Publication Cover
Drying Technology
An International Journal
Volume 41, 2023 - Issue 11
101
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Microstructural modeling of moisture-thermal and mechanical behavior within concrete during drying at elevated temperatures

&
Pages 1815-1840 | Received 11 Nov 2022, Accepted 22 Mar 2023, Published online: 11 Apr 2023

References

  • Maruyama, I.; Sasano, H.; Nishioka, Y.; Igarashi, G. Strength and Young’s Modulus Change in Concrete Due to Long-Term Drying and Heating up to 90 °C. Cem. Concr. Res. 2014, 66, 48–63. DOI: 10.1016/j.cemconres.2014.07.016.
  • Luikov, A. V. Heat and Transfer in Capillary-Porous Bodies. Adv. Heat Transf. 1964, 1, 123–184.
  • Philip, J. R.; De Vries, D. A. Moisture Movement in Porous Materials under Temperature Gradients. Trans. AGU. 1957, 38, 222–232. DOI: 10.1029/TR038i002p00222.
  • De Vries, D. A. Simultaneous Transfer of Heat and Moisture in Porous Materials. Trans. AGU. 1958, 39, 909–912. DOI: 10.1029/TR039i005p00909.
  • Whitaker, S. Simultaneous Heat, Mass, and Momentum Transfer in Porous Media: A Theory of Drying. Adv. Heat Transf. 1977, 13, 119–203.
  • Tenchev, R. T.; Li, L. Y.; Purkiss, J. A. Finite Element Analysis of Coupled Heat and Moisture Transfer in Concrete Subjected to Fire. Numer. Heat Transf. Part A. 2001, 39, 685–710. DOI: 10.1080/10407780152032839.
  • Davie, C. T.; Pearce, C. J.; Bic’anic’, N. Coupled Heat and Moisture Transport in Concrete at Elevated Temperature Effect of Capillary Pressure and Adsorbed Water. Numer. Heat. Transf. Part A. 2006, 49, 733–763. DOI: 10.1080/10407780500503854.
  • Bažant, Z. P.; Chern, J. C.; Thonguthai, W. Finite Element Program for Moisture and Heat Transfer in Heated Concrete. Nucl. Eng. Des. 1982, 68, 61–70. DOI: 10.1016/0029-5493(82)90040-1.
  • Rzig, R.; Khedher, N. B.; Nasrallah, S. B. Three-Dimensional Simulation of Mass and Heat Transfer in Drying Unsaturated Porous Medium. Heat Trans. Res. 2017, 48, 985–1005. DOI: 10.1615/HeatTransRes.2017016243.
  • Rzig, R.; Khedher, N. B.; Nasrallah, S. B. A 3-D Numerical Heat and Mass Transfer Model for Simulating the Vibration Effects on Drying Process. Heat Trans. Asian Res. 2017, 46, 1204–1221. DOI: 10.1002/htj.21269.
  • Powers, T. C. The Thermodynamics of Volume Change and Creep. Mater. Struct. 1968, 1, 487–507.
  • Hubert, F. X.; Burlion, N.; Shao, J. F. Drying of Concrete: modelling of a Hydric Damage. Mat. Struct. 2003, 36, 12–21. DOI: 10.1007/BF02481566.
  • Bourgeois, F.; Burlion, N.; Shao, J. F. Modelling of Elastoplastic Damage in Concrete Due to Desiccation Shrinkage. Int. J. Numer. Anal. Meth. Geomech. 2002, 26, 759–774. DOI: 10.1002/nag.221.
  • Manel, B. A.; Jalila, S.; Daoued, M.; Ahmed, B. Multiphase Thermo-Hydro-Mechanical Model for Concrete under Drying at Elevated Temperatures. Drying Technol. 2015, 33, 143–152. DOI: 10.1080/07373937.2014.937871.
  • Gawin, D.; Pesavento, F.; Schrefler, B. A. Hygro-Thermo-Chemo-Mechanical Modeling of Concrete at Early Ages and beyond. Part I: Hydration and Hygro-Thermal Phenomena. Int. J. Numer. Meth. Eng. 2006, 67, 299–331. DOI: 10.1002/nme.1615.
  • Diamond, S.; Huang, J. D. ITZ in Concrete – a Different View Based on Image Analysis and SEM Observations. Cem. Concr. Compos. 2001, 23, 179–188. DOI: 10.1016/S0958-9465(00)00065-2.
  • Davie, C. T.; Pearce, C. J.; Kukla, K.; Bićanić, N. Modelling of Transport Processes in Concrete Exposed to Elevated temperature-An Alternative Formulation for Sorption Isotherms. Cem. Concr. Res. 2018, 106, 144–154. DOI: 10.1016/j.cemconres.2018.01.012.
  • Gawin, D.; Pesavento, F.; Schrefler, B. A. What Physical Phenomena Can Be Neglected When Modelling Concrete at Elevated Temperature? A Comparative Study. Part I: Physical Phenomena and Mathematical Model. Int. J. Solids Struct. 2011, 48, 1927–1944. DOI: 10.1016/j.ijsolstr.2011.03.004.
