Publication Cover
Drying Technology
An International Journal
Volume 42, 2024 - Issue 3
728
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Coupling Interval Hyper-Active Drying (IHAD) with Instant Controlled Pressure Drop (D.I.C.) to define new swell-drying processes

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 462-476 | Received 19 Jan 2023, Accepted 23 May 2023, Published online: 29 Jun 2023

References

  • Xiao, M.; Yi, J.; Bi, J.; Zhao, Y.; Peng, J.; Hou, C.; Lyu, J.; Zhou, M. Modification of Cell Wall Polysaccharides during Drying Process Affects Texture Properties of Apple Chips. J. Food Qual. 2018, 2018, 1–11. DOI: 10.1155/2018/4510242.
  • McKee, L. H. Microbial Contamination of Spices and Herbs: A Review. LWT Food Sci. Technol. 1995, 28, 1–11. DOI: 10.1016/S0023-6438(95)80004-2.
  • Mustapha, M. K.; Ajibola, T. B.; Salako, A. F.; Ademola, S. K. Solar Drying and Organoleptic Characteristics of Two Tropical African Fish Species Using Improved Low-Cost Solar Driers. Food Sci. Nutr. 2014, 2, 244–250. DOI: 10.1002/fsn3.101.
  • Mahiuddin, M.; Khan, M. I. H.; Kumar, C.; Rahman, M. M.; Karim, M. A. Shrinkage of Food Materials during Drying: Current Status and Challenges. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1113–1126. DOI: 10.1111/1541-4337.12375.
  • Krokida, M. K.; Karathanos, V. T.; Maroulis, Z. B. Effect of Freeze-Drying Conditions on Shrinkage and Porosity of Dehydrated Agricultural Products. J. Food Eng. 1998, 35, 369–380. DOI: 10.1016/S0260-8774(98)00031-4.
  • Duan, X.; Yang, X.; Ren, G.; Pang, Y.; Liu, L.; Liu, Y. Technical Aspects in Freeze-Drying of Foods. Drying Technol. 2016, 34, 1271–1285. DOI: 10.1080/07373937.2015.1099545.
  • Chitrakar, B.; Zhang, M.; Adhikari, B. Dehydrated Foods: Are They Microbiologically Safe? Crit. Rev. Food Sci. Nutr. 2019, 59, 2734–2745. DOI: 10.1080/10408398.2018.1466265.
  • Mathot, A. G.; Postollec, F.; Leguerinel, I. Bacterial Spores in Spices and Dried Herbs: The Risks for Processed Food. Compr. Rev. Food Sci. Food Saf. 2021, 20, 840–862. DOI: 10.1111/1541-4337.12690.
  • Trucksess, M. W.; Scott, P. M. Mycotoxins in Botanicals and Dried Fruits: A Review. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2008, 25, 181–192. DOI: 10.1080/02652030701567459.
  • Lim, Y. J.; Eom, S. H. The Different Contributors to Antioxidant Activity in Thermally Dried Flesh and Peel of Astringent Persimmon Fruit. Antioxidants 2022, 11, 597. DOI: 10.3390/antiox11030597.
  • Oliveira-Alves, S. C.; Andrade, F.; Prazeres, I.; Silva, A. B.; Capelo, J.; Duarte, B.; Caçador, I.; Coelho, J.; Serra, A. T.; Bronze, M. R. Impact of Drying Processes on the Nutritional Composition, Volatile Profile, Phytochemical Content and Bioactivity of Salicornia Ramosissima J. Woods. Antioxidants 2021, 10, 1312. DOI: 10.3390/antiox10081312.
  • Krokida, M. K.; Philippopoulos, C. Rehydration of Dehydrated Foods. Drying Technol. 2005, 23, 799–830. DOI: 10.1081/DRT-200054201.
  • Allaf, T.; Allaf, K. Instant Controlled Pressure Drop (D.I.C) in Food Processing; Springer: New York, NY, 2014.
  • Nguyen, D. Q.; Nguyen, T. H.; Allaf, K. Volumetric Heat Transfer Coefficient in Spray Drying of Soymilk Powder. Drying Technol. 2022, 40, 1146–1152. DOI: 10.1080/07373937.2020.1857768.
  • Nguyen, T. H.; Lanoisellé, J. L.; Allaf, T.; Allaf, K. Experimental and Fundamental Critical Analysis of Diffusion Model of Airflow Drying. Drying Technol. 2016, 34, 1884–1899. DOI: 10.1080/07373937.2016.1155052.
