Publication Cover
Drying Technology
An International Journal
Volume 41, 2023 - Issue 7
132
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Comparison of dewaterability enhancement for river sediment by adding water transmitting channels in three dewatering procedures

, , , , , , , , & show all
Pages 1096-1109 | Received 21 Apr 2022, Accepted 26 Aug 2022, Published online: 08 Sep 2022

References

  • Yang, N.; Xiao, H.; Pi, K.; Fang, J.; Liu, S.; Chen, Y.; Shi, Y.; Zhang, H.; Gerson, A. R.; Liu, D. Synchronization of Dehydration and Phosphorous Immobilization for River Sediment by Calcified Polyferric Sulfate Pretreatment. Chemosphere 2021, 269, 129403. DOI: 10.1016/j.chemosphere.2020.129403.
  • Martin, L.; Alizadeh, V.; Meegoda, J. Electro-Osmosis Treatment Techniques and Their Effect on Dewatering of Soils, Sediments, and Sludge: A Review. Soils Found. 2019, 59, 407–418. DOI: 10.1016/j.sandf.2018.12.015.
  • Yang, X.; Zhao, L.; Haque, M. A.; Chen, B.; Ren, Z.; Cao, X.; Shen, Z. Sustainable Conversion of Contaminated Dredged River Sediment into Eco-Friendly Foamed Concrete. J. Cleaner Prod. 2020, 252, 119799. DOI: 10.1016/j.jclepro.2019.119799.
  • Wu, P.; Shi, Y.; Wang, Z.; Xiong, Z.; Liu, D.; Gerson, A. R.; Pi, K. Effect of Electric Field Strength on Electro-Dewatering Efficiency for River Sediments by Horizontal Electric Field. Sci. Total Environ. 2019, 647, 1333–1343. DOI: 10.1016/j.scitotenv.2018.07.464.
  • Nittami, T.; Uematsu, K.; Nabatame, R.; Kondo, K.; Takeda, M.; Matsumoto, K. Effect of Compressibility of Synthetic Fibers as Conditioning Materials on Dewatering of Activated Sludge. Chem. Eng. J. 2015, 268, 86–91. DOI: 10.1016/j.cej.2015.01.032.
  • Wu, P.; Pi, K.; Shi, Y.; Li, P.; Wang, Z.; Zhang, H.; Liu, D.; Gerson, A. R. Dewaterability and Energy Consumption Model Construction by Comparison of Electro-Dewatering for Industry Sludges and River Sediments. Environ. Res. 2020, 184, 109335. DOI: 10.1016/j.envres.2020.109335.
  • Mahmoud, A.; Hoadley, A. F. A.; Citeau, M.; Sorbet, J. M.; Olivier, G.; Vaxelaire, J.; Olivier, J. A Comparative Study of Electro-Dewatering Process Performance for Activated and Digested Wastewater Sludge. Water Res. 2018, 129, 66–82. DOI: 10.1016/j.watres.2017.10.063.
  • Khachan, M. M.; Bhatia, S. K. The Efficacy and Use of Small Centrifuge for Evaluating Geotextile Tube Dewatering Performance. Geotext. Geomembr. 2017, 45, 280–293. DOI: 10.1016/j.geotexmem.2017.04.001.
  • Hyrycz, M.; Ochowiak, M.; Krupińska, A.; Włodarczak, S.; Matuszak, M. A Review of Flocculants as an Efficient Method for Increasing the Efficiency of Municipal Sludge Dewatering: Mechanisms, Performances, Influencing Factors and Perspectives. Sci. Total Environ. 2022, 820, 153328. DOI: 10.1016/j.scitotenv.2022.153328.
  • Lv, H.; Liu, D.; Zhang, Y.; Yuan, D.; Wang, F.; Yang, J.; Wu, X.; Zhang, W.; Dai, X. Effects of Temperature Variation on Wastewater Sludge Electro-Dewatering. J. Cleaner Prod. 2019, 214, 873–880. DOI: 10.1016/j.jclepro.2019.01.033.
  • Qi, Y.; Thapa, K. B.; Hoadley, A. F. A. Application of Filtration Aids for Improving Sludge Dewatering Properties – A Review. Chem. Eng. J. 2011, 171, 373–384. DOI: 10.1016/j.cej.2011.04.060.
  • Wu, Y.; Zhang, P.; Zhang, H.; Zeng, G.; Liu, J.; Ye, J.; Fang, W.; Gou, X. Possibility of Sludge Conditioning and Dewatering with Rice Husk Biochar Modified by Ferric Chloride. Bioresour. Technol. 2016, 205, 258–263. DOI: 10.1016/j.biortech.2016.01.020.
