Publication Cover
Drying Technology
An International Journal
Volume 42, 2024 - Issue 3
194
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Using phycocyanin as a marker to investigate drying history and structure formation in spray drying

, &
Pages 436-449 | Received 10 Dec 2022, Accepted 19 Mar 2023, Published online: 30 Mar 2023

References

  • Walton, D. E. The Morphology of Spray-Dried Particles a Qualitative View. Drying Technol. 2000, 18, 1943–1986. DOI: 10.1080/07373930008917822.
  • Rogers, S.; Wu, W. D.; Saunders, J.; Chen, X. D. Characteristics of Milk Powders Produced by Spray Freeze Drying. Drying Technol. 2008, 26, 404–412. DOI: 10.1080/07373930801929003.
  • McMinn, W.; Magee, T. Quality and Physical Structure of a Dehydrated Starch-Based System. Drying Technol. 1997, 15, 1961–1971. DOI: 10.1080/07373939708917341.
  • Mounir, S.; Allaf, T.; Mujumdar, A. S.; Allaf, K. Swell Drying: Coupling Instant Controlled Pressure Drop DIC to Standard Convection Drying Processes to Intensify Transfer Phenomena and Improve Quality—an Overview. Drying Technol. 2012, 30, 1508–1531. DOI: 10.1080/07373937.2012.693145.
  • Eijkelboom, N. M.; van Boven, A. P.; Siemons, I.; Wilms, P. F.; Boom, R. M.; Kohlus, R.; Schutyser, M. A. Particle Structure Development during Spray Drying from a Single Droplet to Pilot-Scale Perspective. J. Food Eng. 2023, 337, 111222. DOI: 10.1016/j.jfoodeng.2022.111222.
  • Vehring, R.; Foss, W. R.; Lechuga-Ballesteros, D. Particle Formation in Spray Drying. J. Aerosol. Sci. 2007, 38, 728–746. DOI: 10.1016/j.jaerosci.2007.04.005.
  • Alexander, K.; King, C. J. Factors Governing Surface Morphology of Spray-Dried Amourphous Substances. Drying Technol. 1985, 3, 321–348. DOI: 10.1080/07373938508916275.
  • Fu, N.; Woo, M. W.; Chen, X. D. Single Droplet Drying Technique to Study Drying Kinetics Measurement and Particle Functionality: A Review. Drying Technol. 2012, 30, 1771–1785. DOI: 10.1080/07373937.2012.708002.
  • Zbicinski, I.; Strumillo, C.; Delag, A. Drying Kinetics and Particle Residence Time in Spray Drying. Drying Technol. 2002, 20, 1751–1768. DOI: 10.1081/DRT-120015412.
  • Ruprecht, N. A.; Köhler, A.; Kohlus, R. A New Method for Continuous Measurement of Residence Time Distribution in Spray Drying. Drying Technol. 2021, 1–10. DOI: 10.1080/07373937.2021.1951287.
  • Yoshikawa, N.; Belay, A. Single-Laboratory Validation of a Method for the Determination of c-Phycocyanin and Allophycocyanin in Spirulina (Arthrospira) Supplements and Raw Materials by Spectrophotometry. J AOAC Int. 2008, 91, 524–529. DOI: 10.1093/jaoac/91.3.524.
  • Böcker, L.; Ortmann, S.; Surber, J.; Leeb, E.; Reineke, K.; Mathys, A. Biphasic Short Time Heat Degradation of the Blue Microalgae Protein Phycocyanin from Arthrospira Platensis. Innovative Food Sci. Emerg. Technol. 2019, 52, 116–121. DOI: 10.1016/j.ifset.2018.11.007.
  • Antelo, F. S.; Costa, J. A.; Kalil, S. J. Thermal Degradation Kinetics of the Phycocyanin from Spirulina Platensis. Biochem. Eng. J. 2008, 41, 43–47. DOI: 10.1016/j.bej.2008.03.012.
