Publication Cover
Drying Technology
An International Journal
Volume 41, 2023 - Issue 10
763
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Development of a novel non-water infrared refractance window drying method for Malabar spinach: Optimization of process parameters using drying kinetics, mass transfer, and powder characterization

, & ORCID Icon
Pages 1620-1635 | Received 12 Sep 2022, Accepted 09 Jan 2023, Published online: 08 Feb 2023

References

  • Sarkar, T.; Salauddin, M.; Roy, S.; Chakraborty, R.; Rebezov, M.; Shariati, M. A.; Thiruvengadam, M.; Rengasamy, K. R. R. Underutilized Green Leafy Vegetables: Frontier in Fortified Food Development and Nutrition. Crit. Rev. Food Sci. Nutr. 2022, 1–55. DOI: 10.1080/10408398.2022.2095555.
  • Karwacka, M.; Ciurzyńska, A.; Galus, S.; Janowicz, M. Freeze-Dried Snacks Obtained from Frozen Vegetable by-Products and Apple Pomace – Selected Properties, Energy Consumption and Carbon Footprint. Innov. Food Sci. Emerg. Technol. 2022, 77, 102949. DOI: 10.1016/j.ifset.2022.102949.
  • Rajkumar, G.; Rajan, M.; Araujo, H. C.; Jesus, M. S.; Leite Neta, M. T. S.; Sandes, R. D. D.; Narain, N. Comparative Evaluation of Volatile Profile of Tomato Subjected to Hot Air, Freeze, and Spray Drying. Dry. Technol. 2021, 39, 383–391. DOI: 10.1080/07373937.2020.1842441.
  • Singh, A.; Dubey, P. K.; Chaurasiya, R.; Mathur, N.; Kumar, G.; Bharati, S.; Abhilash, P. C. Indian Spinach: An Underutilized Perennial Leafy Vegetable for Nutritional Security in Developing World. Energ. Ecol. Environ. 2018, 3, 195–205. DOI: 10.1007/s40974-018-0091-1.
  • Putriani, N.; Perdana, J.; Nugrahedi, P. Y. Effect of Thermal Processing on Key Phytochemical Compounds in Green Leafy Vegetables: A Review. Food Rev. Int. 2020, 38, 783–811. DOI: 10.1080/87559129.2020.1745826.
  • Shivanna, V. B.; Subban, N. Effect of Various Drying Methods on Flavor Characteristics and Physicochemical Properties of Dried Curry Leaves (Murraya koenigii L. spreng). Dry. Technol. 2014, 32, 882–890. DOI: 10.1080/07373937.2013.871727.
  • Yamakage, K.; Yamada, T.; Takahashi, K.; Takaki, K.; Komuro, M.; Sasaki, K.; Aoki, H.; Kamagata, J.; Koide, S.; Orikasa, T. Impact of Pre-Treatment with Pulsed Electric Field on Drying Rate and Changes in Spinach Quality during Hot Air Drying. Innov. Food Sci. Emerg. Technol. 2021, 68, 102615. DOI: 10.1016/j.ifset.2021.102615.
  • Asiimwe, A.; Kigozi, J. B.; Baidhe, E.; Muyonga, J. H. Optimization of Refractance Window Drying Conditions for Passion Fruit Puree. LWT 2022, 154, 112742. DOI: 10.1016/j.lwt.2021.112742.
  • Hernández-Santos, B.; Martínez-Sánchez, C. E.; Torruco-Uco, J. G.; Rodríguez-Miranda, J.; Ruiz-López, I. I.; Vajando-Anaya, E. S.; Carmona-García, R.; Herman-Lara, E. Evaluation of Physical and Chemical Properties of Carrots Dried by Refractance Window Drying. Dry. Technol. 2016, 34, 1414–1422. DOI: 10.1080/07373937.2015.1118705.
  • Santos, S. d J. L.; Canto, H. K. F.; da Silva, L. H. M.; Rodrigues, A. M. d C. Characterization and Properties of Purple Yam (Dioscorea trifida) Powder Obtained by Refractance Window Drying. Dry. Technol. 2022, 40, 1103–1113. DOI: 10.1080/07373937.2020.1847140.
