Publication Cover
Drying Technology
An International Journal
Volume 41, 2023 - Issue 10
642
Views
3
CrossRef citations to date
0
Altmetric
Review Articles

Combined microfluidics and drying processes for the continuous production of micro-/nanoparticles for drug delivery: a review

, , ORCID Icon, , , , , & show all
Pages 1533-1568 | Received 29 Aug 2022, Accepted 09 Jan 2023, Published online: 03 Feb 2023

References

  • Upputuri, R. T. P.; Kulandaivelu, K.; Mandal, A. K. A. Nanotechnology-Based Approach for Enhanced Bioavailability and Stability of Tea Polyphenols—a Review. Stud. Nat. Prod. Chem 2016, 50, 399–410. DOI: 10.1016/B978-0-444-63749-9.00012-8.
  • Pardeshi, S. R.; Kole, E. B.; Kapare, H.; Chandankar, S.; Shinde, P.; Boisa, G.; Salgaonkar, S.; Giram, P.; More, M.; Kolimi, P.; et al. Progress on Thin Film Freezing Technology for Dry Powder Inhalation Formulations. Dry. Technol. 2022, 14, 2632. DOI: 10.3390/pharmaceutics14122632.
  • Butreddy, A.; Sarabu, S.; Almutairi, M.; Ajjarapu, S.; Kolimi, P.; Bandari, S.; Repka, M. Hot-Melt Extruded Hydroxypropyl Methylcellulose Acetate Succinate Based Amorphous Solid Dispersions: Impact of Polymeric Combinations on Supersaturation Kinetics and Dissolution Performance. Int. J. Pharm. 2022, 615, 121471. DOI: 10.1016/j.ijpharm.2022.121471.
  • Bhagwat, R. R.; Vaidhya, I. S. Novel Drug Delivery Systems: An Overview. Int. J. Pharm. Sci. Res. 2013, 4, 970–982.
  • Damiati, S.; Kompella, U.; Damiati, S.; Kodzius, R. Microfluidic Devices for Drug Delivery Systems and Drug Screening. Genes (Basel) 2018, 9, 103. DOI: 10.3390/genes9020103.
  • Sanjay, S. T.; Zhou, W.; Dou, M.; Tavakoli, H.; Ma, L.; Xu, F.; Li, X. Recent Advances of Controlled Drug Delivery Using Microfluidic Platforms. Adv. Drug Deliv. Rev. 2018, 128, 3–28. DOI: 10.1016/j.addr.2017.09.013.
  • Su, Y.; Zhang, B.; Sun, R.; Liu, W.; Zhu, Q.; Zhang, X.; Wang, R.; Chen, C. PLGA-Based Biodegradable Microspheres in Drug Delivery: Recent Advances in Research and Application. Drug Deliv. 2021, 28, 1397–1418. DOI: 10.1080/10717544.2021.1938756.
  • Reyes, D. R.; Iossifidis, D.; Auroux, P.-A.; Manz, A. Micro Total Analysis Systems. 1. Introduction, Theory, and Technology. Anal. Chem. 2002, 74, 2623–2636. DOI: 10.1021/ac0202435.
  • Yaralioglu, G. G.; Wygant, I. O.; Marentis, T. C.; Khuri-Yakub, B. T. Ultrasonic Mixing in Microfluidic Channels Using Integrated Transducers. Anal. Chem. 2004, 76, 3694–3698. DOI: 10.1021/ac035220k.
  • Glasgow, I.; Aubry, N. Enhancement of Microfluidic Mixing Using Time Pulsing. Lab Chip 2003, 3, 114–120. DOI: 10.1039/B302569A.
  • Yang, Z.; Matsumoto, S.; Goto, H.; Matsumoto, M.; Maeda, R. Ultrasonic Micromixer for Microfluidic Systems. Sensors Actuators A Phys. 2001, 93, 266–272. DOI: 10.1016/S0924-4247(01)00654-9.
  • Tsai, J.-H.; Lin, L. Active Microfluidic Mixer and Gas Bubble Filter Driven by Thermal Bubble Micropump. Sensors Actuators A Phys. 2002, 97-98, 665–671. DOI: 10.1016/S0924-4247(02)00031-6.
  • Bau, H. H.; Zhong, J.; Yi, M. A Minute Magneto Hydro Dynamic (MHD) Mixer. Sensors Actuators B Chem. 2001, 79, 207–215. DOI: 10.1016/S0925-4005(01)00851-6.
  • Nguyen, N.-T.; Huang, X. Mixing in Microchannels Based on Hydrodynamic Focusing and Time-Interleaved Segmentation: Modelling and Experiment. Lab Chip 2005, 5, 1320–1326. DOI: 10.1039/b507548c.
  • Capretto, L.; Cheng, W.; Hill, M.; Zhang, X. Micromixing within Microfluidic Devices. In Microfluidics, Springer: Berlin, Heidelberg, 2011; pp 27–68. DOI: 10.1007/128_2011_150.
  • Jeong, G. S.; Chung, S.; Kim, C.-B.; Lee, S.-H. Applications of Micromixing Technology. Analyst 2010, 135, 460–473. DOI: 10.1039/b921430e.
  • Soleymani, A.; Kolehmainen, E.; Turunen, I. Numerical and Experimental Investigations of Liquid Mixing in T-Type Micromixers. Chem. Eng. J. 2008, 135, S219–S228. DOI: 10.1016/j.cej.2007.07.048.
  • Tomeh, M. A.; Zhao, X. Recent Advances in Microfluidics for the Preparation of Drug and Gene Delivery Systems. Mol. Pharm. 2020, 17, 4421–4434. DOI: 10.1021/acs.molpharmaceut.0c00913.
  • Anand, A. Micro Reactor Technology Market – Latest Study with Future Growth Analysis. Revenue, Development to 2030, Marketers Media. https://www.streetinsider.com/dr/news.php?id=19587768&gfv=1 (accessed Aug 28, 2022).
  • Galvanin, F.; Cao, E.; Al-Rifai, N.; Gavriilidis, A.; Dua, V. Model-Based Design of Experiments for the Identification of Kinetic Models in Microreactor Platforms. Comput. Aided Chem. Eng. 2015, 37, 323–328. DOI: 10.1016/B978-0-444-63578-5.50049-9.
  • del Pozo, D. F.; Van Daele, T.; Van Hauwermeiren, D.; Gernaey, K. V.; Nopens, I. Quantifying the Importance of Flow Maldistribution in Numbered-up Microreactors. Comput. Aided Chem. Eng. 2016, 38, 1225–1230. DOI: 10.1016/B978-0-444-63428-3.50209-5.
  • Köhler, J. M.; Li, S.; Knauer, A. Why is Micro Segmented Flow Particularly Promising for the Synthesis of Nanomaterials? Chem. Eng. Technol. 2013, 36, 887–899. DOI: 10.1002/ceat.201200695.
  • Roberge, D. M.; Ducry, L.; Bieler, N.; Cretton, P.; Zimmermann, B. Microreactor Technology: A Revolution for the Fine Chemical and Pharmaceutical Industries? Chem. Eng. Technol. 2005, 28, 318–323. DOI: 10.1002/ceat.200407128.
  • Bhangale, A. S.; Beers, K. L.; Gross, R. A. Enzyme-Catalyzed Polymerization of End-Functionalized Polymers in a Microreactor. Macromolecules 2012, 45, 7000–7008. DOI: 10.1021/ma301178k.
  • Shrimal, P.; Jadeja, G.; Patel, S. A Review on Novel Methodologies for Drug Nanoparticle Preparation: Microfluidic Approach. Chem. Eng. Res. Des. 2020, 153, 728–756. DOI: 10.1016/j.cherd.2019.11.031.
  • Šalić, A.; Tušek, A.; Zelić, B. Application of Microreactors in Medicine and Biomedicine. J. Appl. Biomed. 2012, 10, 137–153. DOI: 10.2478/v10136-012-0011-1.