  • Mounir, S.; Amami, E.; Allaf, T.; Mujumdar, A.; Allaf, K. Instant Controlled Pressure Drop (DIC) Coupled to Intermittent Microwave/Airflow Drying to Produce Shrimp Snacks: Process Performance and Quality Attributes. Drying Technol. 2020, 38, 695–711. DOI: 10.1080/07373937.2019.1694537.
  • Wray, D.; Ramaswamy, H. S. Novel Concepts in Microwave Drying of Foods. Drying Technol. 2015, 33, 769–783. DOI: 10.1080/07373937.2014.985793.
  • Cong, D. T.; Haddad, M. A.; Rezzoug, Z.; Lefevre, L.; Allaf, K. Dehydration by Successive Pressure Drops for Drying Paddy Rice Treated by Instant Controlled Pressure Drop. Drying Technol. 2008, 26, 443–451. DOI: 10.1080/07373930801929300.
  • Devahastin, S.; Mujumdar, A. S. Superheated Steam Drying of Foods and Biomaterials. In Modern Drying Technology; Tsotsas, E., Mujumdar, A. S., Eds.; Wiley Online Library, 2014; pp 57–84.
  • Krokida, M. K.; Maroulis, Z. B. Effect of Drying Method on Shrinkage and Porosity. Drying Technol. 1997, 15, 2441–2458. DOI: 10.1080/07373939708917369.
  • Pech-Almeida, J. L.; Téllez-Pérez, C.; Alonzo-Macías, M.; Teresa-Martínez, G. D.; Allaf, K.; Allaf, T.; Cardador-Martínez, A. An Overview on Food Applications of the Instant Controlled Pressure-Drop Technology, an Innovative High Pressure-Short Time Process. Molecules 2021, 26, 6519. DOI: 10.3390/molecules26216519.
  • Allaf, T.; Tomao, V.; Besombes, C.; Chemat, F. Thermal and Mechanical Intensification of Essential Oil Extraction from Orange Peel via Instant Autovaporization. Chem. Eng. Process 2013, 72, 24–30. DOI: 10.1016/j.cep.2013.06.005.
  • Mounir, S.; Allaf, T.; Mujumdar, A. S.; Allaf, K. Swell Drying: Coupling Instant Controlled Pressure Drop DIC to Standard Convection Drying Processes to Intensify Transfer Phenomena and Improve Quality—an Overview. Drying Technol. 2012, 30, 1508–1531. DOI: 10.1080/07373937.2012.693145.
  • Mounir, S.; Téllez-Pérez, C.; Alonzo-Macías, M.; Allaf, K. Swell-Drying. In Instant Controlled Pressure Drop (D.I.C.) in Food Processing: From Fundamental to Industrial Applications; Allaf, T., Allaf, K., Eds.; Springer New York: New York, NY, 2014; pp 3–43
  • Hajji, W.; Gliguem, H.; Bellagha, S.; Allaf, K. Impact of Initial Moisture Content Levels, Freezing Rate and Instant Controlled Pressure Drop Treatment (DIC) on Dehydrofreezing Process and Quality Attributes of Quince Fruits. Drying Technol. 2019, 37, 1028–1043. DOI: 10.1080/07373937.2018.1481867.
  • Mounir, S. Texturing of Chicken Breast Meat as an Innovative Way to Intensify Drying: Use of a Coupled Washing/Diffusion CWD Phenomenological Model to Enhance Kinetics and Functional Properties. Drying Technol. 2015, 33, 1369–1381. DOI: 10.1080/07373937.2015.1030029.
  • Téllez-Pérez, C.; Cardador-Martínez, A.; Mounir, S. M.; Montejano-Gaitán, J. G.; Sobolik, V.; Allaf, K. Effect of Instant Controlled Pressure Drop Process Coupled to Drying and Freezing on Antioxidant Activity of Green “Poblano” Pepper (Capsicum Annuum L.). FNS. 2013, 04, 321–334. DOI: 10.4236/fns.2013.43043.
  • Téllez-Pérez, C.; Sabah, M. M.; Montejano-Gaitán, J. G.; Sobolik, V.; Martínez, C. A.; Allaf, K. Impact of Instant Controlled Pressure Drop Treatment on Dehydration and Rehydration Kinetics of Green Moroccan Pepper (Capsicum Annuum). Procedia Eng. 2012, 42, 978–1003. DOI: 10.1016/j.proeng.2012.07.491.
