248
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Fundamental investigation on drying rates of cathodes and separators for sulfide-based all-solid-state batteries

ORCID Icon, &
Pages 1010-1016 | Received 09 Jan 2023, Accepted 06 Mar 2023, Published online: 24 Mar 2023

References

  • Cano, Z. P.; Banham, D.; Ye, S.; Hintennach, A.; Lu, J.; Fowler, M.; Chen, Z. Batteries and Fuel Cells for Emerging Electric Vehicle Markets. Nat. Energy 2018, 3, 279–289.
  • Gröger, O.; Gasteiger, H. A.; Suchsland, J.-P. Review—Electromobility: Batteries or Fuel Cells? J. Electrochem. Soc. 2015, 162, A2605–A2622.
  • Hettesheimer, T.; Thielmann, A.; Neef, C. Entwicklungsperspektiven Für Zellformate Von Lithium-Ionen-Batterien in Der Elektromobilität. Fraunhofer Allianz Batterien: Karlsruhe, 2017.
  • Dunn, B.; Kamath, H.; Tarascon, J.-M. Electrical Energy Storage for the Grid: A Battery of Choices. Science 2011, 334, 928–935. DOI: 10.1126/science.1212741.
  • Stampatori, D.; Raimondi, P. P.; Noussan, M. Li-Ion Batteries: A Review of a Key Technology for Transport Decarbonization. Energies 2020, 13, 2638.
  • Kim, K. J.; Balaish, M.; Wadaguchi, M.; Kong, L.; Rupp, J. L. M. Solid‐State Li-Metal Batteries: Challenges and Horizons of Oxide and Sulfide Solid Electrolytes and Their Interfaces. Adv. Energy Mater. 2021, 11, 2002689.
  • Janek, J.; Zeier, W. G. A Solid Future for Battery Development. Nat. Energy 2016, 1, 1–4.
  • Hu, Y.-S. Batteries: Getting Solid. Nat. Energy 2016, 1, 1–2.
  • Wu, J.; Shen, L.; Zhang, Z.; Liu, G.; Wang, Z.; Zhou, D.; Wan, H.; Xu, X.; Yao, X. All-Solid-State Lithium Batteries with Sulfide Electrolytes and Oxide Cathodes. Electrochemical Energy Reviews 2021, 4, 101–135.
  • Oh, D. Y.; Kim, K. T.; Jung, S. H.; Kim, D. H.; Jun, S.; Jeoung, S.; Moon, H. R.; Jung, Y. S. Tactical Hybrids of Li+-Conductive Dry Polymer Electrolytes with Sulfide Solid Electrolytes: Toward Practical All-Solid-State Batteries with Wider Temperature Operability. Mater. Today 2022, 53, 7–15.
  • Tan, D. H.; Meng, Y. S.; Jang, J. Scaling up High-Energy-Density Sulfidic Solid-State Batteries: A Lab-to-Pilot Perspective. Joule 2022, 6, 1755–1769.
  • Wu, J.; Liu, S.; Han, F.; Yao, X.; Wang, C. Lithium/Sulfide All-Solid-State Batteries Using Sulfide Electrolytes. Adv. Mater. 2020, 33, e2000751.
  • Zhu, G.-L.; Zhao, C.-Z.; Peng, H.-J.; Yuan, H.; Hu, J.-K.; Nan, H.-X.; Lu, Y.; Liu, X.-Y.; Huang, J.-Q.; He, C.; et al. A Self‐Limited Free‐Standing Sulfide Electrolyte Thin Film for All‐Solid‐State Lithium Metal Batteries. Adv. Funct. Mater. 2021, 31, 2101985.
  • Yuan, H.; Nan, H.-X.; Zhao, C.-Z.; Zhu, G.-L.; Lu, Y.; Cheng, X.-B.; Liu, Q.-B.; He, C.-X.; Huang, J.-Q.; Zhang, Q. Slurry‐Coated Sulfur/Sulfide Cathode with Li Metal Anode for All‐Solid‐State Lithium‐Sulfur Pouch Cells. Batter. Supercaps 2020, 3, 596–603.
  • Jiang, Z.; Peng, H.; Li, J.; Liu, Y.; Zhong, Y.; Gu, C.; Wang, X.; Xia, X.; Tu, J. A Facile Path from Fast Synthesis of Li-Argyrodite Conductor to Dry Forming Ultrathin Electrolyte Membrane for High-Energy-Density All-Solid-State Lithium Batteries. J. Energy Chem. 2022, 74, 309–316.
  • Schnell, J.; Günther, T.; Knoche, T.; Vieider, C.; Köhler, L.; Just, A.; Keller, M.; Passerini, S.; Reinhart, G. All-Solid-State Lithium-Ion and Lithium Metal Batteries—Paving the Way to Large-Scale Production. J. Power Sources 2018, 382, 160–175.