  • Peng, X.; Manna, L.; Yang, W.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Shape Control of CdSe Nanocrystals. Nature 2000, 404, 59–61. DOI: 10.1038/35003535.
  • Jun, Y. W.; Choi, J. S.; Cheon, J. Shape Control of Semiconductor and Metal Oxide Nanocrystals through Nonhydrolytic Colloidal Routes. Angew. Chem. Int. Ed. Engl. 2006, 45, 3414–3439. DOI: 10.1002/anie.200503821.
  • Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and Characterization of Nearly Monodisperse CdE (E = S, Se, Te) Semiconductor Nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715. DOI: 10.1021/ja00072a025.
  • Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. A. Chemistry and Properties of Nanocrystals of Different Shapes. Chem. Rev. 2005, 105, 1025–1102. DOI: 10.1021/cr030063a.
  • Leschkies, K. S.; Divakar, R.; Basu, J.; Enache-Pommer, E.; Boercker, J. E.; Carter, C. B.; Kortshagen, U. R.; Norris, D. J.; Aydil, E. S. Photosensitization of ZnO Nanowires with CdSe Quantum Dots for Photovoltaic Devices. Nano Lett. 2007, 7, 1793–1798. DOI: 10.1021/nl070430o.
  • Aroutiounian, V.; Petrosyan, S.; Khachatryan, A.; Touryan, K. Quantum Dot Solar Cells. J. Appl. Phys. 2001, 89, 2268–2271. DOI: 10.1063/1.1339210.
  • Aharoni, A.; Mokari, T.; Popov, I.; Banin, U. Synthesis of InAs/CdSe/ZnSe Core/Shell1/Shell2 Structures with Bright and Stable near-Infrared Fluorescence. J. Am. Chem. Soc. 2006, 128, 257–264. DOI: 10.1021/ja056326v.
  • Duan, X.; Huang, Y.; Cui, Y.; Wang, J.; Lieber, C. M. Indium Phosphide Nanowires as Building Blocks for Nanoscale Electronic and Optoelectronic Devices. Nature 2001, 409, 66–69. DOI: 10.1038/35051047.
  • McDonald, S. A.; Konstantatos, G.; Zhang, S.; Cyr, P. W.; Klem, E. J. D.; Levina, L.; Sargent, E. H. Solution-Processed PbS Quantum Dot Infrared Photodetectors and Photovoltaics. Nat. Mater. 2005, 4, 138–142. DOI: 10.1038/nmat1299.
  • Sun, Q.; Wang, Y. A.; Li, L. S.; Wang, D.; Zhu, T.; Xu, J.; Yang, C.; Li, Y. Bright, Multicoloured Light-Emitting Diodes Based on Quantum Dots. Nature Photon 2007, 1, 717–722. DOI: 10.1038/nphoton.2007.226.
  • Shen, J.; Sun, L.-D.; Yan, C.-H. Luminescent Rare Earth Nanomaterials for Bioprobe Applications. Dalton Trans 2008, 42, 5687. DOI: 10.1039/b805306e.
  • Yang, L.; Li, Y. Simultaneous Detection of Escherichia Coli O157 : H7 and Salmonella Typhimurium Using Quantum Dots as Fluorescence Labels. Analyst 2006, 131, 394–401. DOI: 10.1039/B510888H.
  • Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T. Quantum Dots versus Organic Dyes as Fluorescent Labels. Nat. Methods 2008, 5, 763–775. DOI: 10.1038/nmeth.1248.
  • Lee, P. L.; Sun, Y. C.; Ling, Y. C. Magnetic Nano-Adsorbent Integrated with Lab-on-Valve System for Trace Analysis of Multiple Heavy Metals. J. Anal. At. Spectrom 2009, 24, 320–327. DOI: 10.1039/b814164a.
  • Schudel, B. R.; Tanyeri, M.; Mukherjee, A.; Schroeder, C. M.; Kenis, P. J. A. Multiplexed Detection of Nucleic Acids in a Combinatorial Screening Chip. Lab Chip 2011, 11, 1916–1923. DOI: 10.1039/c0lc00342e.
  • Park, J.; Joo, J.; Kwon, S. G.; Jang, Y.; Hyeon, T. Synthesis of Monodisperse Spherical Nanocrystals. Angew. Chem. Int. Ed. Engl. 2007, 46, 4630–4660. DOI: 10.1002/anie.200603148.
  • Bian, F.; Sun, L.; Cai, L.; Wang, Y.; Zhao, Y. Quantum Dots from Microfluidics for Nanomedical Application. WIREs Nanomed. Nanobiotechnol. 2019, 11, 11–25. DOI: 10.1002/wnan.1567.
  • Gioria, E.; Signorini, C.; Wisniewski, F.; Gutierrez, L. Green Synthesis of Time-Stable Palladium Nanoparticles Using Microfluidic Devices. J. Environ. Chem. Eng. 2020, 8, 104096. DOI: 10.1016/j.jece.2020.104096.
  • Zeng, Y.; Pan, L.; Wang, J.; Fan, Y.; Shu, Y.; Pang, D.; Zhang, Z. Interfacial Synthesis of Ag 2 S/ZnS Core/Shell Quantum Dots in a Droplet Microreactor. ChemistrySelect 2020, 5, 5889–5894. DOI: 10.1002/slct.202001126.
  • Kudryashova, Y. S.; Zdravkov, A. V.; Ugolkov, V. L.; Abiev, R. S. Preparation of Photocatalizers Based on Titanium Dioxide Synthesized Using a Microreactor with Colliding Jets. Glass Phys. Chem. 2020, 46, 335–340. DOI: 10.1134/S1087659620040082.
  • Proskurina, O. V.; Abiev, R. S.; Danilovich, D. P.; Panchuk, V. V.; Semenov, V. G.; Nevedomsky, V. N.; Gusarov, V. V. Formation of Nanocrystalline BiFeO3 during Heat Treatment of Hydroxides co-Precipitated in an Impinging-Jets Microreactor. Chem. Eng. Process. Process Intensif. 2019, 143, 107598. DOI: 10.1016/j.cep.2019.107598.
  • Bressan, L. P.; Robles-Najar, J.; Adamo, C. B.; Quero, R. F.; Costa, B. M. C.; de Jesus, D. P.; da Silva, J. A. F. 3D-Printed Microfluidic Device for the Synthesis of Silver and Gold Nanoparticles. Microchem. J. 2019, 146, 1083–1089. DOI: 10.1016/j.microc.2019.02.043.
  • Pekkari, A.; Say, Z.; Susarrey-Arce, A.; Langhammer, C.; Härelind, H.; Sebastian, V.; Moth-Poulsen, K. Continuous Microfluidic Synthesis of Pd Nanocubes and PdPt Core–Shell Nanoparticles and Their Catalysis of NO2 Reduction. ACS Appl. Mater. Interfaces 2019, 11, 36196–36204. DOI: 10.1021/acsami.9b09701.
  • Stolzenburg, P.; Lorenz, T.; Dietzel, A.; Garnweitner, G. Microfluidic Synthesis of Metal Oxide Nanoparticles via the Nonaqueous Method. Chem. Eng. Sci. 2018, 191, 500–510. DOI: 10.1016/j.ces.2018.07.007.
  • Guidelli, E. J.; Lignos, I.; Yoo, J. J.; Lusardi, M.; Bawendi, M. G.; Baffa, O.; Jensen, K. F. Mechanistic Insights and Controlled Synthesis of Radioluminescent ZnSe Quantum Dots Using a Microfluidic Reactor. Chem. Mater. 2018, 30, 8562–8570. DOI: 10.1021/acs.chemmater.8b03587.
  • Kwak, C. H.; Park, J. P.; Lee, S. S.; Muruganantham, R.; Kwon, S.; Roh, C.; Kim, S.-W.; Huh, Y. S. Droplet-Based Microfluidic Reactor for Synthesis of Size-Controlled CdSe Quantum Dots. J. Nanosci. Nanotechnol. 2018, 18, 1339–1342. DOI: 10.1166/jnn.2018.14918.
