237
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

A novel approach for the reduction of powder deposition in spray drying chambers

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1017-1030 | Received 03 May 2022, Accepted 20 Oct 2022, Published online: 07 Nov 2022

References

  • Razmi, R.; Jubaer, H.; Krempski-Smejda, M.; Jaskulski, M.; Xiao, J.; Chen, X. D.; Woo, M. W. Recent Initiatives in Effective Modeling of Spray Drying. Drying Technol. 2021, 39, 1614–1647. DOI: 10.1080/07373937.2021.1902344.
  • Keshani, S.; Daud, W. R. W.; Nourouzi, M. M.; Namvar, F.; Ghasemi, M. Spray Drying: An Overview on Wall Deposition, Process and Modeling. J. Food Eng. 2015, 146, 152–162. DOI: 10.1016/j.jfoodeng.2014.09.004.
  • Birchal, V. S.; Huang, L.; Mujumdar, A. S.; Passos, M. L. Spray Dryers: Modeling and Simulation. Drying Technol. 2006, 24, 359–371. DOI: 10.1080/07373930600564431.
  • Jaskulski, M.; Tran, T. T. H.; Tsotsas, E. Design Study of Printer Nozzle Spray Dryer by Computational Fluid Dynamics Modeling. Drying Technol. 2020, 38, 211–223. DOI: 10.1080/07373937.2019.1633541.
  • Arabiourrutia, M.; Lopez, G.; Artetxe, M.; Alvarez, J.; Bilbao, J.; Olazar, M. Waste Tyre Valorization by Catalytic Pyrolysis – A Review. Renew. Sustain. Energy Rev. 2020, 129, (109932. DOI: 10.1016/j.rser.2020.109932.
  • Sukunza, X.; Pablos, A.; Aguado, R.; Vicente, J.; Altzibar, H.; Olazar, M. Continuous Drying of Fine and Ultrafine Sands in a Fountain Confined Conical Spouted Bed. Powder Technol. 2021, 388, 371–379. DOI: 10.1016/j.powtec.2021.04.081.
  • San José, M. J.; Olazar, M.; Alvarez, S.; Izquierdo, M. A.; Bilbao, J. Solid Cross-Flow into the Spout and Particle Trajectories in Conical Spouted Beds. Chem. Eng. Sci. 1998, 53, 3561–3570. DOI: 10.1016/S0009-2509(98)00170-5.
  • Olazar, M.; Jose, M. J. S.; Llamosas, R.; Bilbao, J. Hydrodynamics of Sawdust and Mixtures of Wood Residues in Conical Spouted Beds. Fuel Energy Abstracts 1995, 36, 32. DOI: 10.1016/0140-6701(95)95815-0.
  • Moradi Maryamnegari, S.; Ashrafizadeh, A.; Baake, E.; Guglielmi, M. Effects of Thermal Boundary Conditions on the Performance of Spray Dryers. J. Food Eng. 2023, 338, 111250. DOI: 10.1016/j.jfoodeng.2022.111250.
  • Huang, X.; Sormoli, M. E.; Langrish, T. A. G. Drying Technology an International Journal Review of Some Common Commercial and Noncommercial Lab-Scale Spray Dryers and Preliminary Tests for a Prototype New Spray Dryer Review of Some Common Commercial and Noncommercial Lab-Scale Spray Dryers and Preliminary Tests for a Prototype New Spray Dryer. Drying Technol. 2018, 36, 1900–1912. DOI: 10.1080/07373937.2018.1459679.
  • Bhandari, B.; Howes, T. Relating the Stickiness Property of Foods Undergoing Drying and Dried Products to Their Surface Energetics. Drying Technol. 2005, 23, 781–797. DOI: 10.1081/DRT-200054194.
  • Woo, M. W.; Daud, W. R. W.; Tasirin, S. M.; Talib,.; M. Z.; M. Controlling Food Powder Deposition in Spray Dryers: Wall Surface Energy Manipulation as an Alternative. J. Food Eng. 2009, 94, 192–198. DOI: 10.1016/j.jfoodeng.2008.10.001.