  • Dal Pont, S.; Ehrlacher, A. Numerical and Experimental Analysis of Chemical Dehydration, Heat and Mass Transfers in a Concrete Hollow Cylinder Submitted to Elevated Temperatures. Int. J. Heat Mass Transf. 2004, 47, 135–147. DOI: 10.1016/S0017-9310(03)00381-8.
  • Shen, J. R.; Xu, Q. J.; Li, Q. B. Effect of Temperature on Pore Structure and Strength of Concrete. ACI Mater. J. 2020, 117, 85–94.
  • Alejandre, J.; Tildesley, D. J.; Chapela, G. A. Molecular Dynamics Simulation of the Orthobaric Densities and Surface Tension of Water. J. Chem. Phys. 1995, 102, 4574–4583. DOI: 10.1063/1.469505.
  • Bažant, Z. P.; Jirásek, M. Creep and Hygrothermal Effects in Concrete Structures. In Solid Mechanics and Its Applications, Springer: Dordrecht. 2018, 281, 458–459, 652.
  • Gawin, D.; Majorana, C. E.; Schrefler, B. A. Numerical Analysis of Hygro-Thermal Behavior and Damage of Concrete at Elevated Temperature. Mech. Cohes.‐Frict. Mater. 1999, 4, 37–74. DOI: 10.1002/(SICI)1099-1484(199901)4:1<37::AID-CFM58>3.0.CO;2-S.
  • Antoine, C. Tensions des vapeurs; nouvelle relation entre les tensions et les temperatures. Compt. Rendus Séances l’Académie Sci. 1888, 107, 681–684, 778–780, 836–837.
  • Gawin, D.; Pesavento, F.; Schrefler, B. Numerical Analysis of Hygro-Thermal Behaviour and Damage of Concrete at Temperature above the Critical Point of Water. Int. J. Numer. Anal. Meth. Geomech. 2002, 26, 537–562. DOI: 10.1002/nag.211.
  • Buckingham, E. Study on the Movement of Soil Moisture. U.S. Department of Agriculture Bureau of Soils, 1907, 38.
  • Chung, J. H.; Consolazio, G. R. Numerical Modeling of Transport Phenomena in Reinforced Concrete Exposed to Elevated Temperatures. Cem. Concr. Res. 2005, 35, 597–608. DOI: 10.1016/j.cemconres.2004.05.037.
  • Fick, A. Über Diffusion, Poggendorff’s Ann, Phys 94, 1855, 59–86.
  • De Vries, D. A.; Kruger, A. J. On the Value of the Diffusion Coefficient of Water Vapour in Air. In Proc. Of Colloque Int. Du CNRS. 1966, 161, 561–672.
  • Watson, K. M. Thermodynamics of the Liquid States, Generalized Prediction of Properties. Ind. Eng. Chem. 1943, 35, 398–406. DOI: 10.1021/ie50400a004.
  • Li, S.; Chen, G.; Ji, G.; Lu, Y. Quantitative Damage Evaluation of Concrete Suffered Freezing–Thawing by DIP Technique. Constr. Build. Mater. 2014, 69, 177–185. DOI: 10.1016/j.conbuildmat.2014.07.072.
  • Turner, I. W.; Jolly, P. C. Combined Microwave and Convective Drying of a Porous Material. Drying Technol. 1991, 9, 1209–1269. DOI: 10.1080/07373939108916749.
  • Mazars, J. Application de la manique de l’endommagement au comportement non linire et la rupture du b6ton de structure. PhD thesis, Universit Pierre et Marie Curie, Paris, 1984.
  • Barthélémy, J. F. Effective Permeability of Media with a Dense Network of Long and Micro Fractures. Transp. Porous Med. 2009, 76, 153–178. DOI: 10.1007/s11242-008-9241-9.
  • Coussy, O.; Eymard, R.; Lassabatere, T. Constitutive Modelling of Unsaturated Drying Deformable Materials. J. Eng. Mech. 1998, 124, 658–667.
  • Bishop, A. W. The Principle of Effective Stress. Teknisk. Ukeblad. 1959, 39, 859–863.
  • Gawin, D.; Pesavento, F.; Schrefler, B. A. Modelling of Deformations of High Strength Concrete at Elevated Temperatures. Mater. Struct. 2004, 37, 218–236.
  • Shen, J. R.; Xu, Q. J. Effect of Temperatures on Compressive Strength of Concrete. Constr. Building. Mater. 2019, 229, 116846. DOI: 10.1016/j.conbuildmat.2019.116846.
  • EN, 1992-1-2. Design of Concrete Structures. Part 1-2: General Rules—Structural Fire Design, Eurocode 2, European Committee for Standardization, Brussels, Belgium, 2004.
  • Schrefler, B. A.; Gawin, D. The Effective Stress Principle: incremental or Finite Form. Int. J. Numer. Anal. Methods Geomech. 1996, 20, 785–814. DOI: 10.1002/(SICI)1096-9853(199611)20:11<785::AID-NAG848>3.0.CO;2-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.