737
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Aerogel composites and blankets with embedded fibrous material by ambient drying: Reviewing their production, characteristics, and potential applications

, &
Pages 915-947 | Received 22 Jun 2022, Accepted 22 Dec 2022, Published online: 12 Jan 2023

References

  • Du, A.; Zhou, B.; Zhang, Z.; Shen, J. A Special Material or a New State of Matter: A Review and Reconsideration of the Aerogel. Materials (Basel) 2013, 6, 941–968. DOI: 10.3390/ma6030941.
  • Berardi, U. The Benefits of Using Aerogel-Enhanced Systems in Building Retrofits. Energy Proc. 2017, 134, 626–635. DOI: 10.1016/j.egypro.2017.09.576.
  • Koravos, J. J.; Miller, T. M.; Fesmire, J. E.; Coffman, B. E. Nanogel Aerogel as Load Bearing Insulation for Cryogenic Systems. In AIP Conference Proceedings, 2010; vol. 1218; pp. 921–927. DOI: 10.1063/1.3422461.
  • Garay Martinez, R.; Goiti, E.; Reichenauer, G.; Zhao, S.; Koebel, M.; Barrio, A. Thermal Assessment of Ambient Pressure Dried Silica Aerogel Composite Boards at Laboratory and Field Scale. Energy Build. 2016, 128, 111–118. DOI: 10.1016/j.enbuild.2016.06.071.
  • Poelz, G.; Riethmüller, R. Preparation of Silica Aerogel for Cherenkov Counters. Nucl. Instrum. Methods Phys. Res. 1982, 195, 491–503. DOI: 10.1016/0029-554X(82)90010-6.
  • Tillotson, T. M.; Hrubesh, L. W. Tnransparent Ultralow-Density Silica Aerogels Prepared by a Two-Step Sol-Gel Process. J. Non Cryst. Solids 1992, 145, 44–50. DOI: 10.1016/S0022-3093(05)80427-2.
  • Preparation of silica aerogel for Cherenkov counters | Semantic Scholar. https://www.semanticscholar.org/paper/Preparation-of-silica-aerogel-for-Cherenkov-Poelz-Riethmüller/368566bceae9c074b1dec274ae83bab03a5d0c4a. (accessed Nov 11, 2021).
  • Barrios, E.; Fox, D.; Li Sip, Y. Y.; Catarata, R.; Calderon, J. E.; Azim, N.; Afrin, S.; Zhang, Z.; Zhai, L. Aerogel Composites : A Review. Polymers (Basel) 2019, 11, 726–741. DOI: 10.3390/polym11040726.
  • Prakash, S. S.; Sankaran, C. J.; Hurd, A. J.; Rao, S. M. Silica Aerogel Films Prepared at Ambient Pressure by Using Surface Derivatization to Induce Reversible Drying Shrinkage. Nature 1995, 374, 439–443. ” DOI: 10.1038/374439a0.
  • Parale, V. G.; Lee, K. Y.; Park, H. H. Flexible and Transparent Silica Aerogels: An Overview. J. Korean Ceram. Soc. 2017, 54, 184–199. DOI: 10.4191/kcers.2017.54.3.12.
  • Pekala, R. W.; Farmer, J. C.; Alviso, C. T.; Tran, T. D.; Mayer, S. T.; Miller, J. M.; Dunn, B. Carbon Aerogels for Electrochemical Applications. J. Non Cryst. Solids 1998, 225, 74–80. DOI: 10.1016/S0022-3093(98)00011-8.
  • Smirnova, I.; Suttiruengwong, S.; Arlt, W. Feasibility Study of Hydrophilic and Hydrophobic Silica Aerogels as Drug Delivery Systems. J. Non Cryst. Solids 2004, 350, 54–60. DOI: 10.1016/j.jnoncrysol.2004.06.031.
  • Bhuiyan, M. A. R.; Wang, L.; Shaid, A.; Jahan, I.; Shanks, R. A. Silica Aerogel-Integrated Nonwoven Protective Fabrics for Chemical and Thermal Protection and Thermophysiological Wear Comfort. J. Mater. Sci. 2020, 55, 2405–2418. DOI: 10.1007/s10853-019-04203-2.
  • Guo, X.; Shan, J.; Lai, Z.; Lei, W.; Ding, R.; Zhang, Y.; Yang, H. Facile Synthesis of Flexible Methylsilsesquioxane Aerogels with Surface Modifications for Sound- Absorbance, Fast Dye Adsorption and Oil/Water Separation. Molecules 2018, 23, 945. DOI: 10.3390/MOLECULES23040.
  • Qin, G.; Yao, Y.; Wei, W.; Zhang, T. Preparation of Hydrophobic Granular Silica Aerogels and Adsorption of Phenol from Water. Appl. Surf. Sci. 2013, 280, 806–811. DOI: 10.1016/j.apsusc.2013.05.066.
  • Firoozmandan, M.; Moghaddas, J.; Yasrebi, N. Performance of Water Glass-Based Silica Aerogel for Adsorption of Phenol from Aqueous Solution. J. Sol-Gel Sci. Technol. 2016, 79, 67–75. DOI: 10.1007/s10971-016-4007-2.
  • Keshavarz, L.; Ghaani, M. R.; MacElroy, J. M. D.; English, N. J. A Comprehensive Review on the Application of Aerogels in CO2-Adsorption: Materials and Characterisation. Chem. Eng. J. May 2021, 412, 128604. DOI: 10.1016/j.cej.2021.128604.
  • Haji, S.; Erkey, C. Removal of Dibenzothiophene from Model Diesel by Adsorption on Carbon Aerogels for Fuel Cell Applications. Ind. Eng. Chem. Res. 2003, 42, 6933–6937. DOI: 10.1021/ie030518m.
