Publication Cover
Drying Technology
An International Journal
Volume 40, 2022 - Issue 15
173
Views
1
CrossRef citations to date
0
Altmetric
Articles

Model development for the design of control strategies of the primary drying of lyophilization in vials

, , &
Pages 3292-3309 | Received 21 Oct 2021, Accepted 23 Dec 2021, Published online: 17 Jan 2022

References

  • Velardi, S. A.; Barresi, A. A. Development of Simplified Models for the Freeze-Drying Process and Investigation of the Optimal Operating Conditions. Chem. Eng. Res. Des. 2008, 86, 9–22. DOI: 10.1016/j.cherd.2007.10.007.
  • Toth, R. Modeling and Identification of Linear Parameter-Varying Systems, Vol. 403; Springer: Berlin, Germany, 2010.
  • Liapis, A.; Bruttini, R. Freeze-Drying of Pharmaceutical Crystalline and Amorphous Solutes in Vials: Dynamic Multi-Dimensional Models of the Primary and Secondary Drying Stages and Qualitative Features of the Moving Interface. Drying Technol. 1995, 13, 43–72. DOI: 10.1080/07373939508916942.
  • Mascarenhas, W.; Akay, H.; Pikal, M. J. A Computational Model for Finite Element Analysis of the Freeze-Drying Process. Comput. Methods Appl. Mech. Eng. 1997, 148, 105–124. DOI: 10.1016/S0045-7825(96)00078-3.
  • Sheehan, P.; Liapis, A. Modeling of the Primary and Secondary Drying Stages of the Freeze Drying of Pharmaceutical Products in Vials: Numerical Results Obtained from the Solution of a Dynamic and Spatially Multi-Dimensional Lyophilization Model for Different Operational Policies. Biotechnol. Bioeng. 1998, 60, 712–728. DOI: 10.1002/(SICI)1097-0290(19981220)60:6<712::AID-BIT8>3.0.CO;2-4.
  • Pikal, M. J. Use of Laboratory Data in Freeze Drying Process Design: heat and Mass Transfer Coefficients and the Computer Simulation of Freeze Drying. PDA J. Pharm. Sci. Technol. 1985, 39, 115–139.
  • Liapis, A.; Litchfield, R. Numerical Solution of Moving Boundary Transport Problems in Finite Media by Orthogonal Collocation. Comput. Chem. Eng. 1979, 3, 615–621. DOI: 10.1016/0098-1354(79)80110-6.
  • Millman, M.; Liapis, A.; Marchello, J. An Analysis of the Lyophilization Process Using a Sorption-Sublimation Model and Various Operational Policies. AIChE J. 1985, 31, 1594–1604. DOI: 10.1002/aic.690311003.
  • Sadikoglu, H.; Liapis, A. Mathematical Modelling of the Primary and Secondary Drying Stages of Bulk Solution Freeze-Drying in Trays: Parameter Estimation and Model Discrimination by Comparison of Theoretical Results with Experimental Data. Drying Technol. 1997, 15, 791–810. DOI: 10.1080/07373939708917262.
  • Pisano, R.; Fissore, D.; Barresi, A. A. Freeze-Drying Cycle Optimization Using Model Predictive Control Techniques. Ind. Eng. Chem. Res. 2011, 50, 7363–7379. DOI: 10.1021/ie101955a.
  • Fissore, D. On the Design of a Fuzzy Logic-Based Control System for Freeze-Drying Processes. J. Pharm. Sci. 2016, 105, 3562–3572. DOI: 10.1016/j.xphs.2016.08.018.
  • Daraoui, N.; Dufour, P.; Hammouri, H.; Hottot, A. Model Predictive Control during the Primary Drying Stage of Lyophilisation. Control Eng. Pract. 2010, 18, 483–494. DOI: 10.1016/j.conengprac.2010.01.005.
  • Tchessalov, S.; Dassu, D.; Latshaw, D.; Nulu, S. An Industry Perspective on the Application of Modeling to Lyophilization Process Scale up and Transfer. Am. Pharm. Rev. 2017, 20.
  • Giordano, A.; Barresi, A. A.; Fissore, D. On the Use of Mathematical Models to Build the Design Space for the Primary Drying Phase of a Pharmaceutical Lyophilization Process. J. Pharm. Sci. 2011, 100, 311–324. DOI: 10.1002/jps.22264.
  • Fissore, D.; Pisano, R.; Barresi, A. A. Advanced Approach to Build the Design Space for the Primary Drying of a Pharmaceutical Freeze-Drying Process. J. Pharm. Sci. 2011, 100, 4922–4933. DOI: 10.1002/jps.22668.
  • Bosca, S.; Fissore, D.; Demichela, M. Risk-Based Design of a Freeze-Drying Cycle for Pharmaceuticals. Ind. Eng. Chem. Res. 2015, 54, 12928–12936. DOI: 10.1021/acs.iecr.5b03719.
  • Velardi, S. A.; Hammouri, H.; Barresi, A. A. In-Line Monitoring of the Primary drying phase of the Freeze-Drying Process in Vial by Means of a Kalman Filter Based Observer. Chem. Eng. Res. Des. 2009, 87, 1409–1419. DOI: 10.1016/j.cherd.2009.03.011.
  • Velardi, S. A.; Hammouri, H.; Barresi, A. A. Development of a High Gain Observer for Inline Monitoring of Sublimation in Vial Freeze Drying. Drying Technol. 2010, 28, 256–268. DOI: 10.1080/07373930903530204.
  • Bosca, S.; Barresi, A. A.; Fissore, D. Design of a Robust Soft-Sensor to Monitor in-Line a Freeze-Drying Process. Drying Technol. 2015, 33, 1039–1050. DOI: 10.1080/07373937.2014.982250.
  • Pikal, M. J.; Roy, M.; Shah, S. Mass and Heat Transfer in Vial Freeze-Drying of Pharmaceuticals: Role of the Vial. J. Pharm. Sci. 1984, 73, 1224–1237. DOI: 10.1002/jps.2600730910.
  • Fissore, D.; Barresi, A. A. Scale-up and Process Transfer of Freeze-Drying Recipes. Drying Technol. 2011, 29, 1673–1684. DOI: 10.1080/07373937.2011.597059.
  • Camacho, E. F.; Alba, C. B. Model Predictive Control; Springer Science & Business Media: London, 2013.
  • Seborg, D. E.; Edgar, T. F.; Mellichamp, D. A.; Doyle, F. J. Process Dynamics and Control; John Wiley & Sons: New York, 2017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.