  • Singer, C.; Schnell, J.; Reinhart, G. Scalable Processing Routes for the Production of All‐Solid‐State Batteries—Modeling Interdependencies of Product and Process. Energy Technology 2021, 9, 2000665.
  • Singer, C.; Töpper, H.-C.; Günter, F. J.; Reinhart, G. Plant Technology for the Industrial Coating Process for Sulfide-Based All-Solid-State Batteries. Procedia CIRP 2021, 104, 56–61.
  • Singer, C.; Töpper, H.-C.; Kutsch, T.; Schuster, R.; Koerver, R.; Daub, R. Hydrolysis of Argyrodite Sulfide-Based Separator Sheets for Industrial All-Solid-State Battery Production. ACS Appl. Mater. Interfaces 2022, 14, 24245–24254.
  • Hu, J.-K.; Yuan, H.; Yang, S.-J.; Lu, Y.; Sun, S.; Liu, J.; Liao, Y.-L.; Li, S.; Zhao, C.-Z.; Huang, J.-Q. Dry Electrode Technology for Scalable and Flexible High-Energy Sulfur Cathodes in All-Solid-State Lithium-Sulfur Batteries. J. Energy Chem. 2022, 71, 612–618.
  • Choi, J. W.; Aurbach, D. Promise and Reality of Post-Lithium-Ion Batteries with High Energy Densities. Nat. Rev. Mater. 2016, 1, 359.
  • Kaiser, J.; Wenzel, V.; Nirschl, H.; Bitsch, B.; Willenbacher, N.; Baunach, M.; Schmitt, M.; Jaiser, S.; Scharfer, P.; Schabel, W. Prozess- und Produktentwicklung Von Elektroden für Li-Ionen-Zellen. Chem. Ing. Tech. 2014, 86, 695–706.
  • Westphal, B.; Bockholt, H.; Kwade, A. Influence of Convective Drying Parameters on Electrode Performance and Physical Electrode Properties. ECS Meeting Abstr. 2014, MA2014-02, 328.
  • Jaiser, S.; Müller, M.; Baunach, M.; Bauer, W.; Scharfer, P.; Schabel, W. Investigation of Film Solidification and Binder Migration during Drying of Li-Ion Battery Anodes. J. Power Sources 2016, 318, 210–219.
  • Kumberg, J.; Müller, M.; Diehm, R.; Spiegel, S.; Wachsmann, C.; Bauer, W.; Scharfer, P.; Schabel, W. Drying of Lithium‐Ion Battery Anodes for Use in High‐Energy Cells: Influence of Electrode Thickness on Drying Time, Adhesion, and Crack Formation. Energy Technol. 2019, 7, 1900722.
  • Jaiser, S.; Funk, L.; Baunach, M.; Scharfer, P.; Schabel, W. Experimental Investigation into Battery Electrode Surfaces: The Distribution of Liquid at the Surface and the Emptying of Pores during Drying. J. Colloid Interface Sci. 2017, 494, 22–31. DOI: 10.1016/j.jcis.2017.01.063.
  • Westphal, B. G.; Kwade, A. Critical Electrode Properties and Drying Conditions Causing Component Segregation in Graphitic Anodes for Lithium-Ion Batteries. J. Energy Storage 2018, 18, 509–517.
  • Zhao, X.; Xiang, P.; Wu, J.; Liu, Z.; Shen, L.; Liu, G.; Tian, Z.; Chen, L.; Yao, X. Toluene Tolerated Li9.88GeP1.96Sb0.04S11.88Cl0.12 Solid Electrolyte toward Ultrathin Membranes for All-Solid-State Lithium Batteries. Nano Lett. 2023, 23, 227–234.
  • Gutoff, E. B.; Cohen, E. D.; Kheboian, G. I. Coating and Drying Defects/Coating and Drying Defects: Troubleshooting Operating Problems, 2nd ed.; John Wiley & Sons; Wiley-Interscience: Hoboken, NJ, 2006.
  • Mersmann, A. Thermische Verfahrenstechnik. In Dubbel: Taschenbuch für Den Maschinenbau; Grote, K.-H., Feldhusen, J., Eds.; Springer: Dordrecht, 2006; pp N11–N20.
  • Suzuki, M.; Maeda, S. On the Mechanism of Drying of Granular Beds. J. Chem. Eng. Jpn. 1968, 1, 26–31.
  • Scherer, G. W. Theory of Drying. J. Am. Ceram. Soc. 1990, 73, 3–14.
  • VDI-Wärmeatlas: Mit 320 Tabellen, 11th ed.; Springer Vieweg: Berlin, 2013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.