Publication Cover
Drying Technology
An International Journal
Volume 41, 2023 - Issue 13
335
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Far infrared assisted refractance window drying: Influence on drying characteristics and quality of banana leather

, &
Pages 2143-2155 | Received 17 Mar 2023, Accepted 23 May 2023, Published online: 15 Jun 2023

References

  • Hii, C. L.; Ong, S. P.; Yap, J. Y.; Putranto, A.; Mangindaan, D. Hybrid Drying of Food and Bioproducts: A Review. Dry. Technol. 2021, 39, 1554–1576. DOI: 10.1080/07373937.2021.1914078.
  • Shewale, S. R.; Rajoriya, D.; Bhavya, M. L.; Hebbar, H. U. Application of Radiofrequency Heating and Low Humidity Air for Sequential Drying of Apple Slices: Process Intensification and Quality Improvement. LWT. 2021, 135, 109904. DOI: 10.1016/j.lwt.2020.109904.
  • Chua, K. J.; Chou, S. K. Recent Advances in Hybrid Drying Technologies. Chapter 24. Emerg. Technol. Food Process. 2014, 447–459. DOI: 10.1016/B978-0-12-411479-1.00024-3.
  • Hebbar, H. U.; Vishwanathan, K. H.; Ramesh, M. N. Development of Combined Infrared and Hot Air Dryer for Vegetables. J. Food Eng. 2004, 65, 557–563. DOI: 10.1016/j.jfoodeng.2004.02.020.
  • Meeso, N.; Nathakaranakule, A.; Madhiyanon, T.; Soponronnarit, S. Influence of FIR Irradiation on Paddy Moisture Reduction and Milling Quality after Fluidized Bed Drying. J. Food Eng. 2004, 65, 293–301. DOI: 10.1016/j.jfoodeng.2004.01.033.
  • Xie, L.; Mujumdar, A. S.; Fang, X.-M.; Wang, J.; Dai, J.-W.; Du, Z.-L.; Xiao, H.-W.; Liu, Y.; Gao, Z.-J. Far-Infrared Radiation Heating Assisted Pulsed Vacuum Drying (FIR-PVD) of Wolfberry (Lycium Barbarum L.): Effects on Drying Kinetics and Quality Attributes. Food Bioprod. Process. 2017, 102, 320–331. DOI: 10.1016/j.fbp.2017.01.012.
  • Nathakaranakule, A.; Jaiboon, P.; Soponronnarit, S. Far-Infrared Radiation Assisted Drying of Longan Fruit. J. Food Eng. 2010, 100, 662–668. DOI: 10.1016/j.jfoodeng.2010.05.016.
  • Deng, Y.; Wu, J.; Su, S.; Liu, Z.; Ren, L.; Zhang, Y. Effect of Far-Infrared Assisted Heat Pump Drying on Water Status and Moisture Sorption Isotherm of Squid (Illex Illecebrosus) Fillets. Dry. Technol. 2011, 29, 1580–1586. DOI: 10.1080/07373937.2011.584255.
  • Rajoriya, D.; Shewale, S. R.; Bhavya, M. L.; Hebbar, H. U. Far Infrared Assisted Refractance Window Drying of Apple Slices: Comparative Study on Flavour, Nutrient Retention and Drying Characteristics. Innov. Food Sci. Emerg. Technol. 2020, 66, 102530. DOI: 10.1016/j.ifset.2020.102530.
  • Baeghbali, V.; Niakousari, M.; Ngadi, M. O.; Hadi Eskandari, M. Combined Ultrasound and Infrared Assisted Conductive Hydro-Drying of Apple Slices. Dry. Technol. 2019, 37, 1793–1805. DOI: 10.1080/07373937.2018.1539745.
  • Nindo, C. I.; Tang, J. Refractance Window Dehydration Technology: A Novel Contact Drying Method. Dry. Technol. 2007, 25, 37–48. DOI: 10.1080/07373930601152673.
  • Zotarelli, M. F.; Carciofi, B. A. M.; Laurindo, J. B. Effect of Process Variables on the Drying Rate of Mango Pulp by Refractance Window. Food Res. Int. 2015, 69, 410–417. DOI: 10.1016/j.foodres.2015.01.013.
  • Raghavi, L. M.; Moses, J. A.; Anandharamakrishnan, C. Refractance Window Drying of Foods: A Review. J. Food Eng. 2018, 222, 267–275. DOI: 10.1016/j.jfoodeng.2017.11.032.
