Publication Cover
Drying Technology
An International Journal
Volume 41, 2023 - Issue 11
304
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Modulation of ice crystal formation behavior in pectin-sucrose hydrogel by freezing temperature: Effect on ice crystal morphology and drying properties

, ORCID Icon, ORCID Icon, , , , & show all
Pages 1771-1782 | Received 04 Jan 2023, Accepted 18 Feb 2023, Published online: 06 Mar 2023

References

  • Krokida, M. K.; Karathanos, V. T.; Maroulis, Z. B. Effect of Freeze-Drying Conditions on Shrinkage and Porosity of Dehydrated Agricultural Products. J. Food Eng. 1998, 35, 369–380.
  • Toontom, N.; Meenune, M.; Posri, W.; Lertsiri, S. Effect of Drying Method on Physical and Chemical Quality, Hotness and Volatile Flavour Characteristics of Dried Chilli. Int. Food Res. J. 2012, 19, 1023.
  • Michalska, A.; Wojdyło, A.; Lech, K.; Łysiak, G. P.; Figiel, A. Physicochemical Properties of Whole Fruit Plum Powders Obtained Using Different Drying Technologies. Food Chem. 2016, 207, 223–232. DOI: 10.1016/j.foodchem.2016.03.075.
  • Harguindeguy, M.; Fissore, D. On the Effects of Freeze-Drying Processes on the Nutritional Properties of Foodstuff: A Review. Dry. Technol. 2020, 38, 846–868.
  • Santivarangkna, C.; Kulozik, U.; Foerst, P. Alternative Drying Processes for the Industrial Preservation of Lactic Acid Starter Cultures. Biotechnol. Progr. 2007, 23, 302–315.
  • Ratti, C. Hot Air and Freeze-Drying of High-Value Foods: A Review. J. Food Eng. 2001, 49, 311–319.
  • Levin, P.; Meunier, V.; Kessler, U.; Heinrich, S. Influence of Freezing Parameters on the Formation of Internal Porous Structure and Its Impact on Freeze-Drying Kinetics. Processes 2021, 9, 1273.
  • Liu, Y.; Zhao, Y.; Feng, X. Exergy Analysis for a Freeze-Drying Process. Appl. Therm. Eng. 2008, 28, 675–690.
  • Luo, C.; Liu, Z.; Mi, S.; Li, L. Quantitative Investigation on the Effects of Ice Crystal Size on Freeze-Drying: The Primary Drying Step. Dry. Technol. 2022, 40, 446–458.
  • Jin, J.; Yurkow, E. J.; Adler, D.; Lee, T. Improved Freeze Drying Efficiency by Ice Nucleation Proteins with Ice Morphology Modification. Food Res. Int. 2018, 106, 90–97. DOI: 10.1016/j.foodres.2017.12.028.
  • Colucci, D.; Fissore, D.; Barresi, A. A.; Braatz, R. D. A New Mathematical Model for Monitoring the Temporal Evolution of the Ice Crystal Size Distribution during Freezing in Pharmaceutical Solutions. Eur. J. Pharm. Biopharm. 2020, 148, 148–159. DOI: 10.1016/j.ejpb.2020.01.004.
  • Salazar, N. A.; Alvarez, C.; Orrego, C. E. Optimization of Freezing Parameters for Freeze-Drying Mango (Mangifera indica L.) Slices. Dry. Technol. 2018, 36, 192–204.
  • Banerjee, R.; Maheswarappa, N. B. Superchilling of Muscle Foods: Potential Alternative for Chilling and Freezing. Crit. Rev. Food Sci. Nutr. 2019, 59, 1256–1263. DOI: 10.1080/10408398.2017.1401975.
  • Kono, S.; Kon, M.; Araki, T.; Sagara, Y. Effects of Relationships among Freezing Rate, Ice Crystal Size and Color on Surface Color of Frozen Salmon Fillet. J. Food Eng. 2017, 214, 158–165.
  • Ban, C.; Yoon, S.; Han, J.; Kim, S. O.; Han, J. S.; Lim, S.; Choi, Y. J. Effects of Freezing Rate and Terminal Freezing Temperature on Frozen Croissant Dough Quality. LWT 2016, 73, 219–225.
