Steam Spray Drying of Food and Dairy Products. Drying Technol. 2021, 1–12. doi: 10.1080/07373937.2020.1870127
  • Lum, A.; Cardamone, N.; Beliavski, R.; Mansouri, S.; Hapgood, K.; Woo, M. W. Unusual Drying Behaviour of Droplets Containing Organic and Inorganic Solutes in Superheated Steam. J. Food Eng. 2019, 244, 64–72. DOI: 10.1016/j.jfoodeng.2018.09.021.
  • ISPT. RMZD-Radial Multizone Dryer [Internet]; 2018. https://ispt.eu/media/Project-Poster-DR-20-10-RMD-Radial-Multizone-Dryer.pdf.
  • topsetor energie. NL. Radial Multi-zone Dryer [Internet]; 2018. https://projecten.topsectorenergie.nl/storage/app/exports/project-radial-multi-zone-dryer-00033042-1609692962.pdf.
  • De Wilde, J.; de Broqueville, A. Rotating Fluidized Beds in a Static Geometry: Experimental Proof of Concept. AIChE J. 2007, 53(4), 793–810. doi: 10.1002/aic.11139.
  • De Wilde, J. Gas-Solid Fluidized Beds in Vortex Chambers. Chem. Eng. Process 2014, 85, 256–290. DOI: 10.1016/j.cep.2014.08.013.
  • Broqueville, A. d.; De Wilde, J.; Tourneur, T. Device for Treating Particles in a Rotating Fluidized Bed [Internet]. The Netherlands; WO/2018/203745; 2018. https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2018203745.
  • Tourneur, T.; De Broqueville, A.; Sweere, A.; Poortinga, A.; Wemmers, A.; Jamil Ur Rahman, U.; et al. 2019. Experimental and Numerical Study of a Radial Multi-Zone Vortex Chamber Spray Dryer. Florence, Italy.
  • Weber, J. M.; Stehle, R. C.; Breault, R. W.; De Wilde, J. Experimental Study of the Application of Rotating Fluidized Beds to Particle Separation. Powder Technol., 2017, 316, 123–130. doi: 10.1016/j.powtec.2016.12.076.
  • Jamil Ur Rahman, U.; Pozarlik, A. K.; Tourneur, T.; de Broqueville, A.; De Wilde, J.; Brem, G. Numerical Study toward Optimization of Spray Drying in a Novel Radial Multizone Dryer. Energies, 2021, 14(5). doi: 10.3390/en14051233.
  • Kieviet, F. G.; Kerkhof, P. J. A. M. Air Flow, Temperature and Humidity Patterns in a Co-Current Spray Dryer: Modelling and Measurements. Drying Technol. 1997, 15(6–8), 1763–1773. doi: 10.1080/07373939708917325.
  • Francia, V.; Martín, L.; Bayly, A. E.; Simmons, M. J. H. Agglomeration in Counter-Current Spray Drying Towers. Part A: Particle Growth and the Effect of Nozzle Height. Powder Technol. 2016, 301, 1330–1343. DOI: 10.1016/j.powtec.2016.05.011.
  • Atuonwu, J. C.; Stapley, A. G. F. Reducing Energy Consumption in Spray Drying by Monodisperse Droplet Generation: Modelling and Simulation. Energy Procedia, 2017, 123, 235–242. doi: 10.1016/j.egypro.2017.07.251.
  • van Deventer, H.; Houben, R.; Koldeweij, R. New Atomization Nozzle for Spray Drying. Drying Technol. 2013, 31, 891–897. Jun 11 [cited 2019 Oct 17]. DOI: 10.1080/07373937.2012.735734.
  • Jaskulski, M.; Tran, T. T. H.; Tsotsas, E. Design Study of Printer Nozzle Spray Dryer by Computational Fluid Dynamics Modeling. Drying Technol. 2020, 38, 211–223. DOI: 10.1080/07373937.2019.1633541.
  • Fischer, C.; Jaskulski, M.; Tsotsas, E. Inline Method of Droplet and Particle Size Distribution Analysis in Dilute Disperse Systems. Adv. Powder Technol. 2017, 28, 2820–2829. DOI: 10.1016/j.apt.2017.08.009.
  • Moejes, S. N.; van Boxtel, A. J. B. Energy Saving Potential of Emerging Technologies in Milk Powder Production. Trends Food Sci. Technol., 2017, 60, 31–42. doi: 10.1016/j.tifs.2016.10.023.
  • Kota, K.; Langrish, T. A. G. Fluxes and Patterns of Wall Deposits for Skim Milk in a Pilot-Scale Spray Dryer. Drying Technol. 2006, 24(8), 993–1001. doi: 10.1080/07373930600776167.
  • Ozmen, L.; Langrish, T. A. G. An Experimental Investigation of the Wall Deposition of Milk Powder in a Pilot-Scale Spray Dryer. Drying Technol. 2003, 21(7), 1253–1272. doi: 10.1081/DRT-120023179.