  • Wang, Q.; Feng, J.; Ma, L.; Wei, W.; Xie, J.; Xia, C.; Zhu, J.; Jiang, D. Synthesis, Characterization, and Adsorption Properties of Silica Aerogels Crosslinked with Diisocyanate under Ambient Drying. J. Mater. Sci. 2016, 51, 9472–9483. DOI: 10.1007/s10853-016-0191-2.
  • Chang, K.-J.; Wang, Y.-Z.; Peng, K.-C.; Tsai, H.-S.; Chen, J.-R.; Huang, C.-T.; Ho, K.-S.; Lien, W.-F. Preparation of Silica Aerogel/Polyurethane Composites for the Application of Thermal Insulation. J. Polym. Res. 2014, 21, 1–9. DOI: 10.1007/s10965-013-0338-7.
  • Somiya, S. Heat Insulation Characteristics of High Bulk Nonwovens. J. Non Cryst. Solids 2010, 1, 9054–9062. DOI: 10.1080/00405000.2017.1316697.
  • Riffat, S. B.; Qiu, G. A Review of State-of-the-Art Aerogel Applications in Buildings. Int. J. Low-Carbon Technol. 2013, 8, 1–6. DOI: 10.1093/ijlct/cts001.
  • Xu, X.; Zhang, Q.; Hao, M.; Hu, Y.; Lin, Z.; Peng, L.; Wang, T.; Ren, X.; Wang, C.; Zhao, Z.; et al. Double-Negative-Index Ceramic Aerogels for Thermal Superinsulation. Science 2019, 363, 723–727. DOI: 10.1126/SCIENCE.AAV7304.
  • Ebelmen, M. Recherches sur les combinaisons des acides borique et silicique avec les éthers. Ann. Chim. Phys. 1846, 16, 854–856.
  • Kistler, S. S. Coherent Expanded Aerogels. J. Phys. Chem. 1932, 36, 52–64. DOI: 10.1021/j150331a003.
  • Kistler, S. S.; Caldwell, A. G. Thermal Conductivity of Silica Aërogel. Ind. Eng. Chem. 1934, 26, 658–662. DOI: 10.1021/ie50294a016.
  • Teichner, S. J.; Nicolaon, G. A.; Vicarini, M. A.; Gardes, G. E. E. Inorganic Oxide Aerogels. Adv. Colloid Interface Sci. 1976, 5, 245–273. DOI: 10.1016/0001-8686(76)80004-8.
  • Li, J.; Wang, X.; Huang, Q.; Gamboa, S.; Sebastian, P. J. Studies on Preparation and Performances of Carbon Aerogel Electrodes for the Application of Supercapacitor. J. Power Sources 2006, 158, 784–788. DOI: 10.1016/j.jpowsour.2005.09.045.
  • Jung, H. N. R.; Lee, Y. K.; Parale, V. G.; Cho, H. H.; Mahadik, D. B.; Park, H. H. Hydrophobic Silica Composite Aerogels Using Poly(Methyl Methacrylate) by Rapid Supercritical Extraction Process. J. Sol-Gel Sci. Technol. 2017, 83, 692–697. DOI: 10.1007/S10971-017-4438-4/FIGURES/5.
  • Rajpoot, S.; Malik, R.; Kim, Y. W. Effects of Polysiloxane on Thermal Conductivity and Compressive Strength of Porous Silica Ceramics. Ceram. Int. 2019, 45, 21270–21277. DOI: 10.1016/j.ceramint.2019.07.109.
  • Liu, A.; Medina, L.; Berglund, L. A. High-Strength Nanocomposite Aerogels of Ternary Composition: Poly(Vinyl Alcohol), Clay, and Cellulose Nanofibrils, 2017, 9, 6453–6461. DOI: 10.1021/acsami.6b15561.
  • Ochoa, M.; Lamy-Mendes, A.; Maia, A.; Portugal, A.; Durães, L. Influence of Structure-Directing Additives on the Properties of Poly(Methylsilsesquioxane) Aerogel-like Materials. Gels 2019, 5, 6. DOI: 10.3390/gels5010006.
  • Doke, S. D.; Patel, C. M.; Lad, V. N. Improving Physical Properties of Silica Aerogel Using Compatible Additives. Chem. Pap. 2021, 75, 215–225. DOI: 10.1007/s11696-020-01281-4.
  • Zhong, L.; Chen, X.; Song, H.; Guo, K.; Hu, Z. Highly Flexible Silica Aerogels Derived from Methyltriethoxysilane and Polydimethylsiloxane. New J. Chem. 2015, 39, 7832–7838. DOI: 10.1039/C5NJ01477H.
  • He, S.; Chen, X. Flexible Silica Aerogel Based on Methyltrimethoxysilane with Improved Mechanical Property. J. Non Cryst. Solids 2017, 463, 6–11. DOI: 10.1016/j.jnoncrysol.2017.02.014.
  • Leventis, N.; Palczer, A.; McCorkle, L.; Zhang, G.; Sotiriou-Leventis, C. Nanoengineered Silica-Polymer Composite Aerogels with No Need for Supercritical Fluid Drying. J. Sol-Gel Sci. Technol. 2005, 35, 99–105. DOI: 10.1007/s10971-005-1372-7.
  • Prakash, S. S.; Brinker, J.; Hurd, A. J.; Rao, S. M. Silica aAerogel fFilms pPrepared at aAmbient pPressure by uUsing sSurface dDerivatization to iInduce rReversible dDrying sShrinkage. Lett. Nat. 1995, 374, 439–443. DOI: 10.1038/374439a0.
  • Randall, J. P.; Ann, M.; Meador, B.; Jana, S. C. Polymer Reinforced Silica Aerogels: effects of Dimethyldiethoxysilane and Bis(Trimethoxysilylpropyl) Amine as Silane Precursors. Journal of Materials Chemistry A. 2013, 1, 6642–6652. DOI: 10.1039/c3ta11019b.