  • Castoldi, M.; Zotarelli, M. F.; Durigon, A.; Carciofi, B. A. M.; Laurindo, J. B. Production of Tomato Powder by Refractance Window Drying. Dry. Technol. 2015, 33, 1463–1473. DOI: 10.1080/07373937.2014.989327.
  • Vargas, L.; Kapoor, R.; Nemzer, B.; Feng, H. Application of Different Drying Methods for Evaluation of Phytochemical Content and Physical Properties of Broccoli, Kale, and Spinach. LWT 2022, 155, 112892. DOI: 10.1016/j.lwt.2021.112892.
  • Deepika, S.; Sutar, P. P. Combining Osmotic–Steam Blanching with Infrared–Microwave–Hot Air Drying: Production of Dried Lemon (Citrus limon L.) Slices and Enzyme Inactivation. Dry. Technol. 2018, 36, 1719–1737. DOI: 10.1080/07373937.2017.1422744.
  • Rajoriya, D.; Shewale, S. R.; Bhavya, M. L.; Hebbar, H. U. Far Infrared Assisted Refractance Window Drying of Apple Slices: Comparative Study on Flavour, Nutrient Retention and Drying Characteristics. Innov. Food Sci. Emerg. Technol. 2020, 66, 102530. DOI: 10.1016/j.ifset.2020.102530.
  • Tontul, I.; Eroğlu, E.; Topuz, A. Convective and Refractance Window Drying of Cornelian Cherry Pulp: Effect on Physicochemical Properties. J. Food Process. Eng. 2018, 41, e12917–8. DOI: 10.1111/jfpe.12917.
  • Puente, L.; Vega-Gálvez, A.; Ah-Hen, K. S.; Rodríguez, A.; Pasten, A.; Poblete, J.; Pardo-Orellana, C.; Muñoz, M. Refractance Window Drying of Goldenberry (Physalis peruviana L.) Pulp: A Comparison of Quality Characteristics with Respect to Other Drying Techniques. LWT 2020, 131, 109772. DOI: 10.1016/j.lwt.2020.109772.
  • Shende, D.; Datta, A. K. Refractance Window Drying of Fruits and Vegetables: A Review. J. Sci. Food Agric. 2019, 99, 1449–1456. DOI: 10.1002/jsfa.9356.
  • Abul-Fadl, M. M.; Ghanem, T. H. Effect of Refractance-Window (RW) Drying Method on Quality Criteria of Produced Tomato Powder as Compared to the Convection Drying Method. World Appl. Sci. J. 2011, 15, 953–965.
  • Tran, D. Q. Effects of Drying Methods on Color Retention and Chlorophyll of Celery (Apium graveolens L.), Spinach (Spinacia oleracea L.), Malabar Spinach (Basella alba L.). J. Agric. Dev. 2021, 19, 53–61. DOI: 10.52997/jad.6.06.2020.
  • Sahin, F. H.; Acİkgoz, F. E.; Eremkere, M.; Aktas, T. Physical and Mechanical Properties and Influence of Drying Techniques on Drying Characteristics and Some Quality Parameters of Malabar Spinach (Basella alba L.). Fresenius Environ. Bull. 2019, 28, 4340–4352.
  • Association of Official Agricultural Chemists. Official Methods of Analysis. AOAC: Washington, DC, 1990
  • Wang, H.; Meng, J. S.; Raghavan, G. S. V.; Orsat, V.; Yu, X. L.; Liu, Z. L.; Zheng, Z. A.; Wang, S. Y.; Xiao, H. W. Vacuum-Steam Pulsed Blanching (VSPB) Enhances Drying Quality, Shortens the Drying Time of Gingers by Inactivating Enzymes, Altering Texture, Microstructure and Ultrastructure. LWT 2022, 154, 112714. DOI: 10.1016/j.lwt.2021.112714.
