Publication Cover
Drying Technology
An International Journal
Volume 41, 2023 - Issue 5
247
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Combined effect of acoustic field and gas absorption on evaporation of slurry droplet

, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 767-782 | Received 05 Jun 2022, Accepted 20 Aug 2022, Published online: 05 Sep 2022

References

  • Osman, A.; Goehring, L.; Patti, A.; Stitt, H.; Shokri, N. Fundamental Investigation of the Drying of Solid Suspensions. Ind. Eng. Chem. Res. 2017, 56, 10506–10513. DOI: 10.1021/acs.iecr.7b02334.
  • King, L. V. On the Acoustic Radiation Pressure on Spheres. Proc. R. Soc. Lond. A 1934, 147, 212–240. DOI: 10.1098/rspa.1934.0215.
  • Andrade, M. A. B.; Pérez, N.; Adamowski, J. C. Review of Progress in Acoustic Levitation. Braz. J. Phys. 2018, 48, 190–213. DOI: 10.1007/s13538-017-0552-6.
  • Yarin, A. L.; Pfaffenlehner, M.; Tropea, C. On the Acoustic Levitation of Droplets. J. Fluid Mech. 1998, 356, 65–91. DOI: 10.1017/S0022112097007829.
  • Yosioka, K.; Kavasima, Y. Acoustic Radiation Pressure on Compressible Sphere. Acustica 1955, 5, 167–173.
  • Settnes, M.; Bruus, H. Forces Acting on a Small Particle in an Acoustical Field in a Viscous Fluid. Phys. Rev. E Stat. Nonlin. Soft Matter. Phys. 2012, 85, 016327. DOI: 10.1103/PhysRevE.85.016327.
  • Yarin, A. L.; Brenn, G.; Kastner, O.; Rensink, D.; Tropea, C. Evaporation of Acoustically Levitated Droplets. J. Fluid Mech. 1999, 399, 151–204. DOI: 10.1017/S0022112099006266.
  • Burdukov, A. P.; Nakoryakov, V. E. On Mass Transfer in an Acoustic Field. J. Appl. Mech. Tech. Phys. 1966, 6, 51–55. DOI: 10.1007/BF00915612.
  • Gopinath, A.; Mills, A. F. Convective Heat Transfer from a Sphere Due to Acoustic Streaming. J. Heat Transf.-Trans. ASME 1993, 115, 332–341. DOI: 10.1115/1.2910684.
  • Brenn, G.; Deviprasath, L. J.; Durst, F.; Fink, C. Evaporation of Acoustically Levitated Multi-Component Liquid Droplets. Int. J. Heat Mass Transfer 2007, 50, 5073–5086. DOI: 10.1016/j.ijheatmasstransfer.2007.07.036.
  • Tuckermann, R.; Bauerecker, S.; Neidhart, B. Evaporation Rates of Alkanes and Alkanols from Acoustically Levitated Drops. Anal. Bioanal. Chem. 2002, 372, 122–127. DOI: 10.1007/s00216-001-1132-7.
  • Yuki, N.; Koji, H. Evaporation of Droplet in Mid-Air: Pure and Binary Droplets in Single-Axis Acoustic Levitator. PLoS One 2019, 14, e0212074. DOI: 10.1371/journal.pone.0212074.
  • Bänsch, E.; Götz, M. Numerical Study of Droplet Evaporation in an Acoustic Levitator. Phys. Fluids 2018, 30, 037103. DOI: 10.1063/1.5017936.
  • Zaitone, B. A. A.; Tropea, C. Evaporation of Pure Liquid Droplets: Comparison of Droplet Evaporation in an Acoustic Field versus Glass-Filament. Chem. Eng. Sci. 2011, 66, 3914–3921. DOI: 10.1016/j.ces.2011.05.011.
  • Yarin, A. L.; Brenn, G.; Kastner, O.; Tropea, C. Drying of Acoustically Levitated Droplets of Liquid–Solid Suspensions: Evaporation and Crust Formation. Phys. Fluids 2002, 14, 2289–2298. DOI: 10.1063/1.1483308.
