Publication Cover
Drying Technology
An International Journal
Volume 40, 2022 - Issue 15
223
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Acquisition of collapse temperature and the influencing factors during freeze-drying of placental decellularized matrix in freeze-drying microscopy based on image processing techniques

, , , , , , & show all
Pages 3072-3083 | Received 26 Sep 2021, Accepted 13 Feb 2022, Published online: 27 Feb 2022

References

  • Beiki, B.; Zeynali, B.; Seyedjafari, E. Fabrication of a Three Dimensional Spongy Scaffold Using Human Wharton's Jelly Derived Extra Cellular Matrix for Wound Healing. Mater. Sci. Eng. C. Mater. Biol. Appl. 2017, 78, 627–638. DOI: 10.1016/j.msec.2017.04.074.
  • Choi, J. S.; Kim, J. D.; Yoon, H. S.; Cho, Y. W. Full-Thickness Skin Wound Healing Using Human Placenta-Derived Extracellular Matrix Containing Bioactive Molecules. Tissue Eng. Part A. 2013, 19, 329–339. DOI: 10.1089/ten.TEA.2011.0738.
  • Lobo, S. E.; Leonel, L. C. P. C.; Miranda, C. M. F. C.; Coelho, T. M.; Ferreira, G. A. S.; Mess, A.; Abrão, M. S.; Miglino, M. A. The Placenta as an Organ and a Source of Stem Cells and Extracellular Matrix: A Review. Cells. Tissues. Organs. 2016, 201, 239–252. DOI: 10.1159/000443636.
  • Forbes, K.; Westwood, M. Maternal Growth Factor Regulation of Human Placental Development and Fetal Growth. J. Endocrinol. 2010, 207, 1–16. DOI: 10.1677/JOE-10-0174.
  • Lopez-Espinosa, M.-J.; Silva, E.; Granada, A.; Molina-Molina, J.-M.; Fernandez, M. F.; Aguilar-Garduño, C.; Olea-Serrano, F.; Kortenkamp, A.; Olea, N. Assessment of the Total Effective Xenoestrogen Burden in Extracts of Human Placentas. Biomarkers 2009, 14, 271–277. DOI: 10.1080/13547500902893744.
  • Hong, J. W.; Lee, W. J.; Hahn, S. B.; Kim, B. J.; Lew, D. H. The Effect of Human Placenta Extract in a Wound Healing Model. Ann. Plast. Surg. 2010, 65, 96–100. DOI: 10.1097/SAP.0b013e3181b0bb67.
  • De, D.; Chakraborty, P. D.; Bhattacharyya, D. Regulation of Trypsin Activity by Peptide Fraction of an Aqueous Extract of Human Placenta Used as Wound Healer. J. Cell. Physiol. 2011, 226, 2033–2040. DOI: 10.1002/jcp.22535.
  • Hollister, S. J.; Maddox, R. D.; Taboas, J. M. Optimal Design and Fabrication of Scaffolds to Mimic Tissue Properties and Satisfy Biological Constraints. Biomaterials 2002, 23, 4095–4103. DOI: 10.1016/S0142-9612(02)00148-5.
  • Haugh, M. G.; Murphy, C. M.; O’Brien, F. J. Novel Freeze-Drying Methods to Produce a Range of Collagen-Glycosaminoglycan Scaffolds with Tailored Mean Pore Sizes. Tissue Eng. Part C. Methods 2010, 16, 887–894. DOI: 10.1089/ten.TEC.2009.0422.
  • Tang, X.; Pikal, M. J. Design of Freeze-Drying Processes for Pharmaceuticals: Practical Advice. Pharm. Res. 2004, 21, 191–200. DOI: 10.1023/B:PHAM.0000016234.73023.75.
  • Kawasaki, H.; Shimanouchi, T.; Takahashi, K.; Kimura, Y. Effect of Controlled Nucleation of Ice Crystals on the Primary Drying Stage during Lyophilization. Chem. Pharm. Bull. (Tokyo) 2018, 66, 1122–1130. DOI: 10.1248/cpb.c18-00494.
  • Hottot, A.; Vessot, S.; Andrieu, J. Freeze Drying of Pharmaceuticals in Vials: Influence of Freezing Protocol and Sample Configuration on Ice Morphology and Freeze-Dried Cake Texture. Chem. Eng. Process. 2007, 46, 666–674. DOI: 10.1016/j.cep.2006.09.003.
  • Stärtzel, P.; Gieseler, H.; Gieseler, M.; Abdul-Fattah, A. M.; Adler, M.; Mahler, H.-C.; Goldbach, P. Freeze Drying of L-Arginine/Sucrose-Based Protein Formulations, Part I: Influence of Formulation and Arginine Counter Ion on the Critical Formulation Temperature, Product Performance and Protein Stability. J. Pharm. Sci. 2015, 104, 2345–2358. DOI: 10.1002/jps.24501.
  • Depaz, R. A.; Pansare, S.; Patel, S. M. Freeze-Drying above the Glass Transition Temperature in Amorphous Protein Formulations While Maintaining Product Quality and Improving Process Efficiency. J. Pharm. Sci. 2016, 105, 40–49. DOI: 10.1002/jps.24705.