  • Lin, J.; Li, G.; Liu, W.; Qiu, R.; Wei, H.; Zong, K.; Cai, X. A Review of Recent Progress on the Silica Aerogel Monoliths: synthesis, Reinforcement, and Applications. J. Mater. Sci. 2021, 56, 10812–10833. DOI: 10.1007/s10853-021-05997-w.
  • Rapid Fabrication of Aerogel Thermal Insulation for Operationally Responsive Space Satellites | SBIR.gov. https://www.sbir.gov/sbirsearch/detail/396797 (accessed Nov. 12, 2021).
  • Alwin, S.; Sahaya Shajan, X. Aerogels: promising Nanostructured Materials for Energy Conversion and Storage Applications. Mater. Renew Sustain Energy 2020, 9, 1–27. DOI: 10.1007/S40243-020-00168-4/FIGURES/17.
  • Aegerter, M.; Leventis, N.; Koebel, M. Aerogels Handbook (Advances in Sol-Gel Derived Materials and Technologies), Springer: New York, 2011.
  • Omranpour, H.; Motahari, S. Effects of Processing Conditions on Silica Aerogel during Aging: Role of Solvent, Time and Temperature. J. Non Cryst. Solids 2013, 379, 7–11. DOI: 10.1016/j.jnoncrysol.2013.07.025.
  • Shi, F.; Wang, L.; Liu, J. Synthesis and Characterization of Silica Aerogels by a Novel Fast Ambient Pressure Drying Process. Mater. Lett. 2006, 60, 3718–3722. DOI: 10.1016/j.matlet.2006.03.095.
  • Ding, J.; Zhong, K.; Liu, S.; Wu, X.; Shen, X.; Cui, S.; Chen, X. Flexible and Super Hydrophobic Polymethylsilsesquioxane Based Silica Aerogel for Organic Solvent Adsorption via Ambient Pressure Drying Technique. Powder Technol. 2020, 373, 716–726. DOI: 10.1016/j.powtec.2020.07.024.
  • Ślosarczyk, A.; Barełkowski, M.; Niemier, S.; Jakubowska, P. Synthesis and Characterisation of Silica Aerogel/Carbon Microfibers Nanocomposites Dried in Supercritical and Ambient Pressure Conditions. J. Sol-Gel Sci. Technol. 2015, 76, 227–232. DOI: 10.1007/s10971-015-3798-x.
  • Liu, N.; Zhang, S.; Fu, R.; Dresselhaus, M. S.; Dresselhaus, G. Carbon Aerogel Spheres Prepared via Alcohol Supercritical Drying. Carbon N Y. 2006, 44, 2430–2436. DOI: 10.1016/j.carbon.2006.04.032.
  • Wei, T. Y.; Chang, T. F.; Lu, S. Y.; Chang, Y. C. Preparation of Monolithic Silica Aerogel of Low Thermal Conductivity by Ambient Pressure Drying. J. Am. Ceramic Soc. 2007, 90, 2003–2007. DOI: 10.1111/j.1551-2916.2007.01671.x.
  • Pajonk, G. M.; Venkateswara Rao, A.; Parvathy, N. N.; Elaloui, E. Microstructural Characterization of Silica Aerogels Using Scanning Electron Microscopy. J. Mater. Sci. 1996, 31, 5683–5689. DOI: 10.1007/BF01160815.
  • Li, C.; Chen, Z.; Dong, W.; Lin, L.; Zhu, X.; Liu, Q.; Zhang, Y.; Zhai, N.; Zhou, Z.; Wang, Y.; et al. A Review of Silicon-Based Aerogel Thermal Insulation Materials: Performance Optimization through Composition and Microstructure. J. Non Cryst. Solids 2021, 553, 120517. DOI: 10.1016/j.jnoncrysol.2020.120517.
  • Pan, Y.; He, S.; Gong, L.; Cheng, X.; Li, C.; Li, Z.; Liu, Z.; Zhang, H. Low Thermal-Conductivity and High Thermal Stable Silica Aerogel Based on MTMS/Water-Glass co-Precursor Prepared by Freeze Drying. Mater. Des. 2017, 113, 246–253. DOI: 10.1016/j.matdes.2016.09.083.
  • Zhou, T.; Cheng, X.; Pan, Y.; Li, C.; Gong, L.; Zhang, H. Mechanical Performance and Thermal Stability of Glass Fiber Reinforced Silica Aerogel Composites Based on co-Precursor Method by Freeze Drying. Appl. Surf. Sci. 2018, 437, 321–328. Apr DOI: 10.1016/j.apsusc.2017.12.146.
  • Worsley, M. A.; Baumann, T. F. Handbook of Sol-Gel Science and Technology, Springer International Publishing: Switzerland, 2017.
  • Yue, S.; Li, X.; Yu, H.; Tong, Z.; Liu, Z. Preparation of High-Strength Silica Aerogels by Two-Step Surface Modification via Ambient Pressure Drying. J. Porous Mater. 2021, 28, 651–659. DOI: 10.1007/s10934-020-00990-1.
  • Land, V. D.; Harris, T. M.; Teeters, D. C. Processing of Low-Density Silica Gel by Critical Point Drying or Ambient Pressure Drying. J. Non Cryst. Solids 2001, 283, 11–17. DOI: 10.1016/S0022-3093(01)00485-9.
  • Mahadik, D. B.; Rao, A. V.; Kumar, R.; Ingale, S. V.; Wagh, P. B.; Gupta, S. C. Reduction of Processing Time by Mechanical Shaking of the Ambient Pressure Dried TEOS Based Silica Aerogel Granules. J. Porous Mater. 2012, 19, 87–94. DOI: 10.1007/s10934-011-9451-3.