  • Cook, K. L. K.; Hartel, R. W. Effect of Freezing Temperature and Warming Rate on Dendrite Break-Up When Freezing Ice Cream Mix. Int. Dairy J. 2011, 21, 447–453.
  • Pan, Z.; Huang, Z.; Ma, J.; Lei, M.; Tian, P.; Ai, Z. Effects of Freezing Treatments on the Quality of Frozen Cooked Noodles. J. Food Sci. Technol. 2020, 57, 1926–1935.
  • Silva-Espinoza, M. A.; Ayed, C.; Foster, T.; Camacho, M. D. M.; Martínez-Navarrete, N. The Impact of Freeze-Drying Conditions on the Physico-Chemical Properties and Bioactive Compounds of a Freeze-Dried Orange Puree. Foods 2020, 9, 32.
  • Ngo, H. T.; Tojo, S.; Ban, T.; Chosa, T. Effects of Prior Freezing Conditions on the Quality of Blueberries in a Freeze-Drying Process. Trans. ASABE 2017, 60, 1369–1377.
  • Chassagne-Berces, S.; Poirier, C.; Devaux, M.; Fonseca, F.; Lahaye, M.; Pigorini, G.; Girault, C.; Marin, M.; Guillon, F. Changes in Texture, Cellular Structure and Cell Wall Composition in Apple Tissue as a Result of Freezing. Food Res. Int. 2009, 42, 788–797.
  • Xu, B.; Azam, R. S. M.; Wang, B.; Zhang, M.; Bhandari, B. Effect of Infused CO2 in a Model Solid Food on the Ice Nucleation during Ultrasound-Assisted Immersion Freezing. Int J. Refrig. 2019, 108, 53–59.
  • Zhu, S.; Ramaswamy, H. S.; Le Bail, A. Ice-Crystal Formation in Gelatin Gel during Pressure Shift versus Conventional Freezing. J. Food Eng. 2005, 66, 69–76.
  • Kiani, H.; Zhang, Z.; Sun, D. Effect of Ultrasound Irradiation on Ice Crystal Size Distribution in Frozen Agar Gel Samples. Innov. Food Sci. Emerg. 2013, 18, 126–131.
  • Feng, S.; Bi, J.; Yi, J.; Li, X.; Li, J.; Ma, Y. Cell Wall Polysaccharides and Mono-/Disaccharides as Chemical Determinants for the Texture and Hygroscopicity of Freeze-Dried Fruit and Vegetable Cubes. Food Chem. 2022, 395, 133574.
  • Han, W.; Meng, Y.; Hu, C.; Dong, G.; Qu, Y.; Deng, H.; Guo, Y. Mathematical Model of Ca2+ Concentration, pH, Pectin Concentration and Soluble Solids (Sucrose) on the Gelation of Low Methoxyl Pectin. Food Hydrocolloids 2017, 66, 37–48.
  • Li, Y.; Chen, S.; Tang, B.; Wu, L.; Lai, P. Eutectic Point and Freeze-Drying Curve of Tremella fuciformis Containing Sucrose. Food Sci. Technol. 2022, 42, e98521.
  • Jiang, Q.; Zhang, M.; Mujumdar, A. S.; Chen, B. Comparative Freezing Study of Broccoli and Cauliflower: Effects of Electrostatic Field and Static Magnetic Field. Food Chem. 2022, 397, 133751. DOI: 10.1016/j.foodchem.2022.133751.
  • Cao, Y.; Zhao, L.; Huang, Q.; Xiong, S.; Yin, T.; Liu, Z. Water Migration, Ice Crystal Formation, and Freeze-Thaw Stability of Silver Carp Surimi as Affected by Inulin under Different Additive Amounts and Polymerization Degrees. Food Hydrocolloids 2022, 124, 107267.
  • Jia, R.; Jiang, Q.; Kanda, M.; Tokiwa, J.; Nakazawa, N.; Osako, K.; Okazaki, E. Effects of Heating Processes on Changes in Ice Crystal Formation, Water Holding Capacity, and Physical Properties of Surimi Gels during Frozen Storage. Food Hydrocolloids 2019, 90, 254–265.
  • Reis, F. R.; Lenzi, M. K.; de Muñiz, G. I. B.; Nisgoski, S.; Masson, M. L. Vacuum Drying Kinetics of Yacon (Smallanthus sonchifolius) and the Effect of Process Conditions on Fractal Dimension and Rehydration Capacity. Dry. Technol. 2012, 30, 13–19.