  • Mounir, S.; Besombes, C.; Al-Bitar, N.; Allaf, K. Study of Instant Controlled Pressure Drop DIC Treatment in Manufacturing Snack and Expanded Granule Powder of Apple and Onion. Drying Technol. 2011, 29, 331–341. DOI: 10.1080/07373937.2010.491585.
  • Téllez-Pérez, C.; Sobolik, V.; Montejano-Gaitán, J. G.; Abdulla, G.; Allaf, K. Impact of Swell-Drying Process on Water Activity and Drying Kinetics of Moroccan Pepper (Capsicum Annum). Drying Technol. 2015, 33, 131–142. DOI: 10.1080/07373937.2014.936556.
  • Alonzo-Macías, M.; Montejano-Gaitán, G.; Allaf, K. Impact of Drying Processes on Strawberry (Fragaria Var. Camarosa) Texture: Identification of Crispy and Crunchy Features by Instrumental Measurement. J. Texture Stud. 2014, 45, 246–259. DOI: 10.1111/jtxs.12070.
  • Mounir, S.; Allaf, T.; Berka, B.; Hassani, A.; Allaf, K. Instant Controlled Pressure Drop Technology: From a New Fundamental Approach of Instantaneous Transitory Thermodynamics to Large Industrial Applications on High Performance–High Controlled Quality Unit Operations. C. R. Chim. 2014, 17, 261–267. DOI: 10.1016/j.crci.2013.10.019.
  • Mounir, S.; Allaf, K. Three-Stage Spray Drying: New Process Involving Instant Controlled Pressure Drop. Drying Technol. 2008, 26, 452–463. DOI: 10.1080/07373930801929334.
  • Nguyen, D. Q.; Nguyen, T. H.; Mounir, S.; Allaf, K. Effect of Feed Concentration and Inlet Air Temperature on the Properties of Soymilk Powder Obtained by Spray Drying. Drying Technol. 2018, 36, 817–829. DOI: 10.1080/07373937.2017.1357040.
  • Cardador-Martínez, A.; Pech-Almeida, J. L.; Allaf, K.; Palacios-Rojas, N.; Alonzo-Macías, M.; Téllez-Pérez, C. A Preliminary Study on the Effect of the Instant Controlled Pressure Drop Technology (DIC) on Drying and Rehydration Kinetics of Maize Kernels (Zea mays L.). Foods 2022, 11, 2151. DOI: 10.3390/foods11142151.
  • González-Sánchez, T.; Delgado-Alvarado, A.; Herrera-Cabrera, B. E.; Pérez-Luna, G. Efecto del proceso de deshidratación en el color y compuestos bioactivos de jitomate (Solanum lycopersicum L.). Agro Productividad. 2016, 9(4), 33–40.
  • Mounir, S.; Téllez-Pérez, C.; Sunooj, K. V.; Allaf, K. Texture and Color Characteristics of Swell-Dried Ready-to-Eat Zaghloul Date Snacks: Effect of Operative Parameters of Instant Controlled Pressure Drop Process. J. Texture Stud. 2020, 51, 276–289. DOI: 10.1111/jtxs.12468.
  • Albitar, N.; Mounir, S.; Besombes, C.; Allaf, K. Improving the Drying of Onion Using the Instant Controlled Pressure Drop Technology. Drying Technol. 2011, 29, 993–1001. DOI: 10.1080/07373937.2010.507912.
  • Nguyen, D. Q.; Mounir, S.; Allaf, K. Comparative Study of Methods for Producing Gum Arabic Powder and the Impact of DIC Treatment (Instant Controlled Pressure Drop) on the Properties of the Product. Drying Technol. 2019, 37, 1068–1080. DOI: 10.1080/07373937.2018.1483402.
  • Setyopratomo, P.; Fatmawati, A.; Allaf, K. Texturing by Instant Controlled Pressure Drop DIC in the Production of Cassava Flour: Impact on Dehydration Kinetics, Product Physical Properties and Microbial Decontamination. Proceeding of the World Congress on Engineering and Computer Science Vol. I; WCECS, Lect. Notes Comput. Sci. 2009, San Francisco, USA.
  • Debs, E. Destruction des micro-organismes par voir thermo-mécanique contrôlee dans des produits solides en morceaux ou en poudre. Application aux épices et aromates. University of La Rochelle, La Rochelle, France, 2000.
