Publication Cover
Drying Technology
An International Journal
Volume 41, 2023 - Issue 7
285
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Improvement of drying efficiency and physicochemical quality of kiwifruit slices using infrared-assisted tilted tray air impingement drying

, , , , &
Pages 1159-1170 | Received 30 Jun 2022, Accepted 13 Sep 2022, Published online: 23 Sep 2022

References

  • Huang, L.; Lian, M. M.; Duan, X.; Li, B.; Yang, S. Studies on the Quality and Moisture Distribution of Kiwifruit Dried by Freeze Drying Combined with Microwave Vacuum Drying. J. Food Process. Eng. 2021, 44, e13581. DOI: 10.1111/jfpe.13581.
  • FAOSTAT. FAO stat database. 2017. http://faostat.fao.org (accessed Jun 20, 2022).
  • Liu, Z.; Wei, Z.; Vidyarthi, S. K.; Pan, Z.; Zielinska, M.; Deng, L.; Wang, Q.; Wei, Q.; Xiao, H. Pulsed Vacuum Drying of Kiwifruit Slices and Drying Process Optimization Based on Artificial Neural Network. Drying Technol. 2021, 39, 405–417. DOI: 10.1080/07373937.2020.1817063.
  • Deng, L.; Yang, X.; Mujumdar, A. S.; Zhao, J.; Wang, D.; Zhang, Q.; Wang, J.; Gao, Z.; Xiao, H. Red Pepper (Capsicum Annuum L.) Drying: Effects of Different Drying Methods on Drying Kinetics, Physicochemical Properties, Antioxidant Capacity, and Microstructure. Drying Technol. 2018, 36, 893–907. DOI: 10.1080/07373937.2017.1361439.
  • Pei, Y.; Sun, B.; Vidyarthi, S. K.; Zhu, Z.; Yan, S.; Zhang, Y.; Wang, J.; Xiao, H. Pulsed Pressure Enhances Osmotic Dehydration and Subsequent Hot Air Drying Kinetics and Quality Attributes of Red Beetroot. Drying Technol. 2022, 1–15. DOI: 10.1080/07373937.2022.2031209.
  • EL-Mesery, H. S.; Kamel, R. M.; Emara, R. Z. Influence of Infrared Intensity and Air Temperature on Energy Consumption and Physical Quality of Dried Apple Using Hybrid Dryer. Case Stud. Therm. Eng. 2021, 27, 101365. DOI: 10.1016/j.csite.2021.101365.
  • Zhou, X.; Ramaswamy, H.; Qu, Y.; Xu, R.; Wang, S. Combined Radio Frequency-Vacuum and Hot Air Drying of Kiwifruits: Effect on Drying Uniformity, Energy Efficiency and Product Quality. Innov. Food Sci. Emerg. Technol. 2019, 56, 102182. DOI: 10.1016/j.ifset.2019.102182.
  • Huang, D.; Yang, P.; Tang, X.; Luo, L.; Sunden, B. Application of Infrared Radiation in the Drying of Food Products. Trends Food Sci Technol 2021, 110, 765–777. DOI: 10.1016/j.tifs.2021.02.039.
  • Wu, X.; Zhang, M.; Bhandari, B. A Novel Infrared Freeze Drying (IRFD) Technology to Lower the Energy Consumption and Keep the Quality of Cordyceps militaris. Innov. Food Sci. Emerg. Technol 2019, 54, 34–42. DOI: 10.1016/j.ifset.2019.03.003.
  • Onwude, D. I.; Hashim, N.; Abdan, K.; Janius, R.; Chen, G. The Effectiveness of Combined Infrared and Hot-Air Drying Strategies for Sweet Potato. J. Food Eng. 2019, 241, 75–87. DOI: 10.1016/j.jfoodeng.2018.08.008.