  • Berardi, U.; (Mark) Zaidi, S. Characterization of Commercial Aerogel-Enhanced Blankets Obtained with Supercritical Drying and of a New Ambient Pressure Drying Blanket. Energy Build. 2019, 198, 542–552. DOI: 10.1016/j.enbuild.2019.06.027.
  • Li, M.; Jiang, H.; Xu, D.; Hai, O.; Zheng, W. Low Density and Hydrophobic Silica Aerogels Dried under Ambient Pressure Using a New co-Precursor Method. J. Non Cryst. Solids 2016, 452, 187–193. DOI: 10.1016/j.jnoncrysol.2016.09.001.
  • Li, L.; Guo, X.; Zhong, B.; Chen, Y.; Li, L.; Tang, Y.; Fang, W. Preparation of Carbon Aerogel by Ambient Pressure Drying and Its Application in Lithium/Sulfur Battery. J. Appl. Electrochem. 2013, 43, 65–72. DOI: 10.1007/s10800-012-0505-2.
  • Gurav, J. L.; Venkateswara Rao, A.; Nadargi, D. Y. Study of Thermal Conductivity and Effect of Humidity on HMDZ Modified TEOS Based Aerogel Dried at Ambient Pressure. J. Sol-Gel Sci. Technol. 2009, 50, 275–280. DOI: 10.1007/s10971-009-1938-x.
  • Ganbavle, V. V.; Kalekar, A. S.; Harale, N. S.; Patil, S. S.; Dhere, S. L. Rapid Synthesis of Ambient Pressure Dried Tetraethoxysilane Based Silica Aerogels. J. Sol-Gel Sci. Technol. 2021, 97, 5–10. DOI: 10.1007/s10971-020-05437-2.
  • Kwon, Y.; Choi, S.; Kang, E.; Baek, S. Ambient-Dried Silica Aerogel Doped with TiO2 powder for thermal insulation. J Mater. Sci. 2000, 35, 6075–6079.
  • Hwang, S. W.; Kim, T. Y.; Hyun, S. H. Optimization of Instantaneous Solvent Exchange/Surface Modification Process for Ambient Synthesis of Monolithic Silica Aerogels. J. Colloid Interface Sci. 2008, 322, 224–230. DOI: 10.1016/j.jcis.2008.02.060.
  • Wu, G.; Yu, Y.; Cheng, X.; Zhang, Y. Preparation and Surface Modification Mechanism of Silica Aerogels via Ambient Pressure Drying. Mater. Chem. Phys. 2011, 129, 308–314. DOI: 10.1016/j.matchemphys.2011.04.003.
  • Rao, A. P.; Rao, A. V.; Pajonk, G. M. Hydrophobic and Physical Properties of the Ambient Pressure Dried Silica Aerogels with Sodium Silicate Precursor Using Various Surface Modification Agents. Appl. Surf. Sci. 2007, 253, 6032–6040. DOI: 10.1016/j.apsusc.2006.12.117.
  • Gao, B.; Lu, S.; Kalulu, M.; Oderinde, O.; Ren, L. Synthesis of Silica Aerogel Monoliths with Controlled Specific Surface Areas and Pore Sizes. Mater. Res. Express. 2017, 4, 7. DOI: 10.1088/2053-1591/aa748e.
  • Li, X.; Yang, Z.; Li, K.; Zhao, S.; Fei, Z.; Zhang, Z. A Flexible Silica Aerogel with Good Thermal and Acoustic Insulation Prepared via Water Solvent System. J. Sol-Gel Sci. Technol. 2019, 92, 652–661. DOI: 10.1007/S10971-019-05107-Y/FIGURES/6.
  • Shinko, A.; Jana, S. C.; Meador, M. A. Crosslinked Polyurea-co-Polyurethane Aerogels with Hierarchical Structures and Low Stiffness. J. Non Cryst. Solids 2018, 487, 19–27. DOI: 10.1016/j.jnoncrysol.2018.02.020.
  • Fidalgo, A.; Farinha, J. P. S.; Martinho, J. M. G.; Rosa, M. E.; Ilharco, L. M. Hybrid Silica/Polymer Aerogels Dried at Ambient Pressure. Chem. Mater. 2007, 19, 2603–2609. DOI: 10.1021/cm062962w.
  • Küçük, M.; Korkmaz, Y. The Effect of Physical Parameters on Sound Absorption Properties of Natural Fiber Mixed Nonwoven Composites. Text Res. J. 2012, 82, 2043–2053. DOI: 10.1177/0040517512441987.
  • Parvathy Rao, A.; Venkateswara Rao, A.; Pajonk, G. M.; Shewale, P. M. Effect of Solvent Exchanging Process on the Preparation of the Hydrophobic Silica Aerogels by Ambient Pressure Drying Method Using Sodium Silicate Precursor. J. Mater. Sci. 2007, 42, 8418–8425. DOI: 10.1007/s10853-007-1788-2.
  • Rao, A. V. P. V.; Rao, A. V. P. V.; Gurav, J. L. Effect of Protic Solvents on the Physical Properties of the Ambient Pressure Dried Hydrophobic Silica Aerogels Using Sodium Silicate Precursor. J. Porous Mater. 2008, 15, 507–512. DOI: 10.1007/s10934-007-9104-8.
  • Parvathy Rao, A.; Pajonk, G. M.; Rao, A. V. Effect of Preparation Conditions on the Physical and Hydrophobic Properties of Two Step Processed Ambient Pressure Dried Silica Aerogels. J. Mater. Sci. 2005, 40, 3481–3489. DOI: 10.1007/s10853-005-2853-3.