  • Wang, H.; Fang, X. M.; Sutar, P. P.; Meng, J. S.; Wang, J.; Yu, X. L.; Xiao, H. W. Effects of Vacuum-Steam Pulsed Blanching on Drying Kinetics, Colour, Phytochemical Contents, Antioxidant Capacity of Carrot and the Mechanism of Carrot Quality Changes Revealed by Texture, Microstructure and Ultrastructure. Food Chem. 2021, 338, 127799. DOI: 10.1016/j.foodchem.2020.127799.
  • Zhang, Y.; Sun, B. H.; Pei, Y. P.; Vidyarthi, S. K.; Zhang, W. P.; Zhang, W. K.; Ju, H. Y.; Gao, Z. J.; Xiao, H. W. Vacuum-Steam Pulsed Blanching (VSPB): An Emerging Blanching Technology for Beetroot. LWT 2021, 147, 111532. DOI: 10.1016/j.lwt.2021.111532.
  • Kar, S.; Sutar, P. P. Enhancing the Efficacy of Microwave Blanching-Cum-Black Mould Inactivation of Whole Garlic (Allium sativum L.) Bulbs Using Ultrasound: Higher Inactivation of Peroxidase, Polyphenol Oxidase, and Aspergillus niger at Lower Processing Temperatures. Food Bioproc. Tech. 2022, 15, 635–655. DOI: 10.1007/s11947-022-02769-5.
  • Delfiya, D. S. A.; Prashob, K.; Murali, S.; Alfiya, P. V.; Samuel, M. P.; Pandiselvam, R. Drying Kinetics of Food Materials in Infrared Radiation Drying. A Review. J. Food Process. Eng. 2022, 45, 1–19. DOI: 10.1111/jfpe.13810.
  • Dincer, I.; Dost, S. A Modelling Study for Moisture Diffusivities and Moisture Transfer Coefficients in Drying of Solid Objects. Int. J. Energy Res. 1996, 20, 531–539. DOI: 10.1002/(SICI)1099-114X(199606)20:6 < 531::AID-ER171 > 3.0.CO;2-6.
  • Sadasivam, S.; Manickam, A. Biochemical Methods, 3rd ed.; New Age International (Pvt) Ltd: New Delhi, India, 2009; pp. 7–18.
  • Singh Yadav, B.; Kumar Sahu, R.; Kumar Pramanick, A.; Mishra, T.; Alam, A.; Bharti, M.; Mukherjee, S.; Kumar, S.; Nayar, S. Collagen Functionalized Graphene Sheets Decorated with in Situ Synthesized Nano Hydroxyapatite Electrospun into Fibers. Mater. Today Commun. 2019, 18, 167–175. DOI: 10.1016/j.mtcomm.2018.11.005.
  • Yadav, B. S.; Dasgupta, S. Effect of Time, PH, and Temperature on Kinetics for Adsorption of Methyl Orange Dye into the Modified Nitrate Intercalated MgAl LDH Adsorbent. Inorg. Chem. Commun. 2022, 137, 109203. DOI: 10.1016/j.inoche.2022.109203.
  • Shirkole, S. S.; Jayabalan, R.; Sutar, P. P. Dry Sterilization of Paprika (Capsicum annuum L.) by Short Time Intensive Microwave-Infrared Radiation: Part I - Establishment of Process Using Glass Transition, Sorption, and Quality Degradation Kinetic Parameters. Innov. Food Sci. Emerg. Technol. 2020, 62, 102345. DOI: 10.1016/j.ifset.2020.102345.
  • Finten, G.; Agüero, M. V.; Jagus, R. J.; Niranjan, K. High Hydrostatic Pressure Blanching of Baby Spinach (Spinacia oleracea L.). LWT - Food Sci. Technol. 2016, 73, 74–79. DOI: 10.1016/j.lwt.2016.05.043.
  • Ramesh, M. N.; Wolf, W.; Tevini, D.; Bognár, A. Microwave Blanching of Vegetables. J. Food Sci. 2002, 67, 390–398. DOI: 10.1111/j.1365-2621.2002.tb11416.x.