  • Böcker, L.; Hostettler, T.; Diener, M.; Eder, S.; Demuth, T.; Adamcik, J.; Reineke, K.; Leeb, E.; Nyström, L.; Mathys, A. Time-Temperature-Resolved Functional and Structural Changes of Phycocyanin Extracted from Arthrospira Platensis/Spirulina. Food Chem. 2020, 316, 126374. DOI: 10.1016/j.foodchem.2020.126374.
  • Buecker, S.; Grossmann, L.; Loeffler, M.; Leeb, E.; Weiss, J. Thermal and Acidic Denaturation of Phycocyanin from Arthrospira Platensis: Effects of Complexation with λ-Carrageenan on Blue Color Stability. Food Chem. 2022, 380, 132157. DOI: 10.1016/j.foodchem.2022.132157.
  • Chaiklahan, R.; Chirasuwan, N.; Bunnag, B. Stability of Phycocyanin Extracted from Spirulina sp. Influence of Temperature, pH and Preservatives. Process Biochem. 2012, 47, 659–664. DOI: 10.1016/j.procbio.2012.01.010.
  • Buecker, S.; Grossmann, L.; Loeffler, M.; Leeb, E.; Weiss, J. High Molecular Weight λ-Carrageenan Improves the Color Stability of Phycocyanin by Associative Interactions. Front. Sustain. Food Syst. 2022, 6. DOI: 10.3389/fsufs.2022.915194.
  • Linke, T.; Kirsch, R.; Kohlus, R. A Barometric Approach for High Temperature Water Desorption Isotherm Determination. Lwt 2021, 140, 110750. DOI: 10.1016/j.lwt.2020.110750.
  • Fröhlich, J. A.; Raiber, T. V.; Hinrichs, J.; Kohlus, R. Nozzle Zone Agglomeration in Spray Dryers: Influence of Total Solid Content on Agglomerate Properties. Powder Technol. 2021, 390, 292–302. DOI: 10.1016/j.powtec.2021.05.094.
  • Fröhlich, J. A.; Spiess, M.; Hinrichs, J.; Kohlus, R. Nozzle Zone Agglomeration in Spray Dryers: Process Dependency of the Fines Mass Flow and Its Importance for Agglomerate Formation. Drying Technol. 2022, 1–13. DOI: 10.1080/07373937.2022.2111439.
  • Fröhlich, J. A.; Ruprecht, N. A.; Hinrichs, J.; Kohlus, R. Nozzle Zone Agglomeration in Spray Dryers: Effect of Powder Addition on Particle Coalescence. Powder Technol. 2020, 374, 223–232. DOI: 10.1016/j.powtec.2020.07.009.
  • Krischer, O. Trocknungstechnik: Die wissenschaftlichen Grundlagen der Trocknungstechnik, 3., Aufl.; Springer Berlin: Berlin, 1978.
  • Nakagawa, K.; Ritcharoen, W.; Sri-Uam, P.; Pavasant, P.; Adachi, S. Antioxidant Properties of Convective-Air-Dried Spirulina Maxima: Evaluation of Phycocyanin Retention by a Simple Mathematical Model of Air-Drying. Food Bioprod. Process. 2016, 100, 292–302. DOI: 10.1016/j.fbp.2016.07.014.
  • MacColl, R. Cyanobacterial Phycobilisomes. J. Struct. Biol. 1998, 124, 311–334. DOI: 10.1006/jsbi.1998.4062.
  • Mallamace, F.; Corsaro, C.; Mallamace, D.; Baglioni, P.; Stanley, H. E.; Chen, S.-H. A Possible Role of Water in the Protein Folding Process. J. Phys. Chem. B. 2011, 115, 14280–14294. DOI: 10.1021/jp205285t.
  • Schmitz-Schug, I.; Kulozik, U.; Foerst, P. Reaction Kinetics of Lysine Loss in a Model Dairy Formulation as Related to the Physical State. Food Bioprocess Technol. 2014, 7, 877–886. DOI: 10.1007/s11947-013-1119-3.
  • Luyben, K. C.; Liou, J. K.; Bruin, S. Enzyme Degradation during Drying. Biotechnol. Bioeng. 1982, 24, 533–552. DOI: 10.1002/bit.260240303.