  • Hegde, N. D.; Hirashima, H.; Venkateswara Rao, A. Two Step Sol-Gel Processing of TEOS Based Hydrophobic Silica Aerogels Using Trimethylethoxysilane as a co-Precursor. J. Porous Mater. 2007, 14, 165–171. DOI: 10.1007/s10934-006-9021-2.
  • Venkateswara Rao, A.; Pajonk, G. M.; Haranath, D.; Wagh, P. B. Effect of Glycerol on Monolithicity, Density, Microhardness and Sintering Temperature of TMOS Silica Aerogels. Microporous Mater. 1997, 12, 63–69. DOI: 10.1016/S0927-6513(97)00066-7.
  • Sato, S.; Murakata, T.; Suzuki, T.; Ohgawara, T. Control of Pore Size Distribution of Silica Gel through Sol-Gel Process Using Water Soluble Polymers as Additives. J. Mater. Sci. 1990, 25, 4880–4885. DOI: 10.1007/BF01129956.
  • Hurrell, A.; Horoshenkov, K. V.; King, S. G.; Stolojon, V. On the Relationship of the Observed Acoustical and Related Non-Acoustical Behaviours of Nanofibers Membranes Using Biot- and Darcy-Type Models. Appl. Acoust. 2021, 179, 108075. DOI: 10.1016/j.apacoust.2021.108075.
  • Li, J.; Lei, Y.; Xu, D.; Liu, F.; Li, J.; Sun, A.; Guo, J.; Xu, G. Improved Mechanical and Thermal Insulation Properties of Monolithic Attapulgite Nanofiber/Silica Aerogel Composites Dried at Ambient Pressure. J. Sol-Gel Sci. Technol. 2017, 82, 702–711. DOI: 10.1007/s10971-017-4359-2.
  • Xu, X.; Zhou, J.; Nagaraju, D. H.; Jiang, L.; Marinov, V. R.; Lubineau, G.; Alshareef, H. N.; Oh, M. Flexible, Highly Graphitized Carbon Aerogels Based on Bacterial Cellulose/Lignin: Catalyst-Free Synthesis and Its Application in Energy Storage Devices. Adv. Funct. Mater. 2015, 25, 3193–3202. DOI: 10.1002/adfm.201500538.
  • Tseng, C. J.; Yamaguchi, M.; Ohmori, T. Thermal Conductivity of Polyurethane Foams from Room Temperature to 20 K. Cryogenics (Guildf) 1997, 37, 305–312. DOI: 10.1016/S0011-2275(97)00023-4.
  • Yan, Q.; Meng, Z.; Luo, J.; Wu, Z. Experimental Study on Improving the Properties of Rock Wool and Glass Wool by Silica Aerogel. Energy Build. 2021, 247, 111146. DOI: 10.1016/j.enbuild.2021.111146.
  • Dai, Y.-J.; Tang, Y.-Q.; Fang, W.-Z.; Zhang, H.; Tao, W.-Q. A Theoretical Model for the Effective Thermal Conductivity of Silica Aerogel Composites, Appli. Thermal Eng. 2018, 128, 1634–1645. DOI: 10.1016/j.applthermaleng.2017.09.010.
  • Zhao, J.-J.; Duan, Y.-Y.; Wang, X.-D.; Wang, B.-X. Effects of Solid-Gas Coupling and Pore and Particle Microstructures on the Effective Gaseous Thermal Conductivity in Aerogels. J. Nanopart. Res. 2012, 14, 1024. DOI: 10.1007/s11051-012-1024-0.
  • Peng, F.; Jiang, Y.; Feng, J.; Cai, H.; Feng, J.; Li, L. Thermally Insulating, Fiber-Reinforced Alumina–Silica Aerogel Composites with Ultra-Low Shrinkage up to 1500 °C. Chem. Eng. J. 2021, 411, 128402. DOI: 10.1016/j.cej.2021.128402.
  • Patil, S. P.; Shendye, P.; Markert, B. Molecular Dynamics Simulations of Silica Aerogel Nanocomposites Reinforced by Glass Fibers, Graphene Sheets and Carbon Nanotubes: A Comparison Study on Mechanical Properties. Compos. Part B Eng. 2020, 190, 107884. DOI: 10.1016/j.compositesb.2020.107884.
  • Iswar, S.; Galmarini, S.; Bonanomi, L.; Wernery, J.; Roumeli, E.; Nimalshantha, S.; Ben Ishai, A. M.; Lattuada, M.; Koebel, M. M.; Malfait, W. J.; et al. Dense and Strong, but Superinsulating Silica Aerogel. Acta Mater. 2021, 213, 116959. DOI: 10.1016/j.actamat.2021.116959.
  • Nateq, M. H.; Ceccato, R. Sol-Gel Synthesis of TiO 2 Nanocrystalline Particles with Enhanced Surface Area through the Reverse Micelle Approach. Adv. Mater. Sci. Eng. 2019, 2019, 1–14. DOI: 10.1155/2019/1567824.
  • Maleki, H.; Durã, L.; Portugal, A. A. A.; Durães, L.; Portugal, A. A. A. Development of Mechanically Strong Ambient Pressure Dried Silica Aerogels with Optimized Properties. J. Phys. Chem. C 2015, 119, 7689–7703. DOI: 10.1021/jp5116004.
  • Omranpour, H.; Dourbash, A.; Motahari, S. Mechanical Properties Improvement of Silica Aerogel through Aging: Role of Solvent Type, Time and Temperature. In AIP Conference Proceedings, vol. 1593, February 2015; pp. 298–302. DOI: 10.1063/1.4873786.
  • Maleki, H.; Durães, L.; Portugal, A. Synthesis of Lightweight Polymer-Reinforced Silica Aerogels with Improved Mechanical and Thermal Insulation Properties for Space Applications. Microporous Mesoporous Mater. 2014, 197, 116–129. DOI: 10.1016/j.micromeso.2014.06.003.