  • Heaton, J. W.; Marangoni, A. G. Chlorophyll degradation in processed foods and senescent plant tissues. Trends Food Sci. Technol. 1996, 7, 8–15. DOI: 10.1016/0924-2244(96)81352-5.
  • Hörtensteiner, S. Update on the Biochemistry of Chlorophyll Breakdown. Plant Mol. Biol. 2013, 82, 505–517. DOI: 10.1007/s11103-012-9940-z.
  • Wang, J.; Xiao, H. W.; Fang, X. M.; Mujumdar, A. S.; Vidyarthi, S. K.; Xie, L. Effect of High-Humidity Hot Air Impingement Blanching and Pulsed Vacuum Drying on Phytochemicals Content, Antioxidant Capacity, Rehydration Kinetics and Ultrastructure of Thompson Seedless Grape. Dry. Technol. 2022, 40, 1013–1026. DOI: 10.1080/07373937.2020.1845721.
  • Liu, Y.; Chen, W.; Fan, L. Effects of Different Drying Methods on the Storage Stability of Barley Grass Powder. J. Sci. Food Agric. 2022, 102, 1076–1084. DOI: 10.1002/jsfa.11443.
  • Vega-Gálvez, A.; Ah-Hen, K.; Chacana, M.; Vergara, J.; Martínez-Monzó, J.; García-Segovia, P.; Lemus-Mondaca, R.; Di Scala, K. Effect of Temperature and Air Velocity on Drying Kinetics, Antioxidant Capacity, Total Phenolic Content, Colour, Texture and Microstructure of Apple (Var. Granny Smith) Slices. Food Chem. 2012, 132, 51–59. DOI: 10.1016/j.foodchem.2011.10.029.
  • Lim, Y. Y.; Murtijaya, J. Antioxidant Properties of Phyllanthus amarus Extracts as Affected by Different Drying Methods. LWT - Food Sci. Technol. 2007, 40, 1664–1669. DOI: 10.1016/j.lwt.2006.12.013.
  • Hamrouni-Sellami, I.; Rahali, F. Z.; Rebey, I. B.; Bourgou, S.; Limam, F.; Marzouk, B. Total Phenolics, Flavonoids, and Antioxidant Activity of Sage (Salvia officinalis L.) Plants as Affected by Different Drying Methods. Food Bioprocess. Technol. 2013, 6, 806–817. DOI: 10.1007/s11947-012-0877-7.
  • Ismail, O.; Gokçe Kocabay, O. Vacuum Oven Drying of Mussels: Mathematical Modeling, Drying Characteristics and Kinetics Study. Br. Food J. 2021, 124, 1238–1253. DOI: 10.1108/BFJ-05-2021-0486.
  • Kayran, S.; Brahim Doymaz, Ã. Infrared Drying of Apricot Pomace. LAAR 2019, 49, 213–218. DOI: 10.52292/j.laar.2019.199.
  • Derun, E. M. Infrared Drying Kinetics of Blue Mussels and Physical Properties. Chem. Ind. Chem. Eng. Q. 2019, 25, 1–10.
  • Inyang, U. E.; Oboh, I. O.; Etuk, B. R. Kinetic Models for Drying Techniques—Food Materials. ACES 2018, 8, 27–48. DOI: 10.4236/aces.2018.82003.
  • Sadeghi, E.; Haghighi Asl, A.; Movagharnejad, K. Optimization and Quality Evaluation of Infrared-Dried Kiwifruit Slices. Food Sci. Nutr. 2020, 8, 720–734. DOI: 10.1002/fsn3.1253.
  • Doymaz, I.; Kipcak, A. S. Drying Characteristics Investigation of Black Mulberry Dried via Infrared Method. J. Therm. Eng. 2019, 5, 13–21. DOI: 10.18186/thermal.528969.
  • Onwude, D. I.; Hashim, N.; Abdan, K.; Janius, R.; Chen, G. Modelling the Mid-Infrared Drying of Sweet Potato: Kinetics, Mass and Heat Transfer Parameters, and Energy Consumption. Heat Mass Transfer 2018, 54, 2917–2933. DOI: 10.1007/s00231-018-2338-y.