  • Li, T.; Shi, Y.; Li, X.; Zhang, H.; Pi, K.; Gerson, A. R.; Liu, D. Leaching Behaviors and Speciation of Cadmium from River Sediment Dewatered Using Contrasting Conditioning. Environ. Pollut. 2020, 263, 114427. DOI: 10.1016/j.envpol.2020.114427.
  • Li, D.; Kang, Y.; Li, J.; Wang, X. Transformation and Coagulation Behaviors of Iron (III) Species of Solid Polymeric Ferric Sulfate with High Basicity. Korean J. Chem. Eng. 2019, 36, 1499–1508. DOI: 10.1007/s11814-019-0335-6.
  • Liang, J.; Zhang, S.; Ye, M.; Huang, J.; Yang, X.; Li, S.; Huang, S.; Sun, S. Improving Sewage Sludge Dewaterability with Rapid and Cost-Effective in-Situ Generation of Fe2+ Combined with Oxidants. Chem. Eng. J. 2020, 380, 122499. DOI: 10.1016/j.cej.2019.122499.
  • Dai, Q.; Ma, L.; Ren, N.; Ning, P.; Guo, Z.; Xie, L.; Gao, H. Investigation on Extracellular Polymeric Substances, Sludge Flocs Morphology, Bound Water Release and Dewatering Performance of Sewage Sludge under Pretreatment with Modified Phosphogypsum. Water Res. 2018, 142, 337–346. DOI: 10.1016/j.watres.2018.06.009.
  • Liang, J.; Huang, S.; Dai, Y.; Li, L.; Sun, S. Dewaterability of Five Sewage Sludges in Guangzhou Conditioned with Fenton’s Reagent/Lime and Pilot-Scale Experiments Using Ultrahigh Pressure Filtration System. Water Res. 2015, 84, 243–254. DOI: 10.1016/j.watres.2015.07.041.
  • Wu, P.; Li, J.; Pi, K.; Li, Q.; Guo, X.; Yuan, J.; Wang, Z.; Wang, C.; Sun, P.; Shi, Y.; et al. Na2SO4 Addition on Electro-Dewatering of Urban River Sediment by Horizontal Circular Electric Field: Comparison of Three Different Electrodes. Drying Technol. 2019, 37, 1926–1938. DOI: 10.1080/07373937.2018.1546189.
  • Li, Y. L.; Liu, J. W.; Chen, J. Y.; Shi, Y. F.; Mao, W.; Liu, H.; Li, Y.; He, S.; Yang, J. K. Reuse of Dewatered Sewage Sludge Conditioned with Skeleton Builders as Landfill Cover Material. Int. J. Environ. Sci. Technol. 2014, 11, 233–240. DOI: 10.1007/s13762-013-0199-y.
  • Ma, W.; Zhao, L.; Liu, H.; Liu, Q.; Ma, J. Improvement of Sludge Dewaterability with Modified Cinder via Affecting EPS. Front. Environ. Sci. Eng. 2017, 11, 1–14. DOI: 10.1007/s11783-017-0967-x.
  • Wu, Y.; Zhang, P.; Zeng, G.; Ye, J.; Zhang, H.; Fang, W.; Liu, J. Enhancing Sewage Sludge Dewaterability by a Skeleton Builder: Biochar Produced from Sludge Cake Conditioned with Rice Husk Flour and FeCl3. ACS Sustainable Chem. Eng. 2016, 4, 5711–5717. DOI: 10.1021/acssuschemeng.6b01654.
  • Guo, J.; Nengzi, L.; Zhao, J.; Zhang, Y. Enhanced Dewatering of Sludge with the Composite of Bioflocculant MBFGA1 and P(AM-DMC) as a Conditioner. Appl. Microbiol. Biotechnol. 2015, 99, 2989–2998. DOI: 10.1007/s00253-015-6401-z.
  • Xiong, Q.; Zhou, M.; Liu, M.; Jiang, S.; Hou, H. The Transformation Behaviors of Heavy Metals and Dewaterability of Sewage Sludge during the Dual Conditioning with Fe2+-Sodium Persulfate Oxidation and Rice Husk. Chemosphere 2018, 208, 93–100. DOI: 10.1016/j.chemosphere.2018.05.162.
  • Li, Z.; Tang, L.; Zhang, L.; Luo, Z. Dewatering Sludge by Osmotic Technique – A Comparative Experimental Study. Drying Technol. 2019, 37, 680–690. DOI: 10.1080/07373937.2018.1454939.