  • He, S.; Li, Z.; Shi, X.; Yang, H.; Gong, L.; Cheng, X. Rapid Synthesis of Sodium Silicate Based Hydrophobic Silica Aerogel Granules with Large Surface Area. Adv. Powder Technol. 2015, 26, 537–541. DOI: 10.1016/j.apt.2015.01.002.
  • Scherer, G. W.; Haereid, S.; Nilsen, E.; Einarsrud, M. A. Shrinkage of Silica Gels Aged in TEOS. J. Non Cryst. Solids 1996, 202, 42–52. DOI: 10.1016/0022-3093(96)00136-6.
  • Strøm, R. A.; Masmoudi, Y.; Rigacci, A.; Petermann, G.; Gullberg, L.; Chevalier, B.; Einarsrud, M.-A. Strengthening and Aging of Wet Silica Gels for up-Scaling of Aerogel Preparation. J. Sol-Gel Sci. Technol. 2007, 41, 291–298. DOI: 10.1007/s10971-006-1505-7.
  • Markevicius, G.; Ladj, R.; Niemeyer, P.; Budtova, T.; Rigacci, A. Ambient-Dried Thermal Superinsulating Monolithic Silica-Based Aerogels with Short Cellulosic Fibers. J. Mater. Sci. 2017, 52, 2210–2221. DOI: 10.1007/S10853-016-0514-3/FIGURES/12.
  • Paik, J.; Sakamoto, J.; Jones, S. 2008. NASA Tech Briefs, pp. 18–19 - Google Search. https://www.google.com/search?q=J.+Paik%2C+J.+Sakamoto+and+S.+Jones%2C+NASA+Tech+Briefs%2C+2008%2C+pp.+18–19&rlz=1C5CHFA_enIN924IN925&oq=J.+Paik%2C+J.+Sakamoto+and+S.+Jones%2C+NASA+Tech+Briefs%2C+2008%2C+pp.+18–19&aqs=chrome.69i57j69i60.655j0j7&sourceid=chrome&ie=UTF-8 (accessed Dec. 07, 2021).
  • Li, X.; Wang, Q.; Li, H.; Ji, H.; Sun, X.; He, J. Effect of Sepiolite Fiber on the Structure and Properties of the Sepiolite/Silica Aerogel Composite. J. Sol-Gel Sci. Technol. 2013, 67, 646–653. Sep. DOI: 10.1007/s10971-013-3124-4.
  • Shao, Z.; He, X.; Niu, Z.; Huang, T.; Cheng, X.; Zhang, Y. Ambient Pressure Dried Shape-Controllable Sodium Silicate Based Composite Silica Aerogel Monoliths. Mater. Chem. Phys. 2015, 162, 346–353. DOI: 10.1016/j.matchemphys.2015.05.077.
  • Parmenter, K. E.; Milstein, F. Mechanical Properties of Silica Aerogels. J. Non Cryst. Solids 1998, 223, 179–189. DOI: 10.1016/S0022-3093(97)00430-4.
  • Gao, Q. F.; Feng, J.; Zhang, C. R.; Feng, J. Z.; Wu, W.; Jiang, Y. G. Mechanical Properties of Aerogel-Ceramic Fiber Composites. AMR 2010, 105-106, 94–99. DOI: 10.4028/www.scientific.net/AMR.105-106.94.
  • Jiang, Y.; Feng, J. J.; Feng, J. J. Synthesis and Characterization of Ambient-Dried Microglass Fibers/Silica Aerogel Nanocomposites with Low Thermal Conductivity. J. Sol-Gel Sci. Technol. 2017, 83, 64–71. DOI: 10.1007/s10971-017-4383-2.
  • Boday, D. J.; Muriithi, B.; Stover, R. J.; Loy, D. A. Polyaniline Nanofiber-Silica Composite Aerogels. J. Non Cryst. Solids. 2012, 358, 1575–1580. DOI: 10.1016/j.jnoncrysol.2012.04.020.
  • Jaxel, J.; Markevicius, G.; Rigacci, A.; Budtova, T. Thermal Superinsulating Silica Aerogels Reinforced with Short Man-Made Cellulose Fibers. Compos. Part A Appl. Sci. Manuf. 2017, 103, 113–121. DOI: 10.1016/j.compositesa.2017.09.018.
  • Liao, Y.; Wu, H.; Ding, Y.; Yin, S.; Wang, M.; Cao, A. Engineering Thermal and Mechanical Properties of Flexible Fiber-Reinforced Aerogel Composites. J Sol-Gel Sci Technol. 2012, 63, 445–456. DOI: 10.1007/s10971-012-2806-7.
  • Hou, X.; Zhang, R.; Wang, B. Novel Self-Reinforcing ZrO2–SiO2 Aerogels with High Mechanical Strength and Ultralow Thermal Conductivity. Ceram. Int. 2018, 44, 15440–15445. DOI: 10.1016/j.ceramint.2018.05.199.
  • Liu, B.; Gao, M.; Liu, X.; Xie, Y.; Yi, X.; Zhu, L.; Wang, X.; Shen, X. Monolithic Zirconia Aerogel from Polyacetylacetonatozirconium Precursor and Ammonia Hydroxide Gel Initiator: formation Mechanism, Mechanical Strength and Thermal Properties. RSC. Adv. 2018, 8, 41603–41611. DOI: 10.1039/C8RA08263D.
  • Hung, W. C.; Horng, R. S.; Shia, R. E. Investigation of Thermal Insulation Performance of Glass/Carbon Fiber-Reinforced Silica Aerogel Composites. J. Sol-Gel Sci. Technol. 2021, 97, 414–421. DOI: 10.1007/s10971-020-05444-3.