  • Darvishi, H.; Farhudi, Z.; Behroozi-Khazaei, N. Multi-Objective Optimization of Savory Leaves Drying in Continuous Infrared-Hot Air Dryer by Response Surface Methodology and Desirability Function. Comput. Electron. Agric. 2020, 168, 105112. DOI: 10.1016/j.compag.2019.105112.
  • Dincer, I.; Dost, S. An International Journal an Analytical Model for Moisture Diffusion in Solid Objects during Drying. Dry. Technol. 1995, 13, 425–435.
  • Rurush, E.; Alvarado, M.; Palacios, P.; Flores, Y.; Rojas, M. L.; Miano, A. C. Drying Kinetics of Blueberry Pulp and Mass Transfer Parameters: Effect of Hot Air and Refractance Window Drying at Different Temperatures. J. Food Eng. 2022, 320, 110929. DOI: 10.1016/j.jfoodeng.2021.110929.
  • Bezerra, C. V.; Meller Da Silva, L. H.; Corrêa, D. F.; Rodrigues, A. M. C. A Modeling Study for Moisture Diffusivities and Moisture Transfer Coefficients in Drying of Passion Fruit Peel. Int. J. Heat Mass Transfer 2015, 85, 750–755. DOI: 10.1016/j.ijheatmasstransfer.2015.02.027.
  • Thummajitsakul, S.; Samaikam, S.; Tacha, S.; Silprasit, K. Study on FTIR Spectroscopy, Total Phenolic Content, Antioxidant Activity and Anti-Amylase Activity of Extracts and Different Tea Forms of Garcinia schomburgkiana Leaves. LWT 2020, 134, 110005. DOI: 10.1016/j.lwt.2020.110005.
  • Kozłowicz, K.; Różyło, R.; Gładyszewska, B.; Matwijczuk, A.; Gładyszewski, G.; Chocyk, D.; Samborska, K.; Piekut, J.; Smolewska, M. Identification of Sugars and Phenolic Compounds in Honey Powders with the Use of GC–MS, FTIR Spectroscopy, and X-Ray Diffraction. Sci. Rep. 2020, 10, 1–10. DOI: 10.1038/s41598-020-73306-7.
  • Caunii, A.; Pribac, G.; Grozea, I.; Gaitin, D.; Samfira, I. Design of Optimal Solvent for Extraction of Bio-Active Ingredients from Six Varieties of Medicago sativa. Chem. Cent. J. 2012, 6, 123–128. DOI: 10.1186/1752-153X-6-123.
  • Topala, C. M.; Tataru, L. D.; Ducu, C. ATR-FTIR Spectra Fingerprinting of Medicinal Herbs Extracts Prepared Using Microwave Extraction. Arab. J. Med. Aromat. Plants 2017, 3, 1–9.
  • Yusuf, M.; Khan, R. A.; Khan, M.; Ahmed, B. Plausible Antioxidant Biomechanics and Anticonvulsant Pharmacological Activity of Brain-Targeted β-Carotene Nanoparticles. Int. J. Nanomed. 2012, 7, 4311–4321. DOI: 10.2147/IJN.S34588.
  • Palma-Rodríguez, H. M.; Alvarez-Ramírez, J.; Vargas-Torres, A. Using Modified Starch/Maltodextrin Microparticles for Enhancing the Shelf Life of Ascorbic Acid by the Spray-Drying Method. Starch/Staerke 2018, 70, 1700323. DOI: 10.1002/star.201700323.
  • Jendrzejewska, I. Application of X-Ray Powder Diffraction for Analysis of Selected Dietary Supplements Containing Magnesium and Calcium. Front. Chem 2020, 8, 1–12. DOI: 10.3389/fchem.2020.00672.
  • Godswill, A. G.; Somtochukwu, I. V.; Ikechukwu, A. O.; Kate, E. C. Health Benefits of Micronutrients (Vitamins and Minerals) and Their Associated Deficiency Diseases: A Systematic Review. IJF 2020, 3, 1–32. DOI: 10.47604/ijf.1024.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.