  • Mondragon, R.; Julia, J. E.; Hernandez, L.; Jarque, J. C. Modeling of Drying Curves of Silica Nanofluid Droplets Dried in an Acoustic Levitator Using the Reaction Engineering Approach (REA) Model. Dry. Technol. 2013, 31, 439–451. DOI: 10.1080/07373937.2012.738753.
  • Mondragon, R.; Julia, J. E.; Barba, A.; Jarque, J. C. Microstructure and Mechanical Properties of Grains of Silica Nanofluids Dried in an Acoustic Levitator. J. Eur. Ceram. Soc. 2012, 32, 4295–4304. DOI: 10.1016/j.jeurceramsoc.2012.07.017.
  • Doß, M.; Bänsch, E. Numerical Study of Single Droplet Drying in an Acoustic Levitator before the Critical Point of Time. Chem. Eng. Sci. 2022, 248, 117149. DOI: 10.1016/j.ces.2021.117149.
  • Buchholz, M.; Haus, J.; Polt, F.; Pietsch, S.; Schonherr, M.; Jager, F. K.; Heinrich, S. Dynamic Model Development Based on Experimental Investigations of Acoustically Ievitated Suspension Droplets. Int. J. Heat Mass Transfer 2021, 171, 121057. DOI: 10.1016/j.ijheatmasstransfer.2021.121057.
  • Hernandez, B.; Mondragon, R.; Pinto, M. A.; Hernandez, L.; Julia, J. E.; Jarque, J. C.; Chiva, S.; Martin, M. Single Droplet Drying of Detergents: Experimentation and Modelling. Particuology 2021, 58, 35–47. DOI: 10.1016/j.partic.2021.01.012.
  • Schweitzer, J. M.; Servel, M.; Salvatori, F.; Dandeu, A.; Miniere, M.; Joly, J. F.; Gaubert, Q.; Barbosa, S.; Onofri, F. R. A. Spray Drying of Colloidal Suspensions: Coupling of Particle Drying and Transport Models with Experimental Validations. Chem. Eng. Res. Des. 2021, 170, 224–238. DOI: 10.1016/j.cherd.2021.04.004.
  • Baldelli, A.; Boraey, M. A.; Nobes, D. S.; Vehring, R. Analysis of the Particle Formation Process of Structured Microparticles. Mol. Pharm. 2015, 12, 2562–2573. DOI: 10.1021/mp500758s.
  • Vehring, R. Pharmaceutical Particle Engineering via Spray Drying. Pharm. Res. 2008, 25, 999–1022. DOI: 10.1007/s11095-007-9475-1.
  • Ordoubadi, M.; Gregson, F. K. A.; Melhem, O.; Barona, D.; Miles, R. E. H.; D'Sa, D.; Gracin, S.; Lechuga-Ballesteros, D.; Reid, J. P.; Finlay, W. H.; Vehring, R. Multi-Solvent Microdroplet Evaporation: modeling and Measurement of Spray-Drying Kinetics with Inhalable Pharmaceutics. Pharm. Res. 2019, 36, 100. DOI: 10.1007/s11095-019-2630-7.
  • Archer, J.; Walker, J. S.; Gregson, F. K. A.; Hardy, D. A.; Reid, J. P. Drying Kinetics and Particle Formation from Dilute Colloidal Suspensions in Aerosol Droplets. Langmuir 2020, 36, 12481–12493. DOI: 10.1021/acs.langmuir.0c01830.
  • Elperin, T.; Krasovitov, B. Evaporation of Liquid Droplets Containing Small Solid Particles. Int. J. Heat Mass Transfer 1995, 38, 2259–2267. DOI: 10.1016/0017-9310(94)00337-U.
  • Nandiyanto, A. B. D.; Okuyama, K. Progress in Developing Spray-Drying Methods for the Production of Controlled Morphology Particles: From the Nanometer to Submicrometer Size Ranges. Adv. Powder Technol. 2011, 22, 1–19. DOI: 10.1016/j.apt.2010.09.011.
  • Huelsmann, R.; Esper, G. J.; Kohlus, R. Using an Acoustic Levitator to Investigate the Drying Kinetics and Solids Forming Process of Individual Droplets during Spray Drying. Progress 2020, 16, 41–49. DOI: 10.1556/446.2020.00011.