  • Hazime, Z. Study of the destruction of bacterial spores by Instant Controlled Pressure-Drop (DIC). Université Bretagne Sud/Université de la Rochelle, France, 2022.
  • Riadh, M. H.; Ahmad, S. A. B.; Marhaban, M. H.; Soh, A. C. Infrared Heating in Food Drying: An Overview. Drying Technol 2015, 33, 322–335. DOI: 10.1080/07373937.2014.951124.
  • Gupta, M. K.; Sehgal, V. K.; Arora, S. Optimization of Drying Process Parameters for Cauliflower Drying. J. Food Sci. Technol. 2013, 50, 62–69. DOI: 10.1007/s13197-011-0231-5.
  • Hajji, W.; Bellagha, S.; Allaf, K. Energy-Saving New Drying Technology: Interval Starting Accessibility Drying (ISAD) Used to Intensify Dehydrofreezing Efficiency. Drying Technol 2022, 40, 284–298. DOI: 10.1080/07373937.2020.1788072.
  • Rekik, C.; Besombes, C.; Hajji, W.; Gliguem, H.; Bellagha, S.; Mujumdar, A. S.; Allaf, K. Study of Interval Infrared Airflow Drying: A Case Study of Butternut (Cucurbita Moschata). LWT Food Sci. Technol. 2021, 147, 111486. DOI: 10.1016/j.lwt.2021.111486.
  • Haddad, J.; Juhel, F.; Louka, N.; Allaf, K. A Study of Dehydration of Fish Using Successive Pressure Drops (DDS) and Controlled Instantaneous Pressure Drop (DIC). Drying Technol 2004, 22, 457–478. DOI: 10.1081/DRT-120029993.
  • Delele, M. A.; Weigler, F.; Mellmann, J. Advances in the Application of a Rotary Dryer for Drying of Agricultural Products: A Review. Drying Technol. 2015, 33, 541–558. DOI: 10.1080/07373937.2014.958498.
  • Maldaner, V.; Coradi, P. C.; Nunes, M. T.; Müller, A.; Carneiro, L. O.; Teodoro, P. E.; Ribeiro Teodoro, L. P.; Bressiani, J.; Anschau, K. F.; Müller, E. I. Effects of Intermittent Drying on Physicochemical and Morphological Quality of Rice and Endosperm of Milled Brown Rice. LWT 2021, 152, 112334. DOI: 10.1016/j.lwt.2021.112334.
  • Gulati, T.; Datta, A. K. Mechanistic Understanding of Case-Hardening and Texture Development during Drying of Food Materials. J. Food Eng. 2015, 166, 119–138. DOI: 10.1016/j.jfoodeng.2015.05.031.
  • Khalloufi, S.; Almeida-Rivera, C.; Bongers, P. A Theoretical Model and Its Experimental Validation to Predic the Porosity as a Function of Shrinkage and Collapse Phenomena During Drying. Food Res Inter. 2009, 42(8), 1122–1130.
  • Takougnadi, E.; Boroze, T.-E. T.; Azouma, O. Y. Development of an Intermittent Drying Process of Onion. Cogent Food Agric. 2018, 4, 1422225. DOI: 10.1080/23311932.2017.1422225.
  • Motevali, A.; Minaei, S.; Khoshtagaza, M. H. Evaluation of Energy Consumption in Different Drying Methods. Energy Convers. Manag. 2011, 52, 1192–1199. DOI: 10.1016/j.enconman.2010.09.014.
  • Dehghannya, J.; Hosseinlar, S.-H.; Heshmati, M. K. Multi-Stage Continuous and Intermittent Microwave Drying of Quince Fruit Coupled with Osmotic Dehydration and Low Temperature Hot Air Drying. Innov. Food Sci. Emerg. Technol. 2018, 45, 132–151. DOI: 10.1016/j.ifset.2017.10.007.
  • Chryat, Y.; Romdhana, H.; Esteban-Decloux, M. Reducing Energy Requirement for Drying of Beet-Pulp: Simulation of Energy Integration between Superheated Steam and Air Drying Systems. Drying Technol. 2017, 35, 838–848. DOI: 10.1080/07373937.2016.1220952.
  • Gliguem, H.; Hajji, W.; Rekik, C.; Allaf, K.; Bellagha, S. Evaluating the Performances of Interval Starting Accessibility Drying (ISAD) through Protein and Total Polyphenol Contents of Blue Crabmeat (Portunus Segnis). Processes 2021, 9, 1698. DOI: 10.3390/pr9101698.