  • Keshani, S.; Daud, W. R. W.; Woo, M. W.; Talib, M. Z. M.; Chuah, A. L.; Russly, A. R. Artificial Neural Network Modeling of the Deposition Rate of Lactose Powder in Spray Dryers. Drying Technol. 2012, 30, 386–397. DOI: 10.1080/07373937.2011.638228.
  • Adhikari, B.; Howes, T.; Bhandari, B. R.; Troung, V. Effect of Addition of Maltodextrin on Drying Kinetics and Stickiness of Sugar and Acid-Rich Foods during Convective Drying: Experiments and Modelling. J. Food Eng. 2004, 62, 53–68. DOI: 10.1016/S0260-8774(03)00171-7.
  • Langrish, T. A. G.; Chan, W. C.; Kota, K. Comparison of Maltodextrin and Skim Milk Wall Deposition Rates in a Pilot-Scale Spray Dryer. Powder Technol. 2007, 179, 84–89. DOI: 10.1016/j.powtec.2007.01.019.
  • Adhikari, B.; Howes, T.; Wood, B. J.; Bhandari, B. R. The Effect of Low Molecular Weight Surfactants and Proteins on Surface Stickiness of Sucrose during Powder Formation through Spray Drying. J. Food Eng. 2009, 94, 135–143. DOI: 10.1016/j.jfoodeng.2009.01.022.
  • Bhandari, B. R.; Datta, N.; Crooks, R.; Howes, T.; Rigby, S. A Semi-Empirical Approach to Optimize the Quantity of Drying Aids Required to Spray Dry Sugare-Rich Foods. Drying Technol. 1997, 15, 2509–2525. DOI: 10.1080/07373939708917373.
  • Ozmen, L.; Langrish, T. A. G. An Experimental Investigation of the Wall Deposition of Milk Powder in a Pilot-Scale Spray Dryer. Drying Technol. 2003, 21, 1253–1272. DOI: 10.1081/DRT-120023179.
  • Langrish, T. A. G.; Williams, J.; Fletcher, D. F. Simulation of the Effects of Inlet Swirl on Gas Flow Patterns in a Pilot-Scale Spray Dryer. Chem. Eng. Res. Des. 2004, 82, 821–833. DOI: 10.1205/0263876041596661.
  • Huang, L.; Kumar, K.; Mujumdar, A. S. Use of Computational Fluid Dynamics to Evaluate Alternative Spray Dryer Chamber Configurations. Drying Technol. 2003, 21, 385–412. DOI: 10.1081/DRT-120018454.
  • Langrish, T. A. G.; Harrington, J.; Huang, X.; Zhong, C. Using CFD Simulations to Guide the Development of a New Spray Dryer Design. Processes 2020, 8, 932. DOI: 10.3390/pr8080932.
  • Keshani, S.; Montazeri, M. H.; Daud, W. R. W.; Nourouzi, M. M. CFD Modeling of Air Flow on Wall Deposition in Different Spray Dryer Geometries. Drying Technol. 2015, 33, 784–795. DOI: 10.1080/07373937.2014.966201.
  • Crowe, C. T. Droplet-Gas Interaction in Counter-Current Spray Dryers. Drying Technol. 1983, 1, 35–56. DOI: 10.1080/07373938308916769.
  • Ludwig, W.; Ligus, G.; Korman, P.; Sędłak, A.; Zając, D. CFD Modelling of a Powder Spraying Nozzle Sed for Dry Coating. Chem. Eng. Res. Des. 2022, 178, 550–566. DOI: 10.1016/j.cherd.2022.01.001.
  • Jubaer, H.; Afshar, S.; Xiao, J.; Chen, X. D.; Selomulya, C.; Woo, M. W. On the Effect of Turbulence Models on CFD Simulations of a Counter-Current Spray Drying Process. Chem. Eng. Res. Des. 2019, 141, 592–607. DOI: 10.1016/j.cherd.2018.11.024.
  • Zolfagharnasab, M. H.; Salimi, M.; Zolfagharnasab, H.; Alimoradi, H.; Shams, M.; Aghanajafi, C. A Novel Numerical Investigation of Erosion Wear over Various 90-Degree Elbow Duct Sections. Powder Technol. 2021, 380, 1–17. DOI: 10.1016/j.powtec.2020.11.059.