  • Langrish, T. A. G. G.; Chan, W. C.; Kota, K. Comparison of Maltodextrin and Skim Milk Wall Deposition Rates in a Pilot-Scale Spray Dryer. Powder Technol. 2007, 179, 84–89. DOI: 10.1016/j.powtec.2007.01.019.
  • Gianfrancesco, A.; Turchiuli, C.; Dumoulin, E.; Palzer, S. Prediction of Powder Stickiness Along Spray Drying Process in Relation to Agglomeration. Part. Sci. Technol. 2009, 27(5), 415–427. doi: 10.1080/02726350903129987.
  • Gianfrancesco, A.; Turchiuli, C.; Dumoulin, E. Powder Agglomeration During the Spray-Drying Process: Measurements of Air Properties. Dairy Sci. Technol. 2008, 88(1), 53–64. doi: 10.1051/dst:2007008.
  • Sadripour, M.; Rahimi, A.; Hatamipour, M. S. Experimental Study and CFD Modeling of Wall Deposition in a Spray Dryer. Drying Technol. 2012, 30, 574–582. [cited 2018 Oct 1]. http://www.tandfonline.com/action/journalInformation?journalCode=ldrt20. DOI: 10.1080/07373937.2011.653613.
  • Kim, K. S.; Kim, S.-S. Drop Sizing and Depth-of-Field Correction in TV Imaging. At. Sprays, 1994, 4(1).
  • Lee, S. Y.; Kim, Y. D. Sizing of Spray Particles Using Image Processing Technique. KSME Int. J., 2004, 18(6), 879–894.
  • Castrejón-García, R.; Castrejón-Pita, J. R.; Martin, G. D.; Hutchings, I. M. The Shadowgraph Imaging Technique and Its Modern Application to Fluid Jets and Drops. Revista Mexicana Física. 2011, 57(3), 266–275.
  • Sinha, A.; Surya Prakash, R.; Madan Mohan, A.; Ravikrishna, R. V. Airblast Spray in Crossflow - Structure, Trajectory and Droplet Sizing. Int. J. Multiphase Flow 2015, 72, 97–111. 1DOI: 10.1016/j.ijmultiphaseflow.2015.02.008.
  • Sallevelt, J. L. H. P.; Pozarlik, A. K.; Brem, G. Characterization of Viscous Biofuel Sprays Using Digital Imaging in the near Field Region. Appl. Energy 2015, 147, 161–175. DOI: 10.1016/j.apenergy.2015.01.128.
  • Meijer, R. Atomization of Viscous Newtonian Fluids Using Pressure Swirl Atomizers: An experimental approach using Particle/Droplet Image Analysis for the quantification of spray characteristics [Unpublished master's thesis]. University of Twente, the Netherlands, 2019.
  • Adamczyk, A. A.; Rimai, L. 2-Dimensional Particle Tracking Velocimetry (PTV): Technique and Image Processing Algorithms. 1988, 6, 373–380.
  • Patterson, H. S.; Cawood, W. The Determination of Size Distribution in Smokes. Trans. Faraday Soc. 1936, 32, 1084–1088. doi: 10.1039/TF9363201084.
  • Sallevelt, J. L. H. P.; Pozarlik, A. K.; Beran, M.; Axelsson, L.-U.; Brem, G. Bioethanol Combustion in An Industrial Gas Turbine Combustor: Simulations and Experiments. J. Eng. Gas Turbines Power. 2014, 136(7), 071501. doi: 10.1115/1.4026529.
  • Mandato, S.; Rondet, E.; Delaplace, G.; Barkouti, A.; Galet, L.; Accart, P.; Ruiz, T.; Cuq, B. Liquids’ Atomization with Two Different Nozzles: Modeling of the Effects of Some Processing and Formulation Conditions by Dimensional Analysis. Powder Technol. 2012, 224, 323–330. doi: 10.1016/j.powtec.2012.03.014.
  • Glycerine Producers’ Association and G. P. Association. Physical properties of glycerine and its solutions. Glycerine Producers’ Association: New York, 1963.
  • Klaassen, M. (2016). Near Filed Atomization in Pressure Swirl Nozzle: Experimental Investigation regarding Impact of Fluid Properties and Nozzle Specifications on Spray Characteristics [Unpublished master's thesis]. University of Twente, the Netherlands.
  • Gourdon, M.; Innings, F.; Jongsma, A.; Vamling, L. Qualitative Investigation of the Flow Behaviour during Falling Film Evaporation of a Dairy Product. 2015, 60, 9–19.
  • Silveira, A. C. P.; de Carvalho, A. F.; Perrone, Í. T.; Fromont, L.; Méjean, S.; Tanguy, G.; Jeantet, R.; Schuck, P. Pilot-Scale Investigation of Effectiveness of Evaporation of Skim Milk Compared to Water. Dairy Sci. & Technol. 2013, 93, 537–549. JulDOI: 10.1007/s13594-013-0138-1.
