Publication Cover
Drying Technology
An International Journal
Volume 40, 2022 - Issue 15
244
Views
2
CrossRef citations to date
0
Altmetric
Articles

Interdependence of shrinkage behavior between wood macroscopic and cellular level during moisture content loss

, &
Pages 3241-3248 | Received 08 Oct 2021, Accepted 08 Dec 2021, Published online: 23 Dec 2021

References

  • Brashaw, B.; R, B. Wood as a Renewable and Sustainable Resource. Wood Handbook: Wood as an Engineering Material. United States Department of Agriculture Forest Service, Forest Products Laboratory: Madison, 2021, Chapter 1.
  • Fu, Z.; Zhou, Y.; Gao, X.; Liu, H.; Zhou, F. Changes of Water Related Properties in Radiata Pine Wood Due to Heat Treatment. Constr. Build. Mater. 2019, 227, 116692. DOI: 10.1016/j.conbuildmat.2019.116692.
  • Herrera-Díaz, R.; Sepúlveda-Villarroel, V.; Pérez-Peña, N.; Salvo-Sepúlveda, L.; Salinas-Lira, C.; Llano-Ponte, R.; Ananías, R. A. Effect of Wood Drying and Heat Modification on Some Physical and Mechanical Properties of Radiata Pine. Dry Technol. 2018, 36, 537–544. DOI: 10.1080/07373937.2017.1342094.
  • Shen, Y.; Gao, Z.; Hou, X.; Chen, Z.; Jiang, J.; Sun, J. Spectral and Thermal Analysis of Eucalyptus Wood Drying at Different Temperature and Methods. Dry Technol. 2020, 28, 313–320.
  • Mirzaei, G.; Mohebby, B.; Ebrahimi, G. Glulam Beam Made from Hydrothermally Treated Poplar Wood with Reduced Moisture Induced Stresses. Constr. Build. Mater. 2017, 135, 386–393. DOI: 10.1016/j.conbuildmat.2016.12.178.
  • Zhan, J. F.; Avramidis, S. Impact of Conventional Drying and Thermal Post-Treatment on the Residual Stresses and Shape Deformations of Larch Lumber. Dry Technol. 2017, 35, 15–24. DOI: 10.1080/07373937.2016.1156123.
  • Chen, K.; Qiu, H.; Sun, M.; Lam, F. Experimental and Numerical Study of Moisture Distribution and Shrinkage Crack Propagation in Cross Section of Timber Members. Constr. Build. Mater. 2019, 221, 219–231. DOI: 10.1016/j.conbuildmat.2019.05.191.
  • Leonardon, M.; Altaner, C.; Vihermaa, M. L.; Jarvis, M. C. Wood Shrinkage: influence of Anatomy, Cell Wall Architecture, Chemical Composition and Cambial Age. Eur. J. Wood Prod. 2010, 68, 87–94. DOI: 10.1007/s00107-009-0355-8.
  • Schulgasser, K.; Witztum, A. How the Relationship between Density and Shrinkage of Wood Depends on Its Microstructure. Wood Sci. Technol. 2015, 49, 389–401. DOI: 10.1007/s00226-015-0699-7.
  • Ma, Q.; Rudolph, V. Dimensional Change Behaviour of Caribbean Pine Using an Environmental Scanning Electron Microscope. Dry Technol. 2006, 24, 1397–1403. DOI: 10.1080/07373930600952743.
  • Taguchi, A.; Murata, K.; Nakano, T. Observation of Cell Shapes in Wood Cross-Sections during Water Adsorption by Confocal Laser-Scanning Microscopy (CLSM). Holzforschung 2010, 64, 627–631. DOI: 10.1515/hf.2010.092.
  • Almeida, G.; Huber, F.; Perré, P. Free Shrinkage of Wood Determined at the Cellular Level Using an Environmental Scanning Electron Microscope. Maderas-Cienc. Technol. 2014, 16, 187–198.
  • Nakano, T. Dimensional Changes of Cell Wall and Cell Lumens upon Water Sorption Revisited. Literature Review and Mathematical Considerations Based on the Cylindrical Model. Holzforschung 2018, 72, 413–419. DOI: 10.1515/hf-2017-0162.
