Publication Cover
Drying Technology
An International Journal
Volume 41, 2023 - Issue 10
999
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Applications of aged powders of spray-dried whey protein isolate and ascorbic acid in the field of food safety

, ORCID Icon, , &
Pages 1686-1696 | Received 07 Jun 2022, Accepted 25 Jan 2023, Published online: 08 Feb 2023

References

  • Sonneveld, K. What Drives (Food) Packaging Innovation? Packag. Technol. Sci. 2000, 13, 29–35. DOI: 10.1002/(SICI)1099-1522(200001/02)13:1 < 29::AID-PTS489 > 3.0.CO;2-R.
  • Byrne, D.V. Current Trends in Food Health and Safety in Cross-Cultural Sensory and Consumer Science. Foods 2021, 10, 965. DOI: 10.3390/foods10050965.
  • Kher, S. V.; Frewer, L. J.; de Jonge, J.; Wentholt, M.; Davies, O. H.; Luijckx, N. B. L.; Cnossen, H. J. E. Perspectives on the Implementation of Traceability in Europe. Br. Food J. 2010, 112, 261–274. DOI: 10.1108/00070701011029138.
  • Nopwinyuwong, A.; Trevanich, S.; Suppakul, P. Development of a Novel Colorimetric Indicator Label for Monitoring Freshness of Intermediate-Moisture Dessert Spoilage. Talanta 2010, 81, 1126–1132. DOI: 10.1016/j.talanta.2010.02.008.
  • Rukchon, C.; Nopwinyuwong, A.; Trevanich, S.; Jinkarn, T.; Suppakul, P. Development of a Food Spoilage Indicator for Monitoring Freshness of Skinless Chicken Breast. Talanta 2014, 130, 547–554. DOI: 10.1016/j.talanta.2014.07.048.
  • Choi, S.; Eom, Y.; Kim, S. M.; Jeong, D. W.; Han, J.; Koo, J. M.; Hwang, S. Y.; Park, J.; Oh, D. X. A Self-Healing Nanofiber-Based Self-Responsive Time-Temperature Indicator for Securing a Cold-Supply Chain. Adv. Mater. 2020, 32, 1907064. DOI: 10.1002/adma.201907064.
  • Meng, J.; Qian, J.; Tang, Y. A Solid-State Time-Temperature Indicator Used in Chilled Fresh Pork Monitoring. Packag. Technol. Sci. 2018, 31, 353–360. DOI: 10.1002/pts.2328.
  • Wu, D.; Zhang, M.; Chen, H.; Bhandari, B. Freshness Monitoring Technology of Fish Products in Intelligent Packaging. Crit. Rev. Food Sci. Nutr. 2021, 61, 1279–1292. DOI: 10.1080/10408398.2020.1757615.
  • Weston, M.; Geng, S.; Chandrawati, R. Food Sensors: Challenges and Opportunities. Adv. Mater. Technol. 2021, 6, 2001242. DOI: 10.1002/admt.202001242.
  • Yoshida, C. M. P.; Maciel, V. B. V.; Mendonça, M. E. D.; Franco, T. T. Chitosan Biobased and Intelligent Films: Monitoring PH Variations. LWT - Food Sci. Technol. 2014, 55, 83–89. DOI: 10.1016/j.lwt.2013.09.015.
  • Weston, M.; Phan, M. A. T.; Arcot, J.; Chandrawati, R. Anthocyanin-Based Sensors Derived from Food Waste as an Active Use-by Date Indicator for Milk. Food Chem. 2020, 326, 127017. DOI: 10.1016/j.foodchem.2020.127017.
  • Zhai, X.; Li, Z.; Zhang, J.; Shi, J.; Zou, X.; Huang, X.; Zhang, D.; Sun, Y.; Yang, Z.; Holmes, M.; et al. Natural Biomaterial-Based Edible and PH-Sensitive Films Combined with Electrochemical Writing for Intelligent Food Packaging. J. Agric. Food Chem. 2018, 66, 12836–12846. DOI: 10.1021/acs.jafc.8b04932.
  • Kirkbright, G. F.; Narayanaswamy, R.; Welti, N. A. Fibre-Optic PH Probe Based on the Use of an Immobilised Colorimetric Indicator. Analyst 1984, 109, 1025–1028. DOI: 10.1039/an9840901025.
  • Mirlohi, M.; Manickavasagan, A.; Ali, A. The Effect of Protein Drying Aids on the Quantity and Quality of Spray Dried Sugar-Rich Powders: A Systematic Review. Dry. Technol. 2022, 40, 1068–1082. DOI: 10.1080/07373937.2020.1856131.
  • Fröhlich, J. A.; Spiess, M.; Hinrichs, J.; Kohlus, R. Nozzle Zone Agglomeration in Spray Dryers: Process Dependency of the Fines Mass Flow and Its Importance for Agglomerate Formation. Dry. Technol. 2022. DOI: 10.1080/07373937.2022.2111439.