  • Li, C.; Cheng, X.; Li, Z.; Pan, Y.; Huang, Y.; Gong, L. Mechanical, Thermal and Flammability Properties of Glass Fiber Film/Silica Aerogel Composites. J. Non Cryst. Solids 2017, 457, 52–59. DOI: 10.1016/j.jnoncrysol.2016.11.017.
  • Wu, H.; Liao, Y.; Ding, Y.; Wang, H.; Peng, C.; Yin, S. Engineering Thermal and Mechanical Properties of Multilayer Aligned Fiber-Reinforced Aerogel Composites. Heat Transf. Eng. 2014, 35, 1061–1070. DOI: 10.1080/01457632.2013.863090.
  • Li, Z.; Cheng, X.; He, S.; Shi, X.; Gong, L.; Zhang, H. Aramid Fibers Reinforced Silica Aerogel Composites with Low Thermal Conductivity and Improved Mechanical Performance. Compos. Part A Appl. Sci. Manuf. 2016, 84, 316–325. DOI: 10.1016/j.compositesa.2016.02.014.
  • Li, J.; Wu, W.; Yang, H.; Wang, X.; Wang, X.; Sun, C.; Hu, Z. Rigid Silica Xerogel/Alumina Fiber Composites and Their Thermal Insulation Properties. J. Porous Mater. 2019, 26, 1177–1184. DOI: 10.1007/s10934-018-0711-3.
  • Venkataraman, M.; Mishra, R.; Militky, J.; Hes, L. Aerogel Based Nanoporous Fibrous Materials for Thermal Insulation. Fibers Polym. 2014, 15, 1444–1449. DOI: 10.1007/s12221-014-1444-9.
  • Lee, S. C.; Cunnington, G. R. Conduction and Radiation Heat Transfer in High-Porosity Fiber Thermal Insulation. J. Thermophys. Heat Transfer 2000, 14, 121–136. DOI: 10.2514/2.6508.
  • Lu, G.; Wang, X. D.; Duan, Y. Y.; Li, X. W. Effects of Non-Ideal Structures and High Temperatures on the Insulation Properties of Aerogel-Based Composite Materials. J. Non Cryst. Solids. 2011, 357, 3822–3829. DOI: 10.1016/j.jnoncrysol.2011.07.022.
  • Yuan, B.; Ding, S.; Wang, D.; Wang, G.; Li, H. Heat Insulation Properties of Silica Aerogel/Glass Fiber Composites Fabricated by Press Forming. Mater. Lett. 2012, 75, 204–206. DOI: 10.1016/j.matlet.2012.01.114.
  • Rezaei, E.; Moghaddas, J. Thermal Conductivities of Silica Aerogel Composite Insulating Material. Adv. Mater. Lett. 2016, 7, 296–301. 2016.https://scholar.google.co.in/scholar?hl=en&as_sdt=0%2C5&q=+E.+Rezaei+and+J.+Moghaddas%2C+Adv.+Mater.+Lett.%2C+2016%2C+7%2C+296–+301&btnG= (accessed Dec 09, 2021).
  • Oh, K. W.; Kim, D. K.; Kim, S. H. Ultra-Porous Flexible PET/Aerogel Blanket for Sound Absorption and Thermal Insulation. Fibers Polym. 2009, 10, 731–737. DOI: 10.1007/s12221-010-0731-3.
  • Talebi, Z.; Soltani, P.; Habibi, N.; Latifi, F. Silica Aerogel/Polyester Blankets for Efficient Sound Absorption in Buildings. Constr. Build Mater. 2019, 220, 76–89. DOI: 10.1016/j.conbuildmat.2019.06.031.
  • Ramamoorthy, M.; Pisal, A. A.; Rengasamy, R. S.; Rao, A. V. In-Situ Synthesis of Silica Aerogel in Polyethylene Terephthalate Fibre Nonwovens and Their Composite Properties on Acoustical Absorption Behavior. J. Porous Mater. 2018, 25, 179–187. DOI: 10.1007/s10934-017-0431-0.
  • Md Hasanul Hoque, K.; Huepang, Z.; Sharmin, A.; Ge, W. Preparation and Characterization of Silica Aerogel Incorporated Polypropylene Nonwoven Fabric Composite Dried in Ambient Pressure Drying Method. 2021, 4, 57–67. DOI: 10.5281/zenodo.4601626.
  • Mazraeh-Shahi, Z. T.; Shoushtari, A. M.; Bahramian, A. R.; Abdouss, M. Synthesis, Structure and Thermal Protective Behavior of Silica Aerogel/PET Nonwoven Fiber Composite. Fibers Polym. 2014, 15, 2154–2159. DOI: 10.1007/s12221-014-2154-z.
  • Chakraborty, S.; Rao, A. V.; Kothari, V. K.; Pisal, A. A. Radiant Heat Protective Performance of Clothing Assemblies with Flexible Aerogel-Nomex Nonwoven Composite as Thermal Insulation. Indian J. Fibre Text Res. 2019, 44, 396–403.
  • Motahari, S.; Abolghasemi, A. Silica Aerogel–Glass Fiber Composites as Fire Shield for Steel Frame Structures. J. Mater. Civ. Eng. 2015, 27, 04015008. DOI: 10.1061/(asce)mt.1943-5533.0001257.
  • Li, Z.; Gong, L.; Cheng, X.; He, S.; Li, C.; Zhang, H. Flexible Silica Aerogel Composites Strengthened with Aramid Fibers and Their Thermal Behavior. Mater. Des. 2016, 99, 349–355. DOI: 10.1016/j.matdes.2016.03.063.
  • Li, C.; Cheng, X.; Li, Z.; Pan, Y.; Huang, Y.; Gong, L. Mechanical, Thermal and Flammability Properties of Glass Fiber Film/Silica Aerogel Composites. J Non-Crystalline Solids. 2017, 457, 52–59.