  • Liu, H.; Zhang, H.; Wang, J.; Wei, J.; Zhang, Y. Biological Synthesis of Pt Nanoparticles in a Microfluidic Chip and Modeling of the Formation Process with PBM and CFD. J. Chem. Technol. Biotechnol. 2017, 92, 2171–2177. DOI: 10.1002/jctb.5233.
  • Wang, J.; Zhang, F.; Wang, Y.; Luo, G. The Effect on In2O3 Particle Size in the Microreactor Preparation of in (OH) 3 Nanorods and Nanocubes and the Effect on in 2 O 3 Particle Size in the Microreactor. Ind. Eng. Chem. Res. 2017, 56, 6637–6644. DOI: 10.1021/acs.iecr.7b00362.
  • Kolmykov, O.; Commenge, J.-M.; Alem, H.; Girot, E.; Mozet, K.; Medjahdi, G.; Schneider, R. Microfluidic Reactors for the Size-Controlled Synthesis of ZIF-8 Crystals in Aqueous Phase. Mater. Des. 2017, 122, 31–41. DOI: 10.1016/j.matdes.2017.03.002.
  • Uson, L.; Arruebo, M.; Sebastian, V.; Santamaria, J. Single Phase Microreactor for the Continuous, High-Temperature Synthesis of <4 Nm Superparamagnetic Iron Oxide Nanoparticles. Chem. Eng. J. 2018, 340, 66–72. DOI: 10.1016/j.cej.2017.12.024.
  • Sharada, S.; Suryawanshi, P. L.; Kumar P, R.; Gumfekar, S. P.; Narsaiah, T. B.; Sonawane, S. H. Synthesis of Palladium Nanoparticles Using Continuous Flow Microreactor. Colloids Surfaces A Physicochem. Eng. Asp. 2016, 498, 297–304. DOI: 10.1016/j.colsurfa.2016.03.068.
  • Xu, L.; Srinivasakannan, C.; Peng, J.; Zhang, L.; Zhang, D. Synthesis of Cu-CuO Nanocomposite in Microreactor and Its Application to Photocatalytic Degradation. J. Alloys Compd. 2017, 695, 263–269. DOI: 10.1016/j.jallcom.2016.10.195.
  • Hoang, P. H.; Yoon, K.; Kim, D. RSC Advances Synthesis of Hierarchically Porous Zeolite a Crystals with Uniform Particle Size in a Droplet Microreactor {. RSC Adv 2012, 2, 5323–5328. DOI: 10.1039/c2ra20074k.
  • Abdelhady, A. L.; Afzaal, M.; Malik, M. A.; O'Brien, P. Flow Reactor Synthesis of CdSe, CdS, CdSe/CdS and CdSeS Nanoparticles from Single Molecular Precursor(S). J. Mater. Chem. 2011, 21, 18768. DOI: 10.1039/c1jm13590b.
  • Du, L.; Tan, J.; Wang, K.; Lu, Y.; Luo, G. Controllable Preparation of SiO 2 Nanoparticles Using a Microfiltration Membrane Dispersion Microreactor. Ind. Eng. Chem. Res 2011, 50, 8536–8541. DOI: 10.1021/ie2003363.
  • Abou-Hassan, A.; Bazzi, R.; Cabuil, V. Multistep Continuous-Flow Microsynthesis of Magnetic and Fluorescent g-Fe2 O3@SiO2 Core/Shell Nanoparticles. Angew. Chem. 2009, 121, 7316–7319. DOI: 10.1002/ange.200902181.
  • Wagner, J.; Kohler, J. M. Continuous Synthesis of Gold Nanoparticles in a Microreactor. Nano Lett. 2005, 5, 685–691. DOI: 10.1021/nl050097t.
  • Lin, X. Z.; Terepka, A. D.; Yang, H. Synthesis of Silver Nanoparticles in a Continuous Flow Tubular Microreactor. Nano Lett. 2004, 4, 2227–2232. DOI: 10.1021/nl0485859.
  • Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 1995, 95, 69–96. DOI: 10.1021/cr00033a004.
  • Livage, J.; Henry, M.; Sanchez, C. Sol-Gel Chemistry of Transition Metal Oxides. Prog. Solid State Chem. 1988, 18, 259–341. DOI: 10.1016/0079-6786(88)90005-2.
  • Oskam, G. Metal Oxide Nanoparticles : Synthesis. J. Sol-Gel Sci. Technol. 2006, 37, 161–164. DOI: 10.1007/s10971-005-6621-2.
  • Nakamura, H.; Yamaguchi, Y.; Miyazaki, M.; Maeda, H.; Uehara, M.; Mulvaney, P. Preparation of CdSe Nanocrystals in a Micro-Flow-Reactor. Chem. Commun. 2002, 23, 2844–2845. DOI: 10.1039/b208992k.
  • Mori, K. Photo-Functionalized Materials Using Nanoparticles: Photocatalysis. KONA 2005, 23, 205–214. DOI: 10.14356/kona.2005023.
  • Liong, M.; Lu, J.; Kovochich, M.; Xia, T.; Ruehm, S. G.; Nel, A. E.; Tamanoi, F.; Zink,J. I. Multifunctional Inorganic Nanoparticles for Imaging, Targeting, and Drug Delivery. ACS Nano 2008, 2, 889–896. DOI: 10.1021/nn800072t.
  • Müller-Schulte, D.; Schmitz-Rode, T.; Borm, P. Ultra-Fast Synthesis of Magnetic and Luminescent Silica Beads for Versatile Bioanalytical Applications. J. Magn. Magn. Mater. 2005, 293, 135–143. DOI: 10.1016/j.jmmm.2005.01.088.
  • Yao, X.; Zhang, Y.; Du, L.; Liu, J.; Yao, J. Review of the Applications of Microreactors. Review of the Applications of Microreactors. Renew. Sustain. Energy Rev. 2015, 47, 519–539. DOI: 10.1016/j.rser.2015.03.078.
  • Tsuji, J. The Basic Chemistry of Organopalladium Compounds. In Palladium Reagents and Catalysts. New Perspectives for the 21st Century; John Wiley & Sons: West Sussex, England, 2004. DOI: 10.1002/0470021209.ch1.
  • Chen, A.; Ostrom, C. Palladium-Based Nanomaterials : Synthesis and Electrochemical Applications. Chem. Rev. 2015, 115, 11999–12044. DOI: 10.1021/acs.chemrev.5b00324.
  • Zhang, H. U. I.; Jin, M.; Xiong, Y.; Lim, B.; Xia, Y. Shape-Controlled Synthesis of Pd Nanocrystals and Their Catalytic Applications. Acc. Chem. Res. 2013, 46, 1783–1794. DOI: 10.1021/ar300209w.
  • Song, Y.; Doomes, E. E.; Prindle, J.; Tittsworth, R.; Hormes, J.; Kumar, C. S. S. R. Investigations into Sulfobetaine-Stabilized Cu Nanoparticle Formation: Toward Development of a Microfluidic Synthesis. J. Phys. Chem. B. 2005, 109, 9330–9338. DOI: 10.1021/jp044777g.
  • Roth, C. M.; Sundaram, S. Engineering Synthetic Vectors for Improved DNA Delivery: Insights from Intracellular Pathways. Annu. Rev. Biomed. Eng. 2004, 6, 397–426. DOI: 10.1146/annurev.bioeng.6.040803.140203.
  • Sundar, S.; Kundu, J.; Kundu, S. C. Biopolymeric Nanoparticles. Sci. Technol. Adv. Mater. 2010, 11, 014104. DOI: 10.1088/1468-6996/11/1/014104.
  • Naik, J. B.; Pardeshi, S. R.; Patil, R. P.; Patil, P. B.; Mujumdar, A. Mucoadhesive Micro-/Nano Carriers in Ophthalmic Drug Delivery: An Overview. BioNanoSci 2020, 10, 564–582. DOI: 10.1007/s12668-020-00752-y.