  • Jin, J.; Yurkow, E. J.; Adler, D.; Lee, T.-C. Improved Freeze Drying Efficiency by Ice Nucleation Proteins with Ice Morphology Modification. Food Res. Int. 2018, 106, 90–97.
  • Meister, E.; Gieseler, H. Freeze-Dry Microscopy of Protein/Sugar Mixtures: Drying Behavior, Interpretation of Collapse Temperatures and a Comparison to Corresponding Glass Transition Data. J. Pharm. Sci. 2009, 98, 3072–3087. DOI: 10.1002/jps.21586.
  • Yang, G.; Gilstrap, K.; Zhang, A.; Xu, L. X.; He, X. Collapse Temperature of Solutions Important for Lyopreservation of Living Cells at Ambient Temperature. Biotechnol. Bioeng. 2010, 106, 247–259. DOI: 10.1002/bit.22690.
  • Pisano, R.; Arsiccio, A.; Nakagawa, K.; Barresi, A. A. Tuning, Measurement and Prediction of the Impact of Freezing on Product Morphology: A Step toward Improved Design of Freeze-Drying Cycles. Dry. Technol. 2019, 37, 579–599. DOI: 10.1080/07373937.2018.1528451.
  • Luo, C.; Liu, Z.; Mi, S.; Li, L. Quantitative Investigation on the Effects of Ice Crystal Size on Freeze-Drying: The Primary Drying Step. Dry. Technol. 2022, 40, 446–413. DOI: 10.1080/07373937.2020.1806865.
  • Jiang, S.; Nail, S. L. Effect of Process Conditions on Recovery of Protein Activity after Freezing and Freeze-Drying. Eur. J. Pharm. Biopharm. 1998, 45, 249–257. DOI: 10.1016/S0939-6411(98)00007-1.
  • Rambhatla, S.; Ramot, R.; Bhugra, C.; Pikal, M. J. Heat and Mass Transfer Scale-up Issues during Freeze Drying: II. Control and Characterization of the Degree of Supercooling. AAPS PharmSciTech. 2004, 5, 54–62. DOI: 10.1208/pt050458.
  • Kuu, W.; Hardwick, L.; Akers, M. Rapid Determination of Dry Layer Mass Transfer Resistance for Various Pharmaceutical Formulations during Primary Drying Using Product Temperature Profiles. Int. J. Pharm. 2006, 313, 99–113. DOI: 10.1016/j.ijpharm.2006.01.036.
  • Ray (Née Raman), P.; Rielly, C. D.; Stapley, A. G. F. A Freeze-Drying Microscopy Study of the Kinetics of Sublimation in a Model Lactose System. Chem. Eng. Sci. 2017, 172, 731–743. DOI: 10.1016/j.ces.2017.05.047.
  • Kremer, D. M.; Pikal, M. J.; Petre, W. J.; Shalaev, E. Y.; Gatlin, L. A.; Kramer, T. A Procedure to Optimize Scale-up for the Primary Drying Phase of Lyophilization. J. Pharm. Sci. 2009, 98, 307–318. DOI: 10.1002/jps.21430.
  • Schersch, K.; Betz, O.; Garidel, P.; Muehlau, S.; Bassarab, S.; Winter, G. Systematic Investigation of the Effect of Lyophilizate Collapse on Pharmaceutically Relevant Proteins, Part 2: Stability during Storage at Elevated Temperatures. J. Pharm. Sci. 2012, 101, 2288–2306.
  • Lu, X.; Pikal, M. J. Freeze-Drying of Mannitol-Trehalose-Sodium Chloride-Based Formulations: The Impact of Annealing on Dry Layer Resistance to Mass Transfer and Cake Structure. Pharm. Dev. Technol. 2004, 9, 85–95. DOI: 10.1081/pdt-120027421.
  • Searles, J. A.; Carpenter, J. F.; Randolph, T. W. Annealing to Optimize the Primary Drying Rate, Reduce Freezing-Induced Drying Rate Heterogeneity, and Determine T(g)' in Pharmaceutical Lyophilization. J. Pharm. Sci. 2001, 90, 872–887. DOI: 10.1002/jps.1040.
  • Lim, J. Y.; Lim, D. G.; Kim, K. H.; Park, S.-K.; Jeong, S. H. Effects of Annealing on the Physical Properties of Therapeutic Proteins during Freeze Drying Process. Int. J. Biol. Macromol. 2018, 107, 730–740. DOI: 10.1016/j.ijbiomac.2017.09.041.
  • Fonte, P.; Lino, P. R.; Seabra, V.; Almeida, A. J.; Reis, S.; Sarmento, B. Annealing as a Tool for the Optimization of Lyophilization and Ensuring of the Stability of Protein-Loaded PLGA Nanoparticles. Int. J. Pharm. 2016, 503, 163–173. DOI: 10.1016/j.ijpharm.2016.03.011.
  • Tang, Y.; Mao, M.; Qiu, S.; Wu, C. Annealing Effects on the Pore Structures and Mechanical Properties of Porous Alumina via Directional Freeze-Casting. J. Eur. Ceram. Soc. 2018, 38, 4149–4154. DOI: 10.1016/j.jeurceramsoc.2018.04.038.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.