Publication Cover
Drying Technology
An International Journal
Volume 40, 2022 - Issue 15
283
Views
1
CrossRef citations to date
0
Altmetric
Articles

Adaptive online learning for system identification and in-advance optimization under long feedback delay and concept drift in cigarette production

, , , ORCID Icon, &
Pages 3340-3356 | Received 30 Oct 2021, Accepted 11 Jan 2022, Published online: 02 Feb 2022

References

  • Alvarez-López, I.; Llanes-Santiago, O.; Verdegay, J. L. Drying Process of Tobacco Leaves by Using a Fuzzy Controller. Fuzzy Sets Syst. 2005, 150, 493–506. DOI: 10.1016/j.fss.2004.07.019.
  • Zhou, F.; Peng, H.; Ruan, W.; Wang, D.; Liu, M.; Gu, Y.; Li, L. Cubic-RBF-ARX Modeling and Model-Based Optimal Setting Control in Head and Tail Stages of Cut Tobacco Drying Process. Neural Comput. Appl. 2018, 30, 1039–1053. DOI: 10.1007/s00521-016-2735-4.
  • Chen, A.; Ren, Z.; Fan, Z.; Feng, X. Dead Band Zone Model Predictive Control of Cut Tobacco Drying Process. IEEE Access 2020, 8, 157781–157792. DOI: 10.1109/ACCESS.2020.3020469.
  • Chen, A.; Ren, Z.; Fan, Z.; Feng, X. Two-Layered Model Predictive Control Strategy of the Cut Tobacco Drying Process. IEEE Access. 2020, 8, 155697–155709. DOI: 10.1109/ACCESS.2020.3018476.
  • Bi, S.; Zhang, B.; Mu, L.; Ding, X.; Wang, J. Optimization of Tobacco Drying Process Control Based on Reinforcement Learning. Drying Technol. 2020, 38, 1291–1299. DOI: 10.1080/07373937.2019.1633662.
  • Mu, L.; Bi, S.; Yu, S.; Liu, X.; Ding, X. An Intelligent Moisture Prediction Method for Tobacco Drying Process Using a Multi-Hierarchical Convolutional Neural Network. Drying Technol. 2021, 1–13.
  • Zhu, M.; Wu, K.; Zhou, Y.; Wang, Z.; Qiao, J.; Wang, Y.; Fan, X.; Nong, Y.; Zi, W. Prediction of Cooling Moisture Content after Cut Tobacco Drying Process Based on a Particle Swarm Optimization-Extreme Learning Machine Algorithm. Math. Biosci. Eng. 2021, 18, 2496–2507. DOI: 10.3934/mbe.2021127.
  • Yuan, C.; Ding, X.; Hou, R. 2018 Prediction Method for Moisture Content in Dried Cut Tobacco Based on Combination Model of WNN and ARX. In 2018 14th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNCFSKD), pp 155–160.
  • He, Y.; Li, B.; Pu, Y.; Jin, W.; Zhou, X.; Jin, C. 2021 Uncertainty-Aware Data-Driven Tobacco Loosening and Conditioning Process Moisture Prediction and Control Optimization. In 2021 IEEE 10th Data Driven Control and Learning Systems Conference (DDCLS), pp 600–607. DOI: 10.1109/DDCLS52934.2021.9455522.
  • Chen, C.; Li, J.; Yin, J.; Zhang, F.; Yao, J. Quality Prediction Based on ANN in Tobacco Redrying Process. InAMR 2011, Adv. Mater. Res. 211-212, 1046–1050. DOI: 10.4028/www.scientific.net/AMR.211-212.1046.
  • Yin, J.; Chen, C. Quality Prediction Model Based on Variable-Learning-Rate Neural Networks in Tobacco Redrying Process. In Proceedings of the 2016 5th International Conference on Measurement, Instrumentation and Automation (ICMIA 2016), 2016. DOI: 10.2991/icmia-16.2016.139.
  • Tsymbal, A. The Problem of Concept Drift: definitions and Related Work. Comput. Sci. Dep., Trinity College Dublin 2004, 106, 58.
  • Lakshminarayanan, B.; Roy, D. M.; Teh, Y. W. Mondrian Forests: Efficient Online Random Forests. Adv. Neur. Inform. Process. Syst. 2014, 27, 3140–3148.
  • Hendorson, S. Grain Drying Theory (I) temperature Effect on Drying Coefficient. J. Agric. Eng. Res. 1961, 6, 169–174.
  • Akpinar, E. K.; Bicer, Y.; Yildiz, C. Thin Layer Drying of Red Pepper. J. Food Eng. 2003, 59, 99–104. DOI: 10.1016/S0260-8774(02)00425-9.
  • Wang, C.; Singh, R. Use of Variable Equilibrium Moisture Content in Modeling Rice Drying. Trans. Am. Soc. Agric. Eng. 1978, 11, 668–672.
  • Midilli, A.; Kucuk, H.; Yapar, Z. A New Model for Single-Layer Drying. Drying Technol. 2002, 20, 1503–1513. DOI: 10.1081/DRT-120005864.
  • Xin, Y.; Zhang, J.; Li, B. Drying Kinetics of Tobacco Strips at Different Air Temperatures and Relative Humidities. J. Therm. Anal. Calorim. 2018, 132, 1347–1358. DOI: 10.1007/s10973-018-7005-5.
  • Christ, M.; Braun, N.; Neuffer, J.; Kempa-Liehr, A. W. Time Series Feature Extraction on Basis of Scalable Hypothesis Tests (Tsfresh–a Python Package), Neurocomputing 2018, 307, 72–77. DOI: 10.1016/j.neucom.2018.03.067.
  • Wold, S.; Esbensen, K.; Geladi, P. Principal Component Analysis. Chemometrics and Intelligent Laboratory Systems 1987, 2, 37–52. DOI: 10.1016/0169-7439(87)80084-9.
  • Albert, A.; Sittler, R. W. A Method for Computing Least Squares Estimators That Keep up with the Data. J. Soc. Ind. Appl. Math., Ser. A: Control 1965, 3, 384–417. DOI: 10.1137/0303026.
  • Bruce, A. L.; Goel, A.; Bernstein, D. S. Convergence and Consistency of Recursive Least Squares with Variable-Rate Forgetting. Automatica 2020, 119, 109052. DOI: 10.1016/j.automatica.2020.109052.
  • Lai, Y.; Dzombak, D. A. Use of the Autoregressive Integrated Moving Average (ARIMA) Model to Forecast near-Term Regional Temperature and Precipitation. Weather Forecast. 2020, 35, 959–976. DOI: 10.1175/WAF-D-19-0158.1.
  • Tekta, M.; Weather Forecasting Using ANFIS and ARIMA Models. A Case Study for Istanbul. Environ. Res. Eng. Manage. 2010, 51, 5–10.
  • Jain, G.; Mallick, B. A. Study of time series models ARIMA and ETS, SSRN 2898968, 2017.
  • der Maaten, L. V.; Hinton, G. Visualizing Data Using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.
  • Snoek, J.; Larochelle, H.; Adams, R. P. Practical Bayesian Optimization of Machine Learning Algorithms. Adv. Neur. Inform. Process. Syst. 2012, 2., 2951–2959.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.