  • Jahn, A.; Reiner, J. E.; Vreeland, W. N.; DeVoe, D. L.; Locascio, L. E.; Gaitan, M. Preparation of Nanoparticles by Continuous-Flow Microfluidics. J. Nanopart Res. 2008, 10, 925–934. DOI: 10.1007/s11051-007-9340-5.
  • deMello, A. J. Control and Detection of Chemical Reactions in Microfluidic Systems. Nature 2006, 442, 394–402. DOI: 10.1038/nature05062.
  • Génot, V.; Desportes, S.; Croushore, C.; Lefèvre, J.-P.; Pansu, R. B.; Delaire, J. A.; von Rohr, P. R. Synthesis of Organic Nanoparticles in a 3D Flow Focusing Microreactor. Chem. Eng. J. 2010, 161, 234–239. DOI: 10.1016/j.cej.2010.04.029.
  • Maged, A.; Abdelbaset, R.; Mahmoud, A. A.; Elkasabgy, N. A. Merits and Advances of Microfluidics in the Pharmaceutical Field: Design Technologies and Future Prospects. Drug Deliv. 2022, 29, 1549–1570. DOI: 10.1080/10717544.2022.2069878.
  • Khan, I. U.; Serra, C. A.; Anton, N.; Vandamme, T. Microfluidics: A Focus on Improved Cancer Targeted Drug Delivery Systems. J. Control Release 2013, 172, 1065–1074. DOI: 10.1016/j.jconrel.2013.07.028.
  • Zhao, C.-X. Multiphase Flow Microfluidics for the Production of Single or Multiple Emulsions for Drug Delivery. Adv. Drug Deliv. Rev. 2013, 65, 1420–1446. DOI: 10.1016/j.addr.2013.05.009.
  • Mir, M.; Ahmed, N.; Ur Rehman, A. Recent Applications of PLGA Based Nanostructures in Drug Delivery. Colloids Surf. B Biointerfaces 2017, 159, 217–231. DOI: 10.1016/j.colsurfb.2017.07.038.
  • Washington, K. E.; Kularatne, R. N.; Karmegam, V.; Biewer, M. C.; Stefan, M. C. Recent Advances in Aliphatic Polyesters for Drug Delivery Applications. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2017, 9, e1446. DOI: 10.1002/wnan.1446.
  • Vargason, A. M.; Anselmo, A. C.; Mitragotri, S. The Evolution of Commercial Drug Delivery Technologies. Nat. Biomed. Eng. 2021, 5, 951–967. DOI: 10.1038/s41551-021-00698-w.
  • Hare, J. I.; Lammers, T.; Ashford, M. B.; Puri, S.; Storm, G.; Barry, S. T. Challenges and Strategies in anti-Cancer Nanomedicine Development: An Industry Perspective. Adv. Drug Deliv. Rev. 2017, 108, 25–38. DOI: 10.1016/j.addr.2016.04.025.
  • Ma, J.; Lee, S. M.-Y.; Yi, C.; Li, C.-W. Controllable Synthesis of Functional Nanoparticles by Microfluidic Platforms for Biomedical Applications – a Review. Lab Chip 2017, 17, 209–226. DOI: 10.1039/C6LC01049K.
  • Rezvantalab, S.; Keshavarz Moraveji, M. Microfluidic Assisted Synthesis of PLGA Drug Delivery Systems. RSC Adv. 2019, 9, 2055–2072. DOI: 10.1039/C8RA08972H.
  • Hasani-Sadrabadi, M. M.; Dashtimoghadam, E.; Bahlakeh, G.; Majedi, F. S.; Keshvari, H.; Van Dersarl, J. J.; Bertsch, A.; Panahifar, A.; Renaud, P.; Tayebi, L.; et al. On-Chip Synthesis of Fine-Tuned Bone-Seeking Hybrid Nanoparticles. Nanomedicine (Lond) 2015, 10, 3431–3449. DOI: 10.2217/nnm.15.162.
  • Arduino, I.; Liu, Z.; Rahikkala, A.; Figueiredo, P.; Correia, A.; Cutrignelli, A.; Denora, N.; Santos, H. A. Preparation of Cetyl Palmitate-Based PEGylated Solid Lipid Nanoparticles by Microfluidic Technique. Acta Biomater. 2021, 121, 566–578. DOI: 10.1016/j.actbio.2020.12.024.
  • Tahir, N.; Madni, A.; Li, W.; Correia, A.; Khan, M. M.; Rahim, M. A.; Santos, H. A. Microfluidic Fabrication and Characterization of Sorafenib-Loaded Lipid-Polymer Hybrid Nanoparticles for Controlled Drug Delivery. Int. J. Pharm. 2020, 581, 119275. DOI: 10.1016/j.ijpharm.2020.119275.
  • Wang, S.; Wannasarit, S.; Figueiredo, P.; Molinaro, G.; Ding, Y.; Correia, A.; Casettari, L.; Wiwattanapatapee, R.; Hirvonen, J.; Liu, D.; et al. Intracellular Delivery of Budesonide and Polydopamine Co‐Loaded in Endosomolytic Poly(Butyl Methacrylate‐ Co ‐Methacrylic Acid) Grafted Acetalated Dextran for Macrophage Phenotype Switch from M1 to M2. Adv. Therap. 2021, 4, 2000058. DOI: 10.1002/adtp.202000058.
  • Kim, S.; Wang, H.; Yan, L.; Zhang, X.; Cheng, Y. Continuous Preparation of Itraconazole Nanoparticles Using Droplet-Based Microreactor. Chem. Eng. J. 2020, 393, 124721. DOI: 10.1016/j.cej.2020.124721.
  • Araki, K.; Yoshizumi, M.; Kimura, S.; Tanaka, A.; Inoue, D.; Furubayashi, T.; Sakane, T.; Enomura, M. Application of a Microreactor to Pharmaceutical Manufacturing: Preparation of Amorphous Curcumin Nanoparticles and Controlling the Crystallinity of Curcumin Nanoparticles by Ultrasonic Treatment. AAPS PharmSciTech. 2019, 21, 17. DOI: 10.1208/s12249-019-1418-8.
  • Patil, J.; Rajput, R.; Patil, P.; Mujumdar, A.; Naik, J. Generation of Sustained Release Chitosan Nanoparticles for Delivery of Ketorolac Tromethamine: A Tubular Microreactor Approach. Int. J. Polym. Mater. Polym. Biomater. 2020, 69, 516–524. DOI: 10.1080/00914037.2019.1581201.
  • Liu, Y.; Li, J.; Chen, H.; Cai, Y.; Sheng, T.; Wang, P.; Li, Z.; Yang, F.; Gu, N. Magnet-Activatable Nanoliposomes as Intracellular Bubble Microreactors to Enhance Drug Delivery Efficacy and Burst Cancer Cells. Nanoscale 2019, 11, 18854–18865. DOI: 10.1039/C9NR07021D.
  • Mahmoodi, Z.; Mohammadnejad, J.; Razavi Bazaz, S.; Abouei Mehrizi, A.; Ghiass, M. A.; Saidijam, M.; Dinarvand, R.; Ebrahimi Warkiani, M.; Soleimani, M. A. Simple Coating Method of PDMS Microchip with PTFE for Synthesis of Dexamethasone-Encapsulated PLGA Nanoparticles. Drug Deliv. Transl. Res. 2019, 9, 707–720. DOI: 10.1007/s13346-019-00636-z.
  • Shrimal, P.; Jadeja, G.; Naik, J.; Patel, S. Continuous Microchannel Precipitation to Enhance the Solubility of Telmisartan with Poloxamer 407 Using Box-Behnken Design Approach. J. Drug Deliv. Sci. Technol. 2019, 53, 101225. DOI: 10.1016/j.jddst.2019.101225.
  • García-Manrique, P.; Gutiérrez, G.; Matos, M.; Cristaldi, A.; Mosayyebi, A.; Carugo, D.; Zhang, X.; Blanco-López, M. C. Continuous Flow Production of Size-Controllable Niosomes Using a Thermostatic Microreactor. Colloids Surf. B. Biointerfaces 2019, 182, 110378. DOI: 10.1016/j.colsurfb.2019.110378.