  • Aerogel.org » Strong and Flexible Aerogels. http://www.aerogel.org/?p=1058 (accessed May 10, 2022).
  • Venkateswara Rao, A.; Bhagat, S. D.; Hirashima, H.; Pajonk, G. M. Synthesis of Flexible Silica Aerogels Using Methyltrimethoxysilane (MTMS) Precursor. J. Colloid Interface Sci. 2006, 300, 279–285. DOI: 10.1016/j.jcis.2006.03.044.
  • Huang, Y.; He, S.; Chen, G.; Dai, H.; Yuan, B.; Chen, X.; Yang, X. Fast Preparation of Glass Fiber/Silica Aerogel Blanket in Ethanol & Water Solvent System. J. Non Cryst. Solids 2019, 505, 286–291. DOI: 10.1016/j.jnoncrysol.2018.11.003.
  • Zhou, T.; Gong, L.; Cheng, X.; Pan, Y.; Li, C.; Zhang, H. Preparation and Characterization of Silica Aerogels from by-Product Silicon Tetrachloride under Ambient Pressure Drying. J. Non Cryst. Solids 2018, 499, 387–393. DOI: 10.1016/j.jnoncrysol.2018.05.036.
  • Venkataraman, M.; Mishra, R.; Jasikova, D.; Kotresh, T. M. T.; Militky, J. Thermodynamics of Aerogel-Treated Nonwoven Fabrics at Subzero Temperatures. J. Ind. Text. 2015, 45, 387–404. DOI: 10.1177/1528083714534711.
  • Kunjalukkal Padmanabhan, S.; Ul Haq, E.; Licciulli, A. Synthesis of Silica Cryogel-Glass Fiber Blanket by Vacuum Drying. Ceram. Int. 2016, 42, 7216–7222. DOI: 10.1016/j.ceramint.2016.01.113.
  • Huang, Y.; He, S.; Chen, G.; Shi, X.; Yang, X.; Dai, H.; Chen, X. Mechanical Reinforced Fiber Needle Felt/Silica Aerogel Composite with Its Flammability. J. Sol-Gel Sci. Technol. 2018, 88, 129–140. DOI: 10.1007/s10971-018-4796-6.
  • Lamy-Mendes, A.; Pontinha, A. D. R.; Alves, P.; Santos, P.; Durães, L. Progress in Silica Aerogel-Containing Materials for Buildings’ Thermal Insulation. Constr. Build Mater. 2021, 286, 122815. DOI: 10.1016/j.conbuildmat.2021.122815.
  • NASA’s Revolutionary Insulation Waiting to be Brought to India. https://www.entrepreneur.com/article/270652 (accessed May 03, 2022).
  • Aerogels Insulate Missions and Consumer Products | NASA Spinoff. https://spinoff.nasa.gov/Spinoff2008/ch_9.html (accessed May 03, 2022).
  • India Aerogel Market Size, Share, Analysis & Forecast 2025 | TechSci Research. https://www.techsciresearch.com/report/india-aerogel-market/1803.html (accessed May 11, 2022).
  • Li, F.; Xie, L.; Sun, G.; Kong, Q.; Su, F.; Cao, Y.; Wei, J.; Ahmad, A.; Guo, X.; Chen, C.-M.; et al. Resorcinol-Formaldehyde Based Carbon Aerogel: Preparation, Structure and Applications in Energy Storage Devices. Microporous Mesoporous Mater. 2019, 279, 293–315. DOI: 10.1016/j.micromeso.2018.12.007.
  • Chandrasekaran, S.; Campbell, P. G.; Baumann, T. F.; Worsley, M. A. Carbon Aerogel Evolution: Allotrope, Graphene-Inspired, and 3D-Printed Aerogels. J. Mater. Res. 2017, 32, 4166–4185. DOI: 10.1557/jmr.2017.411.
  • McNeil, S. J.; Gupta, H. Emerging Applications of Aerogels in Textiles. Polym. Test 2022, 106, 107426. DOI: 10.1016/j.polymertesting.2021.107426.
  • Randall, J. P.; Ann, M.; Meador, B.; Jana, S. C. Tailoring Mechanical Properties of Aerogels for Aerospace Applications. ACS Appl. Mater. Interfaces 2011, 3, 613–626. DOI: 10.1021/am200007n.
  • Zhi, C.; Du, M.; Sun, Z.; Wu, M.; He, X.; Meng, J.; Yu, L. Warp-Knitted Spacer Fabric Reinforced Syntactic Foam: A Compression Modulus Meso-Mechanics Theoretical Model and Experimental Verification. Polymers (Basel) 2020, 12, 286. DOI: 10.3390/polym12020286.
  • Vivod, S. L.; Meador, M. A. B.; Pugh, C.; Wilkosz, M.; Calomino, K.; McCorkle, L. Toward Improved Optical Transparency of Polyimide Aerogels. ACS Appl. Mater. Interfaces 2020, 12, 8622–8633. DOI: 10.1021/acsami.9b17796.
  • Nita, L. E.; Ghilan, A.; Rusu, A. G.; Neamtu, I.; Chiriac, A. P. New Trends in Bio-Based Aerogels. Pharmaceutics 2020, 12, 449. DOI: 10.3390/pharmaceutics12050449.
  • Gokarneshan, N.; Velumani, K. Some Significant Advances in Spacer Fabric Technology for Newer Areas of Applications. J. Text. Sci. Eng. 2018, 08, 02. DOI: 10.4172/2165-8064.1000339.
  • García-González, C. A.; Alnaief, M.; Smirnova, I. Polysaccharide-Based Aerogels—Promising Biodegradable Carriers for Drug Delivery Systems. Carbohydr. Polym. 2011, 86, 1425–1438. DOI: 10.1016/j.carbpol.2011.06.066.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.