  • Meerdink, G.; Van’t Riek, K. Predicition of Product Quality during Spray Drying. Food Bioprod. Process. 1995, 165–170.
  • Perdana, J.; Fox, M. B.; Schutyser, M.; Boom, R. M. Enzyme Inactivation Kinetics: Coupled Effects of Temperature and Moisture Content. Food Chem. 2012, 133, 116–123. DOI: 10.1016/j.foodchem.2011.12.080.
  • Fujii, S.; Yoshimoto, N.; Yamamoto, S. Enzyme Retention during Drying of Amorphous Sugar and Carbohydrate Solutions: Diffusion Model Revisited. Drying Technol. 2013, 31, 1525–1531. DOI: 10.1080/07373937.2013.810639.
  • Kerkhof, P. J. A. M.; Schoeber, W. J. A. H. Theoretical modelling of the drying behaviour of droplets in spray dryers. Advances in preconcentration and dehydration of foods; 1974, pp 349–397.
  • Wijlhuizen, A. E.; Kerkhof, P.; Bruin, S. Theoretical Study of the Inactivation of Phosphatase during Spray Drying of Skim-Milk. Chem. Eng. Sci. 1979, 34, 651–660. DOI: 10.1016/0009-2509(79)85110-6.
  • Atuonwu, J. C.; Ray, J.; Stapley, A. G. A Kinetic Model for Whey Protein Denaturation at Different Moisture Contents and Temperatures. Int. Dairy J. 2017, 75, 41–50. DOI: 10.1016/j.idairyj.2017.07.002.
  • Haque, M. A.; Putranto, A.; Aldred, P.; Chen, J.; Adhikari, B. Drying and Denaturation Kinetics of Whey Protein Isolate (WPI) during Convective Air Drying Process. Drying Technol. 2013, 31, 1532–1544. DOI: 10.1080/07373937.2013.794832.
  • Wang, B.; Timilsena, Y. P.; Blanch, E.; Adhikari, B. Drying and Denaturation Characteristics of Three Forms of Bovine Lactoferrin. Drying Technol. 2017, 35, 606–615. DOI: 10.1080/07373937.2016.1196699.
  • Nakagawa, K.; Tamura, A.; Adachi, S. Optimization of Food Dye (Betanin) Retention during Hot Air Drying: Design Space Calculation with Consideration of Reaction and Substrate Transfer Kinetics. Drying Technol. 2018, 36, 1920–1929. DOI: 10.1080/07373937.2018.1463538.
  • Hassan, H. M.; Mumford, C. J. Mechanisms of Drylng of Skin-Forming Materials; the Significance of Skin Formation and a Comparison between Three Types of Material. Drying Technol. 1996, 14, 1763–1777. DOI: 10.1080/07373939608917172.
  • Incropera, F. P.; DeWitt, D. P.; Bergmann, T. L.; Lavine, A. S. Fundamentals of Heat and Mass Transfer, 6th ed.; Wiley: New York, 1996.
  • Siemons, I.; Politiek, R. G. A.; Boom, R. M.; van der Sman, R. G. M.; Schutyser,.; M. A.; I. Dextrose Equivalence of Maltodextrins Determines Particle Morphology Development during Single Sessile Droplet Drying. Food Res. Int. 2020, 131, 108988. DOI: 10.1016/j.foodres.2020.108988.
  • Williams, M. L.; Landel, R. F.; Ferry, J. D. The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-Forming Liquids. J. Am. Chem. Soc. 1955, 77, 3701–3707. DOI: 10.1021/ja01619a008.
  • Fröhlich, J. A.; Ruprecht, N. A.; Hinrichs, J.; Kohlus, R. Nozzle Zone Agglomeration in Spray Dryers: Determination of the Agglomeration Efficiency by Means of Agglomerate Properties and Residence Time Distribution. Manus. Sub. Pub. 2023,
  • Ruprecht, N. A.; Teichmann, H.; Kohlus, R. A Particle Shape-Based Segmentation Method to Characterize Spray Dried Materials by X-Ray Microtomography. Particuology 2023, 81, 119–127. DOI: 10.1016/j.partic.2022.12.017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.