  • Hamano, N.; Böttger, R.; Lee, S. E.; Yang, Y.; Kulkarni, J. A.; Ip, S.; Cullis, P. R.; Li, S.-D. Robust Microfluidic Technology and New Lipid Composition for Fabrication of Curcumin-Loaded Liposomes: Effect on the Anticancer Activity and Safety of Cisplatin. Mol. Pharm. 2019, 16, 3957–3967. DOI: 10.1021/acs.molpharmaceut.9b00583.
  • Wagh, P.; Mujumdar, A.; Naik, J. B. Preparation and Characterization of Ketorolac Tromethamine-Loaded Ethyl Cellulose Micro-/Nanospheres Using Different Techniques. Part. Sci. Technol. 2019, 37, 347–357. DOI: 10.1080/02726351.2017.1383330.
  • Ding, S.; Serra, C. A.; Anton, N.; Yu, W.; Vandamme, T. F. Production of Dry-State Ketoprofen-Encapsulated PMMA NPs by Coupling Micromixer-Assisted Nanoprecipitation and Spray Drying. Int. J. Pharm. 2019, 558, 1–8. DOI: 10.1016/j.ijpharm.2018.12.031.
  • Leung, M. H. M.; Shen, A. Q. Microfluidic Assisted Nanoprecipitation of PLGA Nanoparticles for Curcumin Delivery to Leukemia Jurkat Cells. Langmuir 2018, 34, 3961–3970. DOI: 10.1021/acs.langmuir.7b04335.
  • Yeo, L.; Olusanya, T.; Chaw, C.; Elkordy, A. Brief Effect of a Small Hydrophobic Drug (Cinnarizine) on the Physicochemical Characterisation of Niosomes Produced by Thin-Film Hydration and Microfluidic Methods. Pharmaceutics 2018, 10, 185. DOI: 10.3390/pharmaceutics10040185.
  • Dobhal, A.; Kulkarni, A.; Dandekar, P.; Jain, R. A Microreactor-Based Continuous Process for Controlled Synthesis of Poly-Methyl-Methacrylate-Methacrylic Acid (PMMA) Nanoparticles. J. Mater. Chem. B. 2017, 5, 3404–3417. DOI: 10.1039/C7TB00560A.
  • Chowdhuri, A. R.; Laha, D.; Chandra, S.; Karmakar, P.; Sahu, S. K. Synthesis of Multifunctional Upconversion NMOFs for Targeted Antitumor Drug Delivery and Imaging in Triple Negative Breast Cancer Cells. Chem. Eng. J. 2017, 319, 200–211. DOI: 10.1016/j.cej.2017.03.008.
  • Bramosanti, M.; Chronopoulou, L.; Grillo, F.; Valletta, A.; Palocci, C. Microfluidic-Assisted Nanoprecipitation of Antiviral-Loaded Polymeric Nanoparticles. Colloids Surfaces A Physicochem. Eng. Asp. 2017, 532, 369–376. DOI: 10.1016/j.colsurfa.2017.04.062.
  • Martins, C.; Araújo, F.; Gomes, M. J.; Fernandes, C.; Nunes, R.; Li, W.; Santos, H. A.; Borges, F.; Sarmento, B. Using Microfluidic Platforms to Develop CNS-Targeted Polymeric Nanoparticles for HIV Therapy. Eur. J. Pharm. Biopharm. 2019, 138, 111–124. DOI: 10.1016/j.ejpb.2018.01.014.
  • Tai, S.; Zhang, W.; Zhang, J.; Luo, G.; Jia, Y.; Deng, M.; Ling, Y. Facile Preparation of UiO-66 Nanoparticles with Tunable Sizes in a Continuous Flow Microreactor and Its Application in Drug Delivery. Microporous. Mesoporous. Mater. 2016, 220, 148–154. DOI: 10.1016/j.micromeso.2015.08.037.
  • Kamat, V.; Marathe, I.; Ghormade, V.; Bodas, D.; Paknikar, K. Synthesis of Monodisperse Chitosan Nanoparticles and in Situ Drug Loading Using Active Microreactor. ACS Appl. Mater. Interfaces 2015, 7, 22839–22847. DOI: 10.1021/acsami.5b05100.
  • Patil, P.; Khairnar, G.; Naik, J. Preparation and Statistical Optimization of Losartan Potassium Loaded Nanoparticles Using Box Behnken Factorial Design: Microreactor Precipitation. Chem. Eng. Res. Des. 2015, 104, 98–109. DOI: 10.1016/j.cherd.2015.07.021.
  • Liu, D.; Zhang, H.; Mäkilä, E.; Fan, J.; Herranz-Blanco, B.; Wang, C.-F.; Rosa, R.; Ribeiro, A. J.; Salonen, J.; Hirvonen, J.; Santos, H. A. Microfluidic Assisted One-Step Fabrication of Porous Silicon@Acetalated Dextran Nanocomposites for Precisely Controlled Combination Chemotherapy. Biomaterials 2015, 39, 249–259. DOI: 10.1016/j.biomaterials.2014.10.079.
  • Kolimi, P.; Narala, S.; Youssef, A.; Nyavanandi, D.; Dudhipala, N. A Systemic Review on Development of Mesoporous Nanoparticles as a Vehicle for Transdermal Drug Delivery. Nanotheranostics 2023, 7, 70–89. DOI: 10.7150/ntno.77395.
  • Adali, M. B.; Barresi, A.; Boccardo, G.; Montalbano, G.; Pisano, R. Ultrasonic Spray Freeze-Drying of Sucrose and Mannitol-Based Formulations: Impact of the Atomization Conditions on the Particle Morphology and Drying Performance. Dry. Technol. 2022, 1, 1–11. DOI: 10.1080/07373937.2021.2024844.
  • Deshmukh, R. K.; Naik, J. B. The Impact of Preparation Parameters on Sustained Release Aceclofenac Microspheres: A Design of Experiments. Adv. Powder Technol. 2015, 26, 244–252. DOI: 10.1016/j.apt.2014.10.004.
  • Khairnar, G.; Mokale, V.; Naik, J. Formulation and Development of Nateglinide Loaded Sustained Release Ethyl Cellulose Microspheres by O/W Solvent Emulsification Technique. J. Pharm. Investig. 2014, 44, 411–422. DOI: 10.1007/s40005-014-0118-3.
  • Sosnik, A.; Seremeta, K. P. Advantages and Challenges of the Spray-Drying Technology for the Production of Pure Drug Particles and Drug-Loaded Polymeric Carriers. Adv. Colloid Interface Sci. 2015, 223, 40–54. DOI: 10.1016/j.cis.2015.05.003.
  • Mawilai, P.; Chaloeichitratham, N.; Pornchaloempong, P. Processing Feasibility and Qualities of Freeze Dried Mango Powder for SME Scale. IOP Conf. Ser.: Earth Environ. Sci. 2019, 301, 012059. DOI: 10.1088/1755-1315/301/1/012059.
  • Deshmukh, R. K.; Naik, J. B. Optimization of Sustained Release Aceclofenac Microspheres Using Response Surface Methodology. Mater. Sci. Eng. C. Mater. Biol. Appl. 2015, 48, 197–204. DOI: 10.1016/j.msec.2014.12.008.
  • Strojewski, D.; Krupa, A. Spray Drying and Nano Spray Drying as Manufacturing Methods of Drug-Loaded Polymeric Particles. Polym. Med. 2022, 52, 52–60. DOI: 10.17219/pim/152230.
  • Mujumdar, A. S.; Huang, L.-X.; Dong Chen, X. An Overview of the Recent Advances in Spray-Drying. Dairy Sci. Technol. 2010, 90, 211–224. DOI: 10.1051/dst/2010015.
  • Deshmukh, R.; Wagh, P.; Naik, J. Solvent Evaporation and Spray Drying Technique for Micro- and Nanospheres/Particles Preparation: A Review. Dry. Technol. 2016, 34, 1758–1772. DOI: 10.1080/07373937.2016.1232271.