  • Guo, X.; Qian, X.; Wang, Y.; Zheng, H. Magnetic Micro-Particle Conditioning-Pressurized Vertical Electro-Osmotic Dewatering (MPEOD) of Activated Sludge: Role and Behavior of Moisture and Organics. J. Environ. Sci. (China) 2018, 74, 147–158. DOI: 10.1016/j.jes.2018.02.020.
  • Chen, C.; Zhang, P.; Zeng, G.; Deng, J.; Zhou, Y.; Lu, H. Sewage Sludge Conditioning with Coal Fly Ash Modified by Sulfuric Acid. Chem. Eng. J. 2010, 158, 616–622. DOI: 10.1016/j.cej.2010.02.021.
  • Waqas, M.; Aburiazaiza, A. S.; Miandad, R.; Rehan, M.; Barakat, M. A.; Nizami, A. S. Development of Biochar as Fuel and Catalyst in Energy Recovery Technologies. J. Cleaner Prod. 2018, 188, 477–488. DOI: 10.1016/j.jclepro.2018.04.017.
  • Tunçal, T.; Mujumdar, A. S. Modern Techniques for Sludge Dewaterability Improvement. Drying Technol. 2022, 1–13. DOI: 10.1080/07373937.2022.2092127.
  • Shi, Z.; Pi, K.; Huang, X.; Shi, Y.; Chen, Z.; Tang, R.; Hu, Z.; Gerson, A. R.; Liu, D. Enhanced Dewater Efficiency for River Sediment by Top-to-Bottom Water Transmitting Channels with Different Materials. Environ. Sci. Pollut. Res. Int. 2020, 27, 29228–29238. DOI: 10.1007/s11356-020-09250-w.
  • Zhang, X.; Kang, H.; Zhang, Q.; Hao, X.; Han, X.; Zhang, W.; Jiao, T. The Porous Structure Effects of Skeleton Builders in Sustainable Sludge Dewatering Process. J. Environ. Manage. 2019, 230, 14–20. DOI: 10.1016/j.jenvman.2018.09.049.
  • Novak, J. T.; Agerbaek, M. L.; Sørensen, B. L.; Hansen, A. J. A. Conditioning, Filtering, and Expressing Waste Activated Sludge. J. Environ. Eng. 1999, 125, 816–824. DOI: 10.1061/(ASCE)0733-9372(1999)125:9(816).
  • Xiao, J.; Wu, X.; Yu, W.; Liang, S.; Yu, J.; Gu, Y.; Deng, H.; Hu, J.; Xiao, K.; Yang, J. Migration and Distribution of Sodium Ions and Organic Matters during Electro-Dewatering of Waste Activated Sludge at Different Dosages of Sodium Sulfate. Chemosphere 2017, 189, 67–75. DOI: 10.1016/j.chemosphere.2017.09.034.
  • Jaafarzadeh, N.; Hashempour, Y.; Takdastan, A.; Moghadam, M. A.; Goodarzi, G. Evaluation of Bagasse Pith as a Skeleton Builder for Improvement of Sludge Dewatering. Environ. Eng. Manag. J. 2016, 15, 725–732. DOI: 10.30638/eemj.2016.078.
  • Shi, Q.; Lu, Y.; Guo, W.; Wang, T.; Zhu, Q.; Zhang, Y.; Wang, H.; Li, F.; Xu, T.; Li, C. Application of a Cellulose Filter Aid in Municipal Sewage Sludge Dewatering and Drying: Jar, Pilot, and Factory Scale. Water Environ. Res. 2020, 92, 495–503. DOI: 10.1002/wer.1254.
  • Wu, P.; Zhan, F.; Wang, Z.; Li, Q.; Li, J.; Xiong, Z.; Shi, Y.; Pi, K.; Liu, D.; Gerson, A. R. Comparison of Horizontal and Vertical Electric Field in the Treatment of River Sediment by Electro-Dewatering. Drying Technol. 2019, 37, 770–780. DOI: 10.1080/07373937.2018.1460850.
  • Vaxelaire, J.; Olivier, J. Compression Dewatering of Particulate Suspensions and Sludge: Effect of Shear. Drying Technol. 2014, 32, 23–29. DOI: 10.1080/07373937.2013.807282.
  • Maurer, B. W.; Gustafson, A. C.; Bhatia, S. K.; Palomino, A. M. Geotextile Dewatering of Flocculated, Fiber Reinforced Fly-Ash Slurry. Fuel 2012, 97, 411–417. DOI: 10.1016/j.fuel.2012.02.013.
  • Liu, H.; Xiao, H.; Fu, B.; Liu, H. Feasibility of Sludge Deep-Dewatering with Sawdust Conditioning for Incineration Disposal without Energy Input. Chem. Eng. J. 2017, 313, 655–662. DOI: 10.1016/j.cej.2016.09.107.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.