210
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Initiation and termination of liquid flow controlled drying collapse of interconnected parenchyma cells in palm wood

, , , & ORCID Icon
Pages 968-988 | Received 05 Aug 2022, Accepted 06 Jan 2023, Published online: 24 Jan 2023

References

  • Siau, J. F. Capillarity and Water Potential. In Transport Processes in Wood; Springer: Berlin, Heidelberg, 1984; pp. 105–131.
  • Dawson, B. S. W.; Pearson, H. Effect of Supercritical CO2 Dewatering Followed by Oven-Drying of Softwood and Hardwood Timbers. Wood Sci. Technol. 2017, 51, 771–784. DOI: 10.1007/s00226-017-0895-8.
  • Haslett, A. N. Suitability of Oil Palm Trunk for Timber Uses. J. Trop. For. Sci. 1990, 2, 243–251.
  • Mokhtar, A.; Shamsudin, N. A.; Sahid, I.; Muhamad, H. Recovery of Oil Palm Lumber Production. Palm Oil Develop. 2016, 64, 7–10.
  • Navi, P.; Sandberg, D. Thermo-Hydro-Mechanical Processing of Wood. EPFL Press: Lausanne, 2012; pp. 55–105.
  • Akbari, A.; Hill, R. J.; van de Ven, T. G. M. An Elastocapillary Model of Wood-Fiber Collapse. Proc. R. Soc. A. 2015, 471, 20150184. DOI: 10.1098/rspa.2015.0184.
  • Rittiphet, C.; Dumyang, K.; Matan, N. Effect of Pre-Mechanical Compression on Free Water Removal, Drying Collapses and Associated Internal Voids of Oil Palm Wood. Eur. J. Wood Prod. 2021, 79, 925–940. DOI: 10.1007/s00107-021-01674-6.
  • Rittiphet, C.; Dumyang, K.; Settapong, P.; Matan, N. A Simple Method to Eliminate Drying Collapse of Liquid-Filled Porous Palm Wood. Dry Technol. 2023, 41, 89–106. DOI: 10.1080/07373937.2022.2086565.
  • United Nations Environment Programme. Converting Waste Oil Palm Trees into a Resource; United Nations Environment Program: Osaka, Japan, 2012; pp. 77–145.
  • ASTM D143: Standard Test Methods for Small Clear Specimens of Timber; ASTM International: West Conshohocken, PA, 2014.
  • Bakar, E. S.; Mohd Hamami, S.; Paik, S. H. Anatomical Characteristics and Utilization of Oil Palm Wood. In The Formation of Wood in Tropical Forest Trees: A Challenge from the Perspective of Functional Wood Anatomy; Nobuchi, T., Mohd Hamami, S., Eds.; Universiti Putra Malaysia, Selangor, 2008; pp. 161–180.
  • Jiang, L.; Li, S.; Yu, W.; Wang, J.; Sun, Q.; Li, Z. Interfacial Study on the Interaction between Hydrophobic Nanoparticles and Ionic Surfactants. Colloids Surf. A Physicochem. Eng. Asp. 2016, 488, 20–27. DOI: 10.1016/j.colsurfa.2015.10.007.
  • ASTM D1331: Standard Test Methods for Surface and Interfacial Tension of Solutions of Paints, Solvents, Solutions of Surface-Active Agents, and Related Materials. ASTM International: West Conshohocken, PA, 2011.
  • Goldstein, J. I.; Newbury, D. E.; Echlin, P.; Joy, D. C.; Lyman, C. E.; Lifshin, E.; Sawyer, L.; Michael, J. R. Scanning Electron Microscopy and X-Ray Microanalysis. 3rd ed.; Springer Science, New York, NY, 2003; pp. 647–673.
  • Berg, J. C. Fluid Interfaces and Capillarity. In An Introduction to Interfaces & Colloids: The Bridge to Nanoscience; World Scientific: Singapore, 2010; pp 23–106.
  • Yamada, H.; Tanaka, R.; Sulaiman, O.; Hashim, R.; Hamid, Z. A. A.; Yahya, M. K. A.; Kosugi, A.; Arai, T.; Murata, Y.; Nirasawa, S.; et al. Old Oil Palm Trunk: A Promising Source of Sugars for Bioethanol Production. Biomass Bioenergy. 2010, 34, 1608–1613. DOI: 10.1016/j.biombioe.2010.06.011.
  • Goswami, D.; Borah, S. N.; Lahkar, J.; Handique, P. J.; Deka, S. Antifungal Properties of Rhamnolipid Produced by Pseudomonas aeruginosa DS9 against Colletotrichum falcatum. J. Basic Microbiol. 2015, 55, 1265–1274. DOI: 10.1002/jobm.201500220.