  • Nandiyanto, A. B. D.; Okuyama, K. Progress in Developing Spray-Drying Methods for the Production of Controlled Morphology Particles: From the Nanometer to Submicrometer Size Ranges. Adv. Powder Technol. 2011, 22, 1–19. DOI: 10.1016/j.apt.2010.09.011.
  • Cal, K.; Sollohub, K. Spray Drying Technique. I: Hardware and Process Parameters. J. Pharm. Sci. 2010, 99, 575–586. DOI: 10.1002/jps.21886.
  • Schmid, K.; Arpagaus, C.; Friess, W. Evaluation of the Nano Spray Dryer B-90 for Pharmaceutical Applications. Pharm. Dev. Technol. 2011, 16, 287–294. DOI: 10.3109/10837450.2010.485320.
  • Bayés-García, L.; Ventolà, L.; Cordobilla, R.; Benages, R.; Calvet, T.; Cuevas-Diarte, M. A. Phase Change Materials (PCM) Microcapsules with Different Shell Compositions: Preparation, Characterization and Thermal Stability. Sol. Energy Mater. Sol. Cells 2010, 94, 1235–1240. DOI: 10.1016/j.solmat.2010.03.014.
  • Pardeshi, S.; More, M.; Patil, P.; Pardeshi, C.; Deshmukh, P.; Mujumdar, A.; Naik, J. A Meticulous Overview on Drying-Based (Spray-, Freeze-, and Spray-Freeze). Particle Engineering Approaches for Pharmaceutical Technologies. Dry. Technol. 2021, 39, 1–45. DOI: 10.1080/07373937.2021.1893330.
  • Ige, P.; Pardeshi, S.; Sonawane, R. Development of PH-Dependent Nanospheres for Nebulisation- In Vitro Diffusion, Aerodynamic and Cytotoxicity Studies. Drug Res (Stuttg) 2018, 68, 680–686. DOI: 10.1055/a-0595-7678.
  • Kwon, J., Giri, B. R., Song, E. S., Bae, J., Lee J., Kim, D. W. Spray-Dried Amorphous Solid Dispersions of Atorvastatin Calcium for Improved Supersaturation and Oral Bioavailability. Pharmaceutics 2019, 11, 461. DOI: 10.3390/pharmaceutics11090461.
  • Heyder, J.; Gebhart, J.; Rudolf, G.; Schiller, C. F.; Stahlhofen, W. Deposition of Particles in the Human Respiratory Tract in the Size Range 0.005–15 Μm. J. Aerosol Sci. 1986, 17, 811–825. DOI: 10.1016/0021-8502(86)90035-2.
  • Kwon, Y.-B.; Kang, J.-H.; Han, C.-S.; Kim, D.-W.; Park, C.-W. The Effect of Particle Size and Surface Roughness of Spray-Dried Bosentan Microparticles on Aerodynamic Performance for Dry Powder Inhalation. Pharmaceutics 2020, 12, 765. DOI: 10.3390/pharmaceutics12080765.
  • Pardeshi, S.; Patil, P.; Rajput, R.; Mujumdar, A.; Naik, J. Preparation and Characterization of Sustained Release Pirfenidone Loaded Microparticles for Pulmonary Drug Delivery: Spray Drying Approach. Dry. Technol. 2021, 39, 337–347. DOI: 10.1080/07373937.2020.1833213.
  • Browne, E.; Charifou, R.; Worku, Z. A.; Babu, R. P.; Healy, A. M. Amorphous Solid Dispersions of Ketoprofen and Poly-Vinyl Polymers Prepared via Electrospraying and Spray Drying: A Comparison of Particle Characteristics and Performance. Int. J. Pharm. 2019, 566, 173–184. DOI: 10.1016/j.ijpharm.2019.05.062.
  • Khairnar, G.; Mokale, V.; Khairnar, R.; Mujumdar, A.; Naik, J. Production of Antihyerglycemic and Antihypertensive Drug Loaded Sustained Release Nanoparticles Using Spray Drying Technique: Optimization by Placket Burman Design. Dry. Technol. 2020, 40, 1–12. DOI: 10.1080/07373937.2020.1825292.
  • Waghulde, M.; Naik, J. Comparative Study of Encapsulated Vildagliptin Microparticles Produced by Spray Drying and Solvent Evaporation Technique. Dry. Technol. 2017, 35, 1644–1654. DOI: 10.1080/07373937.2016.1273230.
  • Paredes, A. J.; Camacho, N. M.; Schofs, L.; Dib, A.; Zarazaga, M.; del, P.; Litterio, N.; Allemandi, D. A.; Sánchez Bruni, S.; Lanusse, C.; Palma, S. D. Ricobendazole Nanocrystals Obtained by Media Milling and Spray Drying: Pharmacokinetic Comparison with the Micronized Form of the Drug. Int. J. Pharm. 2020, 585, 119501. DOI: 10.1016/j.ijpharm.2020.119501.
  • Benke, E.; Farkas, Á.; Szabó-Révész, P.; Ambrus, R. Development of an Innovative, Carrier-Based Dry Powder Inhalation Formulation Containing Spray-Dried Meloxicam Potassium to Improve the in Vitro and in Silico Aerodynamic Properties. Pharmaceutics 2020, 12, 535. DOI: 10.3390/pharmaceutics12060535.
  • Ma, Y.; Gao, J.; Jia, W.; Liu, Y.; Zhang, L.; Yang, Q.; Guo, J.; Zhao, J.; Yan, B.; Wang, Y. A Comparison of Spray-Drying and Freeze-Drying for the Production of Stable Silybin Nanosuspensions. J. Nanosci. Nanotechnol. 2020, 20, 3598–3603. DOI: 10.1166/jnn.2020.17407.
  • Melian, M. E.; Paredes, A.; Munguía, B.; Colobbio, M.; Ramos, J. C.; Teixeira, R.; Manta, E.; Palma, S.; Faccio, R.; Domínguez, L. Nanocrystals of Novel Valerolactam-Fenbendazole Hybrid with Improved in Vitro Dissolution Performance. AAPS PharmSciTech 2020, 21, 237. DOI: 10.1208/s12249-020-01777-y.
  • Jadhav, S.; Kaur, A.; Bansal, A. K. Comparison of Downstream Processing of Nanocrystalline Solid Dispersion and Nanosuspension of Diclofenac Acid to Develop Solid Oral Dosage Form. Pharmaceutics 2020, 12, 1015. DOI: 10.3390/pharmaceutics12111015.
  • McComiskey, K. P. M.; McDonagh, A.; Tajber, L. Isolation of Itraconazole Nanostructured Microparticles via Spray Drying with Rational Selection of Optimum Base for Successful Reconstitution and Compaction. AAPS PharmSciTech 2019, 20, 217. DOI: 10.1208/s12249-019-1436-6.
  • Rao, Q.; Qiu, Z.; Huang, D.; Lu, T.; Zhang, Z. J.; Luo, D.; Pan, P.; Zhang, L.; Liu, Y.; Guan, S.; Li, Q. Enhancement of the Apparent Solubility and Bioavailability of Tadalafil Nanoparticles via Antisolvent Precipitation. Eur. J. Pharm. Sci. 2019, 128, 222–231. DOI: 10.1016/j.ejps.2018.12.005.
  • Kocer, Z.; Aru, B.; Sezer, U. A.; Demirel, G. Y.; Beker, U.; Sezer, S. Process Optimisation, Biocompatibility and anti-Cancer Efficacy of Curcumin Loaded Gelatine Microparticles Cross-Linked with Dialdeyhde Carboxymethyl Cellulose. J. Microencapsul. 2019, 36, 485–499. DOI: 10.1080/02652048.2019.1646337.
  • Paredes, A. J.; Bruni, S. S.; Allemandi, D.; Lanusse, C.; Palma, S. D. Albendazole Nanocrystals with Improved Pharmacokinetic Performance in Mice. Ther. Deliv. 2018, 9, 89–97. DOI: 10.4155/tde-2017-0090.