  • Ai, Z.; Xiao, H.; Zhang, Y.; Lei, D.; Peng, Z.; Li, M.; Liu, Y. Effect of Hot Air Impingement Drying on Drying Behavior, Volatile Components Profile, Shell Burst Ratio, Flavonoid Contents, Microstructure of Amomum Villosum Fruits. Drying Technol. 2022, 1–15. DOI: 10.1080/07373937.2022.2087184.
  • Ai, Z.; Lin, Y.; Xie, Y.; Mowafy, S.; Zhang, Y.; Li, M.; Liu, Y. Effect of High-Humidity Hot Air Impingement Steaming on Cistanche Deserticola Slices: Drying Characteristics, Weight Loss, Microstructure, Color, and Active Components. Front. Nutr. 2022, 9, 824822. DOI: 10.3389/fnut.2022.824822.
  • Ai, Z.; Mowafy, S.; Liu, Y. Comparative Analyses of Five Drying Techniques on Drying Attributes, Physicochemical Aspects, and Flavor Components of Amomum Villosum Fruits. LWT 2022, 154, 112879. DOI: 10.1016/j.lwt.2021.112879.
  • Dai, J.; Xiao, H.; Xie, L.; Wang, D.; Li, X.; Gao, Z. Design and Experiment of Tilted Tray Air-Impingement Dryer. Trans. Chin. Soc Agric. Mach. 2015, 46, 238–244. DOI: 10.6041/j.issn.1000-1298.2015.07.035.
  • Liu, Y.; Li, M.; Ai, Z.; Lei, D. Optimal Design and Experimental Verification of Tilted Tray Air-Impingement Dryers. Trans. Chin. Soc. Agric. Eng. 2022, 38, 269–278. DOI: 10.11975/j.issn.1002-6819.2022.05.032.
  • Rurush, E.; Alvarado, M.; Palacios, P.; Flores, Y.; Rojas, M. L.; Miano, A. C. Drying Kinetics of Blueberry Pulp and Mass Transfer Parameters: Effect of Hot Air and Refractance Window Drying at Different Temperatures. J. Food Eng. 2022, 320, 110929. DOI: 10.1016/j.jfoodeng.2021.110929.
  • Deng, L.; Pan, Z.; Zhang, Q.; Liu, Z.; Zhang, Y.; Meng, J.; Gao, Z.; Xiao, H. Effects of Ripening Stage on Physicochemical Properties, Drying Kinetics, Pectin Polysaccharides Contents and Nanostructure of Apricots. Carbohydr. Polym. 2019, 222, 114980. DOI: 10.1016/j.carbpol.2019.114980.
  • Wang, J.; Law, C.; Nema, P. K.; Zhao, J.; Liu, Z.; Deng, L.; Gao, Z.; Xiao, H. Pulsed Vacuum Drying Enhances Drying Kinetics and Quality of Lemon Slices. J. Food Eng. 2018, 224, 129–138. DOI: 10.1016/j.jfoodeng.2018.01.002.
  • Deng, L.; Mujumdar, A. S.; Yang, W.; Zhang, Q.; Zheng, Z.; Wu, M.; Xiao, H. Hot Air Impingement Drying Kinetics and Quality Attributes of Orange Peel. J. Food Process. Preserv. 2020, 44, e14294. DOI: 10.1111/jfpp.14294.
  • Zhang, W.; Pan, Z.; Xiao, H.; Zheng, Z.; Chen, C.; Gao, Z. Pulsed Vacuum Drying (PVD) Technology Improves Drying Efficiency and Quality of Poria Cubes. Drying Technol. 2018, 36, 908–921. DOI: 10.1080/07373937.2017.1362647.
  • Zhou, X.; Xu, R.; Zhang, B.; Pei, S.; Liu, Q.; Ramaswamy, H. S.; Wang, S. Radio Frequency-Vacuum Drying of Kiwifruits: Kinetics, Uniformity, and Product Quality. Food Bioprocess Technol. 2018, 11, 2094–2109. DOI: 10.1007/s11947-018-2169-3.