  • Rahman, U. J. U.; Baiazitov, I.; Pozarlik, A. K.; Brem, G. CFD Study of Air Flow Patterns and Droplet Trajectories in a Vortex Chamber Spray dryer. In Proceedings of the 21st International Drying Symposium, Valencia, Spain, 11–14 September 2018.
  • Rahman, U. J. U.; Pozarlik, A. K.; Baiazitov, I.; Tourneur, T.; de Broqueville, A.; De Wilde, J.; Brem, G. Stationary and Transient Aspects of Air Flow in a Novel Radial Multi-Zone Dryer. In Proceedings of the Euro Drying, Torino, Italy, 10–12 July 2019.
  • Tourneur, T.; de Broqueville, A.; De Wilde, J. Experimental and CFD study of multi-zone vortex chamber spray dryers,” in International Symposium on Chemical Reactor Engineering-ISCRE 25, 2018, vol. 25. https://www.aidic.it/iscre25/review/papers/407tourneur.pdf (accessed Aug. 20, 2018).
  • Lefebvre, A. H.; McDonell, V. G. Atomization and Sprays; CRC press; 2017.
  • Davanlou, A.; Lee, J. D.; Basu, S.; R. Kumar. Effect of Viscosity and Surface Tension on Breakup and Coalescence of Bicomponent Sprays. Chem. Eng. Sci. 2015, 131, 243–255. doi: 10.1016/j.ces.2015.03.057.
  • Ranz, W. E.; Marshall, W. R., Jr. Evaporation from Drops. Chem. Eng. Prog. I and II. 1952, 48, 141–146, 173–180.
  • Vuataz, G. The Phase Diagram of Milk: A New Tool for Optimising the Drying Process. Le Lait, 2002, 82(4), 485–500. doi: 10.1051/lait:2002026.
  • Walmsley, T. G.; Walmsley, M. R. W.; Atkins, M. J.; Neale, J. R.; Sellers, C. M. An Experimentally Validated Criterion for Skim Milk Powder Deposition on Stainless Steel Surfaces. J. Food Eng. 2014, 127, 111–119. [cited 2018 Sep 28]. DOI: 10.1016/j.jfoodeng.2013.11.025.
  • O’Donoghue, L. T.; Haque, M. K.; Kennedy, D.; Laffir, F. R.; Hogan, S. A.; O’Mahony, J. A.; Murphy, E. G. Influence of Particle Size on the Physicochemical Properties and Stickiness of Dairy Powders. Int. Dairy J. 2019, 98, 54–63. doi: 10.1016/j.idairyj.2019.07.002.
  • Ullum, T.; Sloth, J.; Brask, A.; Wahlberg, M. Predicting Spray Dryer Deposits by CFD and an Empirical Drying Model. Drying Technol. 2010, 28, 723–729. [cited 2018 Oct 1]. http://www.tandfonline.com/action/journalInformation?journalCode=ldrt20. DOI: 10.1080/07373931003799319.
  • Nijdam, J. J.; Langrish, T. A. G. An Investigation of Milk Powders Produced by a Laboratory-Scale Spray Dryer. Drying Technol. 2005, 23(5), 1043–1056. doi: 10.1081/DRT-200060208.
  • Fyfe, K.; Kravchuk, O.; Nguyen, A. V.; Deeth, H.; Bhandari, B. Influence of Dryer Type on Surface Characteristics of Milk Powders. Drying Technol. 2011, 29, 758–769. DOI: 10.1080/07373937.2010.538481.
  • Both, E. M.; Boom, R. M.; Schutyser, M. A. I. Particle Morphology and Powder Properties during Spray Drying of Maltodextrin and Whey Protein Mixtures. Powder Technol. 2020, 363, 519–524. [cited 2021 Jan 11]. DOI: 10.1016/j.powtec.2020.01.001.
  • Wu, W. D.; Liu, W.; Gengenbach, T.; Woo, M. W.; Selomulya, C.; Chen, X. D.; Weeks, M. Towards Spray Drying of High Solids Dairy Liquid: Effects of Feed Solid Content on Particle Structure and Functionality. J. Food Eng. 2014, 123, 130–135. [cited 2018 Sep 18]. DOI: 10.1016/j.jfoodeng.2013.05.013.
  • Rogers, S.; Wu, W. D.; Lin, S. X. Q.; Chen, X. D. Particle Shrinkage and Morphology of Milk Powder Made with a Monodisperse Spray Dryer. Biochem. Eng. J. 2012, 62, 92–100. DOI: 10.1016/j.bej.2011.11.002.
  • Langrish, T. A. G.; Marquez, N.; Kota, K. An Investigation and Quantitative Assessment of Particle Shape in Milk Powders from a Laboratory-Scale Spray Dryer. Drying Technol. 2006, 24(12), 1619–1630. doi: 10.1080/07373930601031133.