  • Chang, J.; Zhong, Y.; Hu, C.; Luo, J.; Wang, P. Hollow Microspheres of BiOCl Assembled with Nanosheets: Spray Drying Synthesis and Drastically Enhanced Photocatalytic Activity. J. Environ. Chem. Eng. 2018, 6, 6971–6978. DOI: 10.1016/j.jece.2018.10.066.
  • Herrero-Vanrell, R. Drug Product Development for the Back of the Eye. In Drug Product Development for the Back of the Eye; Kompella, U., Edelhauser, H., Eds.; Springer: Boston, MA, 2015; Vol. 2, pp 231–259. DOI: 10.1007/978-1-4419-9920-7_10.
  • Silva, M. C.; Silva, A. S.; Fernandez-Lodeiro, J.; Casimiro, T.; Lodeiro, C.; Aguiar-Ricardo, A. Supercritical CO2-Assisted Spray Drying of Strawberry-Like Gold-Coated Magnetite Nanocomposites in Chitosan Powders for Inhalation. Mater. (Basel, Switzerland) 2017, 10, 74. DOI: 10.3390/ma10010074.
  • Verma, U.; Naik, J. B.; Patil, J. S.; Yadava, S. K. Screening of Process Variables to Enhance the Solubility of Famotidine with 2-HydroxyPropyl–β-Cyclodextrin & PVP K-30 by Using Plackett–Burman Design Approach. Mater. Sci. Eng. C. Mater. Biol. Appl. 2017, 77, 282–292. DOI: 10.1016/j.msec.2017.03.238.
  • Toziopoulou, F.; Malamatari, M.; Nikolakakis, I.; Kachrimanis, K. Production of Aprepitant Nanocrystals by Wet Media Milling and Subsequent Solidification. Int. J. Pharm. 2017, 533, 324–334. DOI: 10.1016/j.ijpharm.2017.02.065.
  • Chavan, R. B.; Rathi, S.; Jyothi, V. G. S. S.; Shastri, N. R. Cellulose Based Polymers in Development of Amorphous Solid Dispersions. Asian J. Pharm. Sci. 2019, 14, 248–264. DOI: 10.1016/j.ajps.2018.09.003.
  • Naik, J.; Rajput, R.; Singh, M. K. Development and Evaluation of Ibuprofen Loaded Hydrophilic Biocompatible Polymeric Nanoparticles for the Taste Masking and Solubility Enhancement. BioNanoSci 2021, 11, 21–31. DOI: 10.1007/s12668-020-00798-y.
  • Verma, U.; Mujumdar, A.; Naik, J. Preparation of Efavirenz Resinate by Spray Drying Using Response Surface Methodology and Its Physicochemical Characterization for Taste Masking. Dry. Technol. 2020, 38, 793–805. DOI: 10.1080/07373937.2019.1590845.
  • Waghulde, M.; Rajput, R.; Mujumdar, A.; Naik, J. Production and Evaluation of Vildagliptin-Loaded Poly (dl -Lactide) and Poly (dl -Lactide-Glycolide). Micro-/Nanoparticles: Response Surface Methodology Approach. Dry. Technol. 2019, 37, 1265–1276. DOI: 10.1080/07373937.2018.1495231.
  • Deshmukh, R.; Mujumdar, A.; Naik, J. Production of Aceclofenac-Loaded Sustained Release Micro/Nanoparticles Using Pressure Homogenization and Spray Drying. Dry. Technol. 2018, 36, 459–467. DOI: 10.1080/07373937.2017.1341418.
  • Deshmukh, R. K.; Naik, J. B. Optimization of Spray-Dried Diclofenac Sodium-Loaded Microspheres by Screening Design. Dry. Technol. 2016, 34, 1593–1603. DOI: 10.1080/07373937.2016.1138121.
  • Mokale, V.; Rajput, R.; Patil, J.; Yadava, S.; Naik, J. Formulation of Metformin Hydrochloride Nanoparticles by Using Spray Drying Technique and in Vitro Evaluation of Sustained Release with 32-Level Factorial Design Approach. Dry. Technol. 2016, 34, 1455–1461. DOI: 10.1080/07373937.2015.1125916.
  • Wagh, P. S.; Naik, J. B. Development of Mefenamic Acid–Loaded Polymeric Microparticles Using Solvent Evaporation and Spray-Drying Technique. Dry. Technol. 2016, 34, 608–617. DOI: 10.1080/07373937.2015.1064947.
  • Mohammady, M.; Mohammadi, Y.; Yousefi, G. Freeze-Drying of Pharmaceutical and Nutraceutical Nanoparticles: The Effects of Formulation and Technique Parameters on Nanoparticles Characteristics. J. Pharm. Sci. 2020, 109, 3235–3247. DOI: 10.1016/j.xphs.2020.07.015.
  • Renteria Gamiz, A. G.; Dewulf, J.; De Soete, W.; Heirman, B.; Dahlin, P.; Jurisch, C.; Krebser, U.; De Meester, S. Freeze Drying in the Biopharmaceutical Industry: An Environmental Sustainability Assessment. Food Bioprod. Process 2019, 117, 213–223. DOI: 10.1016/j.fbp.2019.06.010.
  • Assegehegn, G.; Brito-de la Fuente, E.; Franco, J. M.; Gallegos, C. The Importance of Understanding the Freezing Step and Its Impact on Freeze-Drying Process Performance. J. Pharm. Sci. 2019, 108, 1378–1395. DOI: 10.1016/j.xphs.2018.11.039.
  • Bjelošević, M.; Zvonar Pobirk, A.; Planinšek, O.; Ahlin Grabnar, P. Excipients in Freeze-Dried Biopharmaceuticals: Contributions toward Formulation Stability and Lyophilisation Cycle Optimisation. Int. J. Pharm. 2020, 576, 119029. DOI: 10.1016/j.ijpharm.2020.119029.
  • Kasper, J. C.; Winter, G.; Friess, W. Recent Advances and Further Challenges in Lyophilization. Eur. J. Pharm. Biopharm. 2013, 85, 162–169. DOI: 10.1016/j.ejpb.2013.05.019.
  • Siow, C. R. S.; Wan Sia Heng, P.; Chan, L. W. Application of Freeze-Drying in the Development of Oral Drug Delivery Systems. Expert Opin. Drug Deliv. 2016, 13, 1595–1608. DOI: 10.1080/17425247.2016.1198767.
  • Searles, J. A.; Carpenter, J. F.; Randolph, T. W. The Ice Nucleation Temperature Determines the Primary Drying Rate of Lyophilization for Samples Frozen on a Temperature‐Controlled Shelf. J. Pharm. Sci. 2001, 90, 860–871. DOI: 10.1002/jps.1039.
  • Elgindy, N.; Elkhodairy, K.; Molokhia, A.; Elzoghby, A. Lyophilization Monophase Solution Technique for Preparation of Amorphous Flutamide Dispersions. Drug Dev. Ind. Pharm. 2011, 37, 754–764. DOI: 10.3109/03639045.2010.539232.
  • Kasper, J. C.; Friess, W. The Freezing Step in Lyophilization: Physico-Chemical Fundamentals, Freezing Methods and Consequences on Process Performance and Quality Attributes of Biopharmaceuticals. Eur. J. Pharm. Biopharm. 2011, 78, 248–263. DOI: 10.1016/j.ejpb.2011.03.010.
  • Williams, N. A.; Polli, G. P. The Lyophilization of Pharmaceuticals: A Literature Review. J. Parenter Sci. Technol. 1984, 38, 48–59.
  • Patil, V. V.; Dandekar, P. P.; Patravale, V. B.; Thorat, B. N. Freeze Drying: Potential for Powdered Nanoparticulate Product. Dry. Technol. 2010, 28, 624–635. DOI: 10.1080/07373931003788692.