  • Mujumdar, A. S. Drying Fundamentals. In Industrial Drying of Foods, Christopher, Baker, G. J., Eds.; Blackie Academic & Professional: Wantage, UK, 1997; pp 7–29.
  • Dincer, I.; Dost, S. An Analytical Model for Moisture Diffusion in Solid Objects during Drying. Drying Technol. 1995, 13, 425–435. DOI: 10.1080/07373939508916962.
  • Xu, W.; Pei, Y.; Zhu, G.; Han, C.; Wu, M.; Wang, T.; Cao, X.; Jiang, Y.; Li, G.; Sun, J.; et al. Effect of Far Infrared and Far Infrared Combined with Hot Air Drying on the Drying Kinetics, Bioactives, Aromas, Physicochemical Qualities of Anoectochilus Roxburghii (Wall.) Lindl. LWT 2022, 162, 113452. DOI: 10.1016/j.lwt.2022.113452.
  • Wen, Y.; Chen, L.; Li, B.; Ruan, Z.; Pan, Q. Effect of Infrared Radiation-Hot Air (IR-HA) Drying on Kinetics and Quality Changes of Star Anise (Illicium Verum). Drying Technol. 2020, 39, 90–103. DOI: 10.1080/07373937.2019.1696816.
  • Joseph, B. E.; Cheng, J.; Sun, D. Improving Drying Kinetics, Physicochemical Properties and Bioactive Compounds of Red Dragon Fruit (Hylocereus Species) by Novel Infrared Drying. Food Chem. 2022, 375, 131886. DOI: 10.1016/j.foodchem.2021.131886.
  • Onwude, D. I.; Hashim, N.; Abdan, K.; Janius, R.; Chen, G. Modelling the Mid-Infrared Drying of Sweet Potato: kinetics, Mass and Heat Transfer Parameters, and Energy Consumption. Heat Mass Transfer 2018, 54, 2917–2933. DOI: 10.1007/s00231-018-2338-y.
  • Zhu, C.; Chou, O.; Lee, F. Y.; Wang, Z.; Barrow, C. J.; Dunshea, F. R.; Hafiz, A. R. S. Characterization of Phenolics in Rejected Kiwifruit and Their Antioxidant Potential. Processes 2021, 9, 781. DOI: 10.3390/pr9050781.
  • An, K.; Zhao, D.; Wang, Z.; Wu, J.; Xu, Y.; Xiao, G. Comparison of Different Drying Methods on Chinese Ginger (Zingiber Officinale Roscoe): Changes in Volatiles, Chemical Profile, Antioxidant Properties, and Microstructure. Food Chem. 2016, 197, 1292–1300. DOI: 10.1016/j.foodchem.2015.11.033.
  • Lim, Y. Y.; Murtijaya, J. Antioxidant Properties of Phyllanthus Amarus Extracts as Affected by Different Drying Methods. LWT 2007, 40, 1664–1669. DOI: 10.1016/j.lwt.2006.12.013.
  • Meng, Q.; Fan, H.; Li, Y.; Zhang, L. Effect of Drying Methods on Physico-Chemical Properties and Antioxidant Activity of Dendrobium Officinale. J. Food Meas. Charact. 2018, 12, 1–10. DOI: 10.1007/s11694-017-9611-5.
  • Tylewicz, U.; Nowacka, M.; Rybak, K.; Drozdzal, K.; Dalla, R. M.; Mozzon, M. Design of Healthy Snack Based on Kiwifruit[J]. Molecules 2020, 25, 3309. DOI: 10.3390/molecules25143309.
  • Ma, T.; Lan, T.; Geng, T.; Ju, Y.; Cheng, G.; Que, Z.; Gao, G.; Fang, Y.; Sun, X. Nutritional Properties and Biological Activities of Kiwifruit (Actinidia) and Kiwifruit Products under Simulated Gastrointestinal in Vitro Digestion. Food Nutr. Res. 2019, 63, 1674. DOI: 10.29219/fnr.v63.1674.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.