  • Hernández-Santos, B.; Martínez-Sánchez, C. E.; Torruco-Uco, J. G.; Rodríguez-Miranda, J.; Ruiz-López, I. I.; Vajando-Anaya, E. S.; Carmona-García, R.; Herman-Lara, E. Evaluation of Physical and Chemical Properties of Carrots Dried by Refractance Window Drying. Dry. Technol. 2016, 34, 1414–1422. DOI: 10.1080/07373937.2015.1118705.
  • Rajoriya, D.; Shewale, S. R.; Hebbar, H. U. Refractance Window Drying of Apple Slices: Mass Transfer Phenomena and Quality Parameters. Food Bioprocess. Technol. 2019, 12, 1646–1658. DOI: 10.1007/s11947-019-02334-7.
  • Tontul, I.; Topuz, A. Effects of Different Drying Methods on the Physicochemical Properties of Pomegranate Leather (Pestil). LWT. 2017, 80, 294–303. DOI: 10.1016/j.lwt.2017.02.035.
  • da Silva Simão, R.; de Moraes, J. O.; de Souza, P. G.; Carciofi, B. A. M.; Laurindo, J. B. Production of Mango Leathers by Cast-Tape Drying: Product Characteristics and Sensory Evaluation. LWT. 2019, 99, 445–452. DOI: 10.1016/j.lwt.2018.10.013.
  • Rajoriya, D.; Bhavya, M. L.; Hebbar, H. U. Impact of Process Parameters on Drying Behaviour, Mass Transfer and Quality Profile of Refractance Window Dried Banana Puree. LWT. 2021, 145, 111330. DOI: 10.1016/j.lwt.2021.111330.
  • Ranganna, S. Handbook of Analysis and Quality Control for Fruit and Vegetable Products, 2nd ed.; Tata McGraw-Hill Education: India, 2014.
  • Dai, J. W.; Rao, J. Q.; Wang, D.; Xie, L.; Xiao, H. W.; Liu, Y. H.; Gao, Z. J. Process-Based Drying Temperature and Humidity Integration Control Enhances Drying Kinetics of Apricot Halves. Dry. Technol. 2015, 33, 365–376. DOI: 10.1080/07373937.2014.954667.
  • Marabi, A.; Livings, S.; Jacobson, M.; Saguy, I. S. Normalized Weibull Distribution for Modeling Rehydration of Food Particulates. Eur. Food Res. Technol. 2003, 217, 311–318. DOI: 10.1007/s00217-003-0719-y.
  • Shewale, S. R.; Rajoriya, D.; Hebbar, H. U. Low Humidity Air Drying of Apple Slices: Effect of EMR Pretreatment on Mass Transfer Parameters, Energy Efficiency and Quality. Innov. Food Sci. Emerg. Technol. 2019, 55, 1–10. DOI: 10.1016/j.ifset.2019.05.006.
  • Wojdyło, A.; Oszmiański, J.; Laskowski, P. Polyphenolic Compounds and Antioxidant Activity of New and Old Apple Varieties. J. Agric. Food Chem. 2008, 56, 6520–6530. DOI: 10.1021/jf800510j.
  • Shewale, S. R.; Hebbar, H. U. Effect of Infrared Pretreatment on Low-Humidity Air Drying of Apple Slices. Dry. Technol. 2017, 35, 490–499. DOI: 10.1080/07373937.2016.1190935.
  • Benzie, I. F.; Strain, J. J. Ferric Reducing/Antioxidant Power Assay: Direct Measure of Total Antioxidant Activity of Biological Fluids and Modified Version for Simultaneous Measurement of Total Antioxidant Power and Ascorbic Acid Concentration. Methods Enzymol. 1999, 299, 15–27. DOI: 10.1016/S0076-6879(99)99005-5.
  • Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. DOI: 10.1016/S0891-5849(98)00315-3.
  • Bhavya, M. L.; Shewale, S. R.; Rajoriya, D.; Hebbar, H. U. Impact of Blue LED Illumination and Natural Photosensitizer on Bacterial Pathogens, Enzyme Activity and Quality Attributes of Fresh-Cut Pineapple Slices. Food Bioprocess. Technol. 2021, 14, 362–372. DOI: 10.1007/s11947-021-02581-7.
  • Bhavya, M. L.; Hebbar, H. U. Sono-Photodynamic Inactivation of Escherichia coli and Staphylococcus aureus in Orange Juice. Ultrason. Sonochem. 2019, 57, 108–115. DOI: 10.1016/j.ultsonch.2019.05.002.
  • Rufián-Henares, J. A.; Delgado-Andrade, C. Effect of Digestive Process on Maillard Reaction Indexes and Antioxidant Properties of Breakfast Cereals. Food Res. Int. 2009, 42, 394–400. DOI: 10.1016/j.foodres.2009.01.011.