  • Taguchi, A.; Murata, K.; Nakamura, M.; Nakano, T. Scale Effect in the Anisotropic Deformation Change of Tracheid Cells during Water Adsorption. Holzforschung 2011, 65, 253–256. DOI: 10.1515/hf.2011.017.
  • Pang, S. Predicting Anisotropic Shrinkage of Softwood Part 1: Theories. Wood Sci. Technol. 2002, 36, 75–91. DOI: 10.1007/s00226-001-0122-4.
  • Suchsland, O. The Swelling and Shrinking of Wood–a Practical Technology Primer. Forest Products Society: Madison, 2004.
  • Mazzanti, P.; Togni, M.; Uzielli, L. Drying Shrinkage and Mechanical Properties of Poplar Wood (Populus alba L.) across the Grain. J. Cult. Herit 2012, 13, S85–S89. DOI: 10.1016/j.culher.2012.03.015.
  • Fu, Z.; Zhao, J.; Huan, S.; Sun, X.; Cai, Y. The Variation of Tangential Rheological Properties Caused by Shrinkage Anisotropy and Moisture Content Gradient in White Birch Disks. Holzforschung 2015, 69, 573–579. DOI: 10.1515/hf-2014-0089.
  • Han, Y.; Park, Y.; Park, J. H.; Yang, S. Y.; Eom, C. D.; Yeo, H. The Shrinkage Properties of Red Pine Wood Assessed by Image Analysis and near-Infrared Spectroscopy. Dry Technol. 2016, 34, 1613–1620. DOI: 10.1080/07373937.2016.1138964.
  • Pentoney, R. E. Mechanisms Affecting Tangential vs. Radial Shrinkage. J. For. Prod. Res. Soc. 1953, 3, 27–32.
  • Hale, J. D. The Anatomical Basis of Dimensional Changes of Wood in Response to Changes in Moisture Content. For. Prod. J. 1957, 7, 140–144.
  • Schniewind, A. P. Transverse Anisotropy of Wood: A Function of Gross Anatomic Structure. For. Prod. J. 1959, 9, 350–359.
  • Almeida, G.; Assor, C.; Perré, P. The Dynamic of Shrinkage/Moisture Content Behaviour Determined during Drying of Microsamples for Different Kinds of Wood. Dry Technol. 2008, 26, 1118–1124. DOI: 10.1080/07373930802266108.
  • Barber, N. N.; Meylan, B. A. The Anisotropic Shrinkage of Wood: A Theoretical Model. Holzforschung 1964, 18, 146–156. DOI: 10.1515/hfsg.1964.18.5.146.
  • Boyd, J. D. Anisotropic Shrinkage of Wood: Identification of the Dominant Determinants. Makuzai Gakkaishi 1974, 20, 473–482.
  • Jiang, X. M.; Ye, K. L.; Lv, J. X.; Zhao, Y. K.; Yin, Y. F. Wood Properties and Processing of Eucalyptus and Acacia Plantation in China. Science Press, Beijing, 2007.
  • Fu, Z.; Weng, X.; Gao, Y.; Zhou, Y. Full-Field Tracking and Analysis of Shrinkage Strain During Moisture Content Loss in Wood. Holzforschung 2021, 75, 436–443. DOI: 10.1515/hf-2020-0086.
  • Almeida, G.; Hernández, R. E. Changes in Physical Properties of Tropical and Temperate Hardwoods below and above the Fiber Saturation Point. Wood Sci. Technol. 2006, 40, 599–613. DOI: 10.1007/s00226-006-0083-8.
  • Glass, S. V.; Zelinka, S. L. Moisture Relations and Physical Properties of Wood; Wood Handbook: wood as an Engineering Material. United States Department of Agriculture Forest Service, Forest Products Laboratory: Madison, 2021, Chapter 4.
  • Pang, S.; Herritsch, A. Physical Properties of Earlywood and Latewood of Pinus radiata D. Don: anisotropic Shrinkage, Equilibrium Moisture Content and Fibre Saturation Point. Holzforschung 2005, 59, 654–661. DOI: 10.1515/HF.2005.105.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.