  • Arjmandi, H.; Amini, R.; Kashfi, M.; Abikenari, M. A.; Davani, A. Minimizing the COVID-19 Spread in Hospitals through Optimization of Ventilation Systems. Phys. Fluids 2022, 34, 037103. DOI: 10.1063/5.0081291.
  • Gao, N.; Niu, J.; He, Q.; Zhu, T.; Wu, J. Using RANS Turbulence Models and Lagrangian Approach to Predict Particle Deposition in Turbulent Channel Flows. Build. Environ. 2012, 48, 206–214. DOI: 10.1016/j.buildenv.2011.09.003.
  • Hussain, F.; Jaskulski, M.; Piatkowski, M.; Tsotsas, E. CFD Simulation of Agglomeration and Coalescence in Spray Dryer. Chem. Eng. Sci. 2022, 247, 117064. DOI: 10.1016/j.ces.2021.117064.
  • Tran, T. T. H.; Jaskulski, M.; Tsotsas, E. Reduction of a Model for Single Droplet Drying and Application to CFD of Skim Milk Spray Drying. Drying Technol. 2017, 35, 1571–1583. DOI: 10.1080/07373937.2016.1263204.
  • Jaskulski, M.; Atuonwu, J. C.; Tran, T. T. H.; Stapley, A. G. F.; Tsotsas, E. Predictive CFD Modeling of Whey Protein Denaturation in Skim Milk Spray Drying Powder Production. Adv. Powder Technol. 2017, 28, 3140–3147. DOI: 10.1016/j.apt.2017.09.026.
  • Jubaer, H.; Afshar, S.; Xiao, J.; Chen, X. D.; Selomulya, C.; Woo, M. W. On the Importance of Droplet Shrinkage in CFD-Modeling of Spray Drying. Drying Technol. 2018, 36, 1785–1801. DOI: 10.1080/07373937.2017.1349791.
  • Hennigs, C.; Kockel, T. K.; Langrish, T. A. G. New Measurements of the Sticky Behavior of Skim Milk Powder. Drying Technol. 2001, 19, 471–484. DOI: 10.1081/DRT-100103929.
  • Jin, Y.; Chen, X. D. Numerical Study of the Drying Process of Different Sized Particles in an Industrial-Scale Spray Dryer. Drying Technol. 2009, 27, 371–381. DOI: 10.1080/07373930802682957.
  • Zolfagharnasab, M. H.; Pedram, M. Z.; Vafai, K. A Robust Single-Phase Approach for the Numerical Simulation of Heat Pipe. Int. Commun. Heat Mass Transfer 2022, 132, 105894. DOI: 10.1016/j.icheatmasstransfer.2022.105894.
  • Fletcher, D. F.; Langrish, T. A. G. Scale-Adaptive Simulation (SAS) Modelling of a Pilot-Scale Spray Dryer. Chem. Eng. Res. Des. 2009, 87, 1371–1378. DOI: 10.1016/j.cherd.2009.03.006.
  • Jubaer, H.; Afshar, S.; Le Maout, G.; Mejean, S.; Selomulya, C.; Xiao, J.; Chen, X. D.; Jeantet, R.; Woo, M. W. The Impact of Self-Sustained Oscillations on Particle Residence Time in a Commercial Scale Spray Dryer. Powder Technol. 2020, 360, 1177–1191. DOI: 10.1016/j.powtec.2019.11.023.
  • Fletcher, D. F.; Guo, B.; Harvie, D. J. E.; Langrish, T. A. G.; Nijdam, J. J.; Williams, J. What is Important in the Simulation of Spray Dryer Performance and How Do Current CFD Models Perform? Appl. Math. Modell. 2006, 30, 1281–1292. DOI: 10.1016/j.apm.2006.03.006.
  • Kota, K.; Langrish, T. A. G. Prediction of Wall Deposition Behaviour in a Pilot-Scale Spray Dryer Using Computational Fluid Dynamics (CFD) Simulation. Chem. Prod. Process Model. 2007, 2, 301–312. DOI: 10.1631/jzus.2007.A0301.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.