  • Linke, T.; Happe, J.; Kohlus, R. Laboratory-Scale Superheated Steam Spray Drying of Food and Dairy Products. Dry. Technol. 2022, 40, 1703–1714. DOI: 10.1080/07373937.2020.1870127.
  • Wang, Y.; Shi, X.; Ren, W.; Wu, F.; Zhao, L.; Du, R.; Lin, X.; Wang, Y. The Effect of Plant-Derived Peptides on the Hot-Melt Stickiness of Herbal Extracts during Spray Drying. Dry. Technol. 2022. DOI: 10.1080/07373937.2022.2106239.
  • Golubitskii, G. B.; Budko, E. V.; Basova, E. M.; Kostarnoi, A. V.; Ivanov, V. M. Stability of Ascorbic Acid in Aqueous and Aqueous-Organic Solutions for Quantitative Determination. J. Anal. Chem. 2007, 62, 742–747. DOI: 10.1134/S1061934807080096.
  • Seacheol, M.; Krochta, J. M. Ascorbic Acid-Containing Whey Protein Film Coatings for Control of Oxidation. J. Agric. Food Chem. 2007, 55, 2964–2969. DOI: 10.1021/jf062698r.
  • Pal, A.; Kant, K. Smart Sensing, Communication, and Control in Perishable Food Supply Chain. ACM Trans. Sen. Netw. 2020, 16, 1–41. DOI: 10.1145/3360726.
  • Do Nascimento Nunes, M. C.; Nicometo, M.; Emond, J. P.; Melis, R. B.; Uysal, I. Erratum: Improvement in Fresh Fruit and Vegetable Logistics Quality: Berry Logistics Field Studies. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2014, 372, 2022. DOI: 10.1098/rsta.2014.0212.
  • Kuswandi, B.; Nurfawaidi, A. On-Package Dual Sensors Label Based on PH Indicators for Real-Time Monitoring of Beef Freshness. Food Control 2017, 82, 91–100. DOI: 10.1016/j.foodcont.2017.06.028.
  • Zhong, C.; Tan, S.; Langrish, T. Redness Generation via Maillard Reactions of Whey Protein Isolate (WPI) and Ascorbic Acid (Vitamin C) in Spray-Dried Powders. J. Food Eng. 2019, 244, 11–20. DOI: 10.1016/j.jfoodeng.2018.09.020.
  • Sant’Anna, V.; Gurak, P. D.; Ferreira Marczak, L. D.; Tessaro, I. C. Tracking Bioactive Compounds with Colour Changes in Foods – A Review. Dye. Pigment 2013, 98, 601–608. DOI: 10.1016/j.dyepig.2013.04.011.
  • Matiacevich, S. B.; Santagapita, P. R.; Buera, M. P. Fluorescence from the Maillard Reaction and Its Potential Applications in Food Science. Crit. Rev. Food Sci. Nutr. 2005, 45, 483–495. DOI: 10.1080/10408390591034472.
  • Nagaraj, R. H.; Monnier, V. M. Protein Modification by the Degradation Products of Ascorbate: Formation of a Novel Pyrrole from the Maillard Reaction of l-Threose with Proteins. Biochim. Biophys. Acta (BBA)/Protein Struct. Mol. 1995, 1253, 75–84. DOI: 10.1016/0167-4838(95)00161-M.
  • Wang, S.; Langrish, T. A Review of Process Simulations and the Use of Additives in Spray Drying. Food Res. Int. 2009, 42, 13–25. DOI: 10.1016/j.foodres.2008.09.006.
  • Wang, S.; Langrish, T. A. G. A Distributed Parameter Model for Particles in the Spray Drying Process. Adv. Powder Technol. 2009, 20, 220–226. DOI: 10.1016/j.apt.2009.03.004.
  • Vehring, R. Pharmaceutical Particle Engineering via Spray Drying. Pharm. Res. 2008, 25, 999–1022. DOI: 10.1007/s11095-007-9475-1.
  • Shinskey, F. G. G. Process Control Systems: Application, Design and Tuning. McGraw-Hill, Inc: New York. 1990.
  • Mizuguchi, M.; Nara, M.; Kawano, K.; Nitta, K. FT-XR Study of the Ca2+-Binding to Bovine α-Lactalbumin. Relationships between the Type of Coordination and Characteristics of the Bands Due to the Asp COO- Groups in the Ca2+-Binding Site. FEBS Lett. 1997, 417, 153–156. DOI: 10.1016/S0014-5793(97)01274-X.
  • Yohannan Panicker, C.; Tresa Varghese, H.; Philip, D, FT-IR, FT-Raman and SERS Spectra of Vitamin C. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 2006, 65, 802–804. DOI: 10.1016/j.saa.2005.12.044.
  • Patnaik, P. Dean’s Analytical Chemistry Handbook, 2nd ed.; McGraw-Hill handbooks, McGraw-Hill: New York, 2004.