  • Glass, S. V.; Zelinka, S. L. Moisture Relations and Physical Properties of Wood. In Wood Handbook, Wood as an Engineering Material, Centennial edition; Ross, R. J., Eds.; United States Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, 2010; pp. 4.1–4.19.
  • Srivaro, S.; Matan, N.; Chaowana, P.; Kyokong, B. Investigation of Physical and Mechanical Properties of Oil Palm Wood Core Sandwich Panels Overlaid with a Rubberwood Veneer Face. Eur. J. Wood Prod. 2014, 72, 571–581. DOI: 10.1007/s00107-014-0817-5.
  • Yuniarti, K.; Ozarska, B.; Brodie, G.; Harris, G.; Waugh, G. Collapse Development of Eucalyptus Saligna under Different Drying Temperatures. J. Trop. For. Sci. 2015, 27, 462–471.
  • Obataya, E.; Gril, J.; Thibaut, B. Shrinkage of Cane (Arundo donax) I. Irregular Shrinkage of Green Cane Due to the Collapse of Parenchyma Cells. J. Wood Sci. 2004, 50, 295–300. DOI: 10.1007/s10086-003-0578-y.
  • Karunasena, H. C. P.; Hesami, P.; Senadeera, W.; Gu, Y. T.; Brown, R. J.; Oloyede, A. Scanning Electron Microscopic Study of Microstructure of Gala Apples during Hot Air Drying. Dry Technol. 2014, 32, 455–468. DOI: 10.1080/07373937.2013.837479.
  • Mulet, A.; Garcia-Reverter, J.; Bon, J.; Berna, A. Effect of Shape on Potato and Cauliflower Shrinkage during Drying. Dry Technol. 2000, 18, 1201–1219. DOI: 10.1080/07373930008917772.
  • Roberts, A. G. Plasmodesmal Structure and Development. In Plasmodesmata Annual Plant Reviews; Oparka, K. J., Eds.; Blackwell Publishing: Hoboken, NJ, 2018; Vol. 18, pp. 1–32.
  • Hutchinson, J. W.; Thompson, J. M. T. Nonlinear Buckling Behaviour of Spherical Shells: Barriers and Symmetry-Breaking Dimples. Phil. Trans. R. Soc. A. 2017, 375, 20160154. DOI: 10.1098/rsta.2016.0154.
  • Gibson, L. J. The Hierarchical Structure and Mechanics of Plant Materials. J. R. Soc. Interface. 2012, 9, 2749–2766. DOI: 10.1098/rsif.2012.0341.
  • Green, D. W.; Winandy, J. E.; Kretschmann, D. E. Mechanical Properties of Wood. In: Wood Handbook; United States Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, 1999; pp. 4.1–4.45.
  • Wei, C.; Lintilhac, P. M.; Tanguay, J. J. An Insight into Cell Elasticity and Load Bearing Ability: measurement and Theory. Plant Physiol. 2001, 126, 1129–1138. DOI: 10.1104/pp.126.3.1129.
  • Ashby, M. F.; Jones, D. R. H. Engineering Materials 1; Butterworth-Heinemann: Oxford, UK, 2012; pp. 104–118.
  • Quilliet, C. Numerical Deflation of Beach Balls with Various Poisson’s Ratios: From Sphere to Bowl’s Shape. Eur. Phys. J. E. Soft Matter. 2012, 35, 48–1-9. DOI: 10.1140/epje/i2012-12048-3.
  • Vincent, O.; Szenicer, A.; Stroock, A. D. Capillarity-Driven Flows at the Continuum Limit. Soft Matter. 2016, 12, 6656–6661. DOI: 10.1039/C6SM00733C.
  • Gibson, L. J.; Ashby, M. F.; Harley, B. Cellular Materials in Nature and Medicine; Cambridge University Press: Cambridge, MA, 2010; pp. 225–253.
  • Gibson, L. J.; Ashby, M. F. Cellular Solids. Structure & Properties; Pergamon Press: Oxford, UK, 1988; pp. 169–200.
  • Deinum, E. E.; Mulder, B. M.; Benitez-Alfonso, Y. From Plasmodesma Geometry to Effective Symplasmic Permeability through Biophysical Modelling. eLife. 2019, 8, e49000. DOI: 10.7554/eLife.49000.
  • Khan, M. I. H.; Farrell, T.; Nagy, S. A.; Karim, M. A. Fundamental Understanding of Cellular Water Transport Process in Bio-Food Material during Drying. Sci Rep. 2018, 8, 15191. DOI: 10.1038/s41598-018-33159-7.
  • Prawiranto, K.; Defraeye, T.; Derome, D.; Buhlmann, A.; Hartmann, S.; Verboven, P.; Nicolai, B.; Carmeliet, J. Impact of Drying Methods on the Changes of Fruit Microstructure Unveiled by X-Ray Micro-Computed Tomography. RSC Adv. 2019, 9, 10606–10624. DOI: 10.1039/C9RA00648F.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.