  • Dissa, A. O.; Desmorieux, H.; Bathiebo, J.; Koulidiati, J. Convective Drying Characteristics of Amelie Mango (Mangifera Indica L. cv. ‘Amelie’) with Correction for Shrinkage. J. Food Eng. 2008, 88, 429–437. DOI: 10.1016/j.jfoodeng.2008.03.008.
  • Abano, E. E.; Le Ma, H.; Qu, W. Thin-Layer Catalytic Far-Infrared Radiation Drying and Flavour of Tomato Slices. J. Agricult. Eng. 2014, 45, 37–45. DOI: 10.4081/jae.2014.226.
  • Afzal, T. M.; Abe, T.; Hikida, Y. Energy and Quality Aspects during Combined FIR-Convection Drying of Barley. J. Food Eng. 1999, 42, 177–182. DOI: 10.1016/S0260-8774(99)00117-X.
  • Vega-Gálvez, A.; Ah-Hen, K.; Chacana, M.; Vergara, J.; Martínez-Monzó, J.; García-Segovia, P.; Lemus-Mondaca, R.; Di Scala, K. Effect of Temperature and Air Velocity on Drying Kinetics, Antioxidant Capacity, Total Phenolic Content, Colour, Texture and Microstructure of Apple (Var. Granny Smith) Slices. Food Chem. 2012, 132, 51–59. DOI: 10.1016/j.foodchem.2011.10.029.
  • Zeng, Y.; Liu, Y.; Zhang, J.; Xi, H.; Duan, X. Effects of Far-Infrared Radiation Temperature on Drying Characteristics, Water Status, Microstructure and Quality of Kiwifruit Slices. Food Measure. 2019, 13, 3086–3096. DOI: 10.1007/s11694-019-00231-3.
  • Lee, S. C.; Jeong, S. M.; Kim, S. Y.; Park, H. R.; Nam, K. C.; Ahn, D. U. Effect of Far-Infrared Radiation and Heat Treatment on the Antioxidant Activity of Water Extracts from Peanut Hulls. Food Chem. 2006, 94, 489–493. DOI: 10.1016/j.foodchem.2004.12.001.
  • Wanyo, P.; Siriamornpun, S.; Meeso, N. Improvement of Quality and Antioxidant Properties of Dried Mulberry Leaves with Combined Far-Infrared Radiation and Air Convection in Thai Tea Process. Food Bioprod. Process. 2011, 89, 22–30. DOI: 10.1016/j.fbp.2010.03.005.
  • Santos, S. D. J. L.; Canto, H. K. F.; da Silva, L. H. M.; Rodrigues, A. M. D. C. Characterization and Properties of Purple Yam (Dioscorea Trifida) Powder Obtained by Refractance Window Drying. Dry Technol. 2022, 40, 1103–1113. DOI: 10.1080/07373937.2020.1847140.
  • Pekke, M. A.; Pan, Z.; Atungulu, G. G.; Smith, G.; Thompson, J. F. Drying Characteristics and Quality of Bananas under Infrared Radiation Heating. IJABE. 2013, 6, 58–70. DOI: 10.3965/j.ijabe.20130603.008.
  • Wang, J.; Li, Y. Z.; Chen, R. R.; Bao, J. Y.; Yang, G. M. Comparison of Volatiles of Banana Powder Dehydrated by Vacuum Belt Drying, Freeze-Drying and Air-Drying. Food Chem. 2007, 104, 1516–1521. DOI: 10.1016/j.foodchem.2007.02.029.
  • de Vasconcelos Facundo, H. V.; dos Santos Garruti, D.; dos Santos Dias, C. T.; Cordenunsi, B. R.; Lajolo, F. M. Influence of Different Banana Cultivars on Volatile Compounds during Ripening in Cold Storage. Food Res. Int. 2012, 49, 626–633. DOI: 10.1016/j.foodres.2012.08.013.
  • Saha, B.; Bucknall, M. P.; Arcot, J.; Driscoll, R. Profile Changes in Banana Flavour Volatiles during Low Temperature Drying. Food Res. Int. 2018, 106, 992–998. DOI: 10.1016/j.foodres.2018.01.047.
  • Pino, J. A.; Febles, Y. Odour-Active Compounds in Banana Fruit cv. Giant Cavendish. Food Chem. 2013, 141, 795–801. DOI: 10.1016/j.foodchem.2013.03.064.
  • Baltes, W. Chemical Changes in Food by the Maillard Reaction. Food Chem. 1982, 9, 59–73. DOI: 10.1016/0308-8146(82)90069-3.
  • Hebbar, H. U.; Rastogi, N. K. Mass Transfer during Infrared Drying of Cashew Kernel. J. Food Eng. 2001, 47, 1–5. DOI: 10.1016/S0260-8774(00)00088-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.