  • Ren, X.; Li, L.; Chen, J.; Zhao, L.; Liu, P.; Cao, W.; Ren, A.; Ren, G.; Bhandari, B.; Duan, X. Drying Characteristics and Quality of Chinese Yam by Multiphase Microwave Drying Based on Fractal Theory. Dry. Technol. 2022, 40, 3310–3323.
  • Ma, Y.; Yi, J.; Bi, J.; Wu, X.; Li, X.; Li, J.; Zhao, Y. Understanding of Osmotic Dehydration on Mass Transfer and Physical Properties of Freeze‐Dried Apple Slices: A Comparative Study of Five Saccharides Osmotic Agents. J. Food Process. Preserv. 2022, 46, e16328.
  • Sui, X.; Zhao, Y.; Zhang, X.; Zhang, Y.; Zhu, L.; Fang, Z.; Shi, Q. Hydrocolloid Coating Pretreatment Makes Explosion Puffing Drying Applicable in Protein-Rich Foods—A Case Study of Scallop Adductors. Dry. Technol. 2022, 40, 50–64.
  • Jia, G.; Chen, Y.; Sun, A.; Orlien, V. Control of Ice Crystal Nucleation and Growth during the Food Freezing Process. Compr. Rev. Food Sci. Food Saf. 2022, 21, 2433–2454.
  • Genevro, G. M.; de Moraes, M. A.; Beppu, M. M. Freezing Influence on Physical Properties of Glucomannan Hydrogels. Int. J. Biol. Macromol. 2019, 128, 401–405. DOI: 10.1016/j.ijbiomac.2019.01.112.
  • Ni, X.; Ke, F.; Xiao, M.; Wu, K.; Kuang, Y.; Corke, H.; Jiang, F. The Control of Ice Crystal Growth and Effect on Porous Structure of Konjac Glucomannan-Based Aerogels. Int. J. Biol. Macromol. 2016, 92, 1130–1135.
  • Hagiwara, T.; Wang, H.; Suzuki, T.; Takai, R. Fractal Analysis of Ice Crystals in Frozen Food. J. Agric. Food Chem. 2002, 50, 3085–3089.
  • Searles, J. A.; Carpenter, J. F.; Randolph, T. W. Annealing to Optimize the Primary Drying Rate, Reduce Freezing‐Induced Drying Rate Heterogeneity, and Determine T'g in Pharmaceutical Lyophilization. J. Pharm. Sci. 2001, 90, 872–887.
  • Fissore, D.; Pisano, R. Computer-Aided Framework for the Design of Freeze-Drying Cycles: Optimization of the Operating Conditions of the Primary Drying Stage. Processes 2015, 3, 406–421.
  • Wang, J.; Searles, J. A.; Torres, E.; Tchessalov, S. A.; Young, A. L. Impact of Annealing and Controlled Ice Nucleation on Properties of a Lyophilized 50 mg/ml MAB Formulation. J. Pharm. Sci. 2022, 111, 2639–2644. DOI: 10.1016/j.xphs.2022.05.016.
  • Feng, S.; Bi, J.; Yi, J.; Li, X.; Lyu, J.; Guo, Y.; Ma, Y. Modulation of Ice Crystal Formation Behavior in Pectin Cryogel by Xyloglucan: Effect on Microstructural and Mechanical Properties. Food Res. Int. 2022, 159, 111555. DOI: 10.1016/j.foodres.2022.111555.
  • Smaniotto, F.; Prosapio, V.; Zafeiri, I.; Spyropoulos, F. Freeze Drying and Rehydration of Alginate Fluid Gels. Food Hydrocolloids 2020, 99, 105352.
  • Mahiuddin, M.; Khan, M. I. H.; Kumar, C.; Rahman, M. M.; Karim, M. A. Shrinkage of Food Materials during Drying: Current Status and Challenges. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1113–1126.
  • Antal, T.; Sikolya, L.; Kerekes, B. Assessment of Freezing Pre-Treatments for the Freeze Dried of Apple Slices. Acta Univ. Cibiniensis E: Food Technol. 2013, 17, 3–14.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.