  • De Leersnyder, F.; Vanhoorne, V.; Bekaert, H.; Vercruysse, J.; Ghijs, M.; Bostijn, N.; Verstraeten, M.; Cappuyns, P.; Van Assche, I.; Vander Heyden, Y.; et al.Breakage and Drying Behaviour of Granules in a Continuous Fluid Bed Dryer: Influence of Process Parameters and Wet Granule Transfer. Eur. J. Pharm. Sci. 2018, 115, 223–232. DOI: 10.1016/j.ejps.2018.01.037.
  • Pour, Y. D.; Fominykh, A.; Krasovitov, B.; Levy, A. Effects of Gas Absorption with Chemical Dissociation Reaction on Single Slurry Droplet Drying. Dry. Technol. 2020, 38, 663–675. DOI: 10.1080/07373937.2019.1682007.
  • Bird, R. B.; Stewart, W. E.; Lightfoot, E. N. Transport Phenomena, 2nd ed.; John Wiley and Sons: New York, 2002.
  • Pour, Y. D.; Krasovitov, B.; Fominykh, A.; Hashemloo, Z.; Kharaghani, A.; Tsotsas, E.; Levy, A. Intensification of Spray Drying Granulation Process by Gas Absorption Accompanied by Chemical Dissociation Reactions. Chem. Eng. J. 2022, 433, 133566. DOI: 10.1016/j.cej.2021.133566.
  • Chen, X. D.; Peng, X. F. Modified Biot Number in the Context of Air Drying of Small Moist Porous Objects. Dry. Technol. 2005, 23, 83–103. DOI: 10.1081/DRT-200047667.
  • Mezhericher, M.; Levy, A.; Borde, I. Theoretical Drying Model of Single Droplets Containing Insoluble or Dissolved Solids. Dry. Technol. 2007, 25, 1025–1032. DOI: 10.1080/07373930701394902.
  • Mezhericher, M.; Naumann, M.; Peglow, M.; Levy, A.; Tsotsas, E.; Borde, I. Borde, I. Continuous Species Transport and Population Balance Models for First Drying Stage of Nanosuspension Droplets. Chem. Eng. J. 2012, 210, 120–135. DOI: 10.1016/j.cej.2012.08.038.
  • Tsotsas, E.; Mujumdar, A. S. (Eds.) Modern Drying Technology. Vol. 5 Process Intensification, Wiley: Weinheim, Germany, 2014.
  • Lefebvre, A. H.; McDonell, V. G. Atomization and Sprays, second ed., Taylor & Francis: Boca Raton, 2017.
  • Gnielinski, V. Berechnung Mittlerer Wärme- Und Stoffübergangskoeffizienten an Laminar Und Turbulent Überströmten Einzelkörpern Mit Hilfe Einer Einheitlichen Gleichung. Forsch. Ing-Wes. 1975, 41, 145–153. DOI: 10.1007/BF02560793.
  • Seinfeld, J. H.; Pandis, S. N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 3rd ed., John Wiley & Sons Inc.: Hoboken, New Jersey, 2016.
  • Sincovec, R. F.; Madsen, N. K. Software for Nonlinear Partial Differential Equations. ACM Trans. Math. Softw. 1975, 1, 232–260. DOI: 10.1145/355644.355649.
  • Reid, R. C.; Prausnitz, J. M.; Poling, B. E. The Properties of Gases and Liquids, 4th ed., McGraw-Hill: New York, 1987.
  • Möser, C.; Groenewold, C.; Groenewold, H.; Tsotsas, E. Untersuchung Der Kinetik Von Trennprozessen im Akustischen Levitator: Vor-Und Nachteile. Chem. Ing. Tech. 2001, 73, 1012–1017. DOI: 10.1002/1522-2640(200108)73:8<1012::AID-CITE1012>3.0.CO;2-O.
  • Brauner, N.; Maron, D. M.; Meyerson, H. Coupled Heat Condensation and Mass Absorption with Comparable Concentrations of Absorbate and Absorbent. Int. J. Heat Mass Transfer 1989, 32, 1897–1906. DOI: 10.1016/0017-9310(89)90159-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.