  • Al-Taani, B.; Khanfar, M. A. I.; Alsuod, O. A. Enhancement of the Release of Curcumin by the Freeze Drying Technique Using Inulin and Neusilin as Carriers. Int. J. Appl. Pharm. 2018, 10, 42–48. DOI: 10.22159/ijap.2018v10i3.24429.
  • Ahmed, T. A.; Elimam, H.; Alrifai, A. O.; Nadhrah, H. M.; Masoudi, L. Y.; Sairafi, W. O.; El-Say, K. M. Rosuvastatin Lyophilized Tablets Loaded with Flexible Chitosomes for Improved Drug Bioavailability, anti-Hyperlipidemic and anti-Oxidant Activity. Int. J. Pharm. 2020, 588, 119791. DOI: 10.1016/j.ijpharm.2020.119791.
  • Routray, S. B.; Patra, C. N.; Raju, R.; Panigrahi, K. C.; Jena, G. K. Lyophilized SLN of Cinnacalcet HCl: BBD Enabled Optimization, Characterization and Pharmacokinetic Study. Drug Dev. Ind. Pharm. 2020, 46, 1080–1091. DOI: 10.1080/03639045.2020.1775632.
  • Lopez-Polo, J.; Silva-Weiss, A.; Giménez, B.; Cantero-López, P.; Vega, R.; Osorio, F. A. Effect of Lyophilization on the Physicochemical and Rheological Properties of Food Grade Liposomes That Encapsulate Rutin. Food Res. Int. 2020, 130, 108967. DOI: 10.1016/j.foodres.2019.108967.
  • Merckx, P.; Lammens, J.; Nuytten, G.; Bogaert, B.; Guagliardo, R.; Maes, T.; Vervaet, C.; De Beer, T.; De Smedt, S. C.; Raemdonck, K. Lyophilization and Nebulization of Pulmonary Surfactant-Coated Nanogels for SiRNA Inhalation Therapy. Eur. J. Pharm. Biopharm. 2020, 157, 191–199. DOI: 10.1016/j.ejpb.2020.09.011.
  • Priyal, P.; Shailesh, K.; Falgun, M.; Ashok, M.; Jayvadan, P. P. Process Optimization and Cytotoxicity Evaluation of Lyophilized Etoposide Loaded Nanoparticles. Int. J. Pharma. Bio. Sci. 2020, 10, 46–56. DOI: 10.22376/ijpbs/lpr.2020.10.1.P46-56.
  • Hosny, K. M.; Alhakamy, N. A.; Almodhwahi, M. A.; Kurakula, M.; Almehmady, A. M.; Elgebaly, S. S. Self-Nanoemulsifying System Loaded with Sildenafil Citrate and Incorporated within Oral Lyophilized Flash Tablets: Preparation, Optimization, and in Vivo Evaluation. Pharmaceutics 2020, 12, 1124. DOI: 10.3390/pharmaceutics12111124.
  • Amis, T. M.; Renukuntla, J.; Bolla, P. K.; Clark, B. A. Selection of Cryoprotectant in Lyophilization of Progesterone-Loaded Stearic Acid Solid Lipid Nanoparticles. Pharmaceutics 2020, 12, 892. DOI: 10.3390/pharmaceutics12090892.
  • Ibrahim, A. H.; Rosqvist, E.; Smått, J.-H.; Ibrahim, H. M.; Ismael, H. R.; Afouna, M. I.; Samy, A. M.; Rosenholm, J. M. Formulation and Optimization of Lyophilized Nanosuspension Tablets to Improve the Physicochemical Properties and Provide Immediate Release of Silymarin. Int. J. Pharm. 2019, 563, 217–227. DOI: 10.1016/j.ijpharm.2019.03.064.
  • Khan, A. A.; Abdulbaqi, I. M.; Abou Assi, R.; Murugaiyah, V.; Darwis, Y. Lyophilized Hybrid Nanostructured Lipid Carriers to Enhance the Cellular Uptake of Verapamil: Statistical Optimization and in Vitro Evaluation. Nanoscale Res. Lett. 2018, 13, 323. DOI: 10.1186/s11671-018-2744-6.
  • Li, N.; Wang, N.; Wu, T.; Qiu, C.; Wang, X.; Jiang, S.; Zhang, Z.; Liu, T.; Wei, C.; Wang, T. Preparation of Curcumin-Hydroxypropyl-β-Cyclodextrin Inclusion Complex by Cosolvency-Lyophilization Procedure to Enhance Oral Bioavailability of the Drug. Drug Dev. Ind. Pharm. 2018, 44, 1966–1974. DOI: 10.1080/03639045.2018.1505904.
  • Gol, D.; Thakkar, S.; Misra, M. Nanocrystal-Based Drug Delivery System of Risperidone: Lyophilization and Characterization. Drug Dev. Ind. Pharm. 2018, 44, 1458–1466. DOI: 10.1080/03639045.2018.1460377.
  • Iurian, S.; Bogdan, C.; Tomuță, I.; Szabó-Révész, P.; Chvatal, A.; Leucuța, S. E.; Moldovan, M.; Ambrus, R. Development of Oral Lyophilisates Containing Meloxicam Nanocrystals Using QbD Approach. Eur. J. Pharm. Sci. 2017, 104, 356–365. DOI: 10.1016/j.ejps.2017.04.011.
  • Soma, D.; Attari, Z.; Reddy, M. S.; Damodaram, A.; Koteshwara, K. B. G. Solid Lipid Nanoparticles of Irbesartan: Preparation, Characterization, Optimization and Pharmacokinetic Studies. Braz. J. Pharm. Sci. 2017, 53, 53–64. DOI: 10.1590/s2175-97902017000115012.
  • Saralkar, P.; Dash, A. K. Alginate Nanoparticles Containing Curcumin and Resveratrol: Preparation, Characterization, and in Vitro Evaluation against DU145 Prostate Cancer Cell Line. AAPS PharmSciTech 2017, 18, 2814–2823. DOI: 10.1208/s12249-017-0772-7.
  • Watts, P.; Wiles, C. Recent Advances in Synthetic Micro Reaction Technology. Chem. Commun. 2007, 5, 443–467. DOI: 10.1039/B609428G.
  • Han, C.; Hu, Y.; Wang, K.; Luo, G. Synthesis of Mesoporous Silica Microspheres by a Spray-Assisted Carbonation Microreaction Method. Particuology 2020, 50, 173–180. DOI: 10.1016/j.partic.2019.06.003.
  • Novo, O.; Balcells, M.; Canela-Garayoa, R.; Eras, J. Combining a Flow Reactor with Spray Dryer to Allow the Preparation of Food-Grade Quality Sodium 2-Polyhydroxyalkyl-1,3-Thiazolidine-4-Carboxylates with a Low Environmental Impact. RSC Adv. 2016, 6, 6651–6657. DOI: 10.1039/C5RA19880A.
  • Thiele, J.; Windbergs, M.; Abate, A. R.; Trebbin, M.; Shum, H. C.; Förster, S.; Weitz, D. A. Early Development Drug Formulation on a Chip: Fabrication of Nanoparticles Using a Microfluidic Spray Dryer. Lab Chip 2011, 11, 2362–2368. DOI: 10.1039/c1lc20298g.
  • Zelenková, T.; Onnainty, R.; Granero, G. E.; Barresi, A. A.; Fissore, D. Use of Microreactors and Freeze-Drying in the Manufacturing Process of Chitosan Coated PCL Nanoparticles. Eur. J. Pharm. Sci. 2018, 119, 135–146. DOI: 10.1016/j.ejps.2018.04.006.
  • Zhang, X.; Chen, H.; Qian, F.; Cheng, Y. Preparation of Itraconazole Nanoparticles by anti-Solvent Precipitation Method Using a Cascaded Microfluidic Device and an Ultrasonic Spray Drier. Chem. Eng. J. 2018, 334, 2264–2272. DOI: 10.1016/j.cej.2017.12.002.
  • Google Patents-Microfluidic drying; https://patents.google.com/?q=microfluidic+drying&oq=+microfluidic+drying (accessed Aug 28, 2022).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.