  • Hajji, W.; Bellagha, S.; Allaf, K. Interval Starting Accessibilities Drying (ISAD) as an Intensification Step in Dehydrofreezing of Strawberries. In Proceedings of the 22nd International Drying Symposium, Massachusetts, USA, 2022.
  • Kowalski, S. J.; PawŁowski, A. Intermittent Drying of Initially Saturated Porous Materials. Chem. Eng. Sci. 2011, 66, 1893–1905. DOI: 10.1016/j.ces.2011.01.044.
  • Brasiello, A.; Adiletta, G.; Russo, P.; Crescitelli, S.; Albanese, D.; Di Matteo, M. Mathematical Modeling of Eggplant Drying: Shrinkage Effect. J. Food Eng. 2013, 114, 99–105. DOI: 10.1016/j.jfoodeng.2012.07.031.
  • Duc Pham, N.; Khan, M. I. H.; Joardder, M. U. H.; Rahman, M. M.; Mahiuddin, M.; Abesinghe, A. M. N.; Karim, M. A. Quality of Plant-Based Food Materials and Its Prediction during Intermittent Drying. Crit. Rev. Food Sci. Nutr. 2019, 59, 1197–1211. DOI: 10.1080/10408398.2017.1399103.
  • Abraha, B.; Admassu, H.; Mahmud, A.; Tsighe, N.; Shui, X. W.; Fang, Y. Effect of Processing Methods on Nutritional and Physico-Chemical Composition of Fish: A Review. MOJ Food Process. Technol. 2018, 6, 376–382. DOI:10.15406/mojfpt.2018.06.00191
  • Qixing, J.; Zhengran, M.; Shuoshuo, W.; Yanshun, X.; Fengyu, T.; Xueqin, X.; Peipei, Y.; Wenshui, X. Effect of Temperature on Protein Compositional Changes of Big Head Carp (Aristichthys Nobilis) Muscle and Exudates. FSTR. 2014, 20, 655–661. DOI: 10.3136/fstr.20.655.
  • Wang, H-c.; Zhang, M.; Adhikari, B. Drying of Shiitake Mushroom by Combining Freeze-Drying and Mid-Infrared Radiation. Food Bioprod. Process 2015, 94, 507–517. DOI: 10.1016/j.fbp.2014.07.008.
  • Praveen Kumar, D. G.; Hebbar, H. U.; Ramesh, M. N. Suitability of Thin Layer Models for Infrared–Hot Air-Drying of Onion Slices. LWT Food Sci. Technol. 2006, 39, 700–705. DOI: 10.1016/j.lwt.2005.03.021.
  • Onwude, D. I.; Hashim, N.; Chen, G. Recent Advances of Novel Thermal Combined Hot Air Drying of Agricultural Crops. Trends Food Sci Technol 2016, 57, 132–145. DOI: 10.1016/j.tifs.2016.09.012.
  • Wang, Y.; Zhang, M.; Mujumdar, A. S.; Chen, H. Drying and Quality Characteristics of Shredded Squid in an Infrared-Assisted Convective Dryer. Drying Technol 2014, 32, 1828–1839. DOI: 10.1080/07373937.2014.952379.
  • Umesh Hebbar, H.; Rastogi, N. K. Mass Transfer during Infrared Drying of Cashew Kernel. J. Food Eng 2001, 47, 1–5. DOI: 10.1016/S0260-8774(00)00088-1.
  • Pan, Z.; Shih, C.; McHugh, T. H.; Hirschberg, E. Study of Banana Dehydration Using Sequential Infrared Radiation Heating and Freeze-Drying. LWT Food Sci. Technol. 2008, 41, 1944–1951. DOI: 10.1016/j.lwt.2008.01.019.
  • Vishwanathan, K. H.; Giwari, G. K.; Hebbar, H. U. Infrared Assisted Dry-Blanching and Hybrid Drying of Carrot. Food Bioprod. Process 2013, 91, 89–94. DOI: 10.1016/j.fbp.2012.11.004.
  • Boateng, I. D.; Yang, X.-M. Process Optimization of Intermediate-Wave Infrared Drying: Screening by Plackett–Burman; Comparison of Box-Behnken and Central Composite Design and Evaluation: A Case Study. Ind. Crops Prod. 2021, 162, 113287. DOI: 10.1016/j.indcrop.2021.113287.
  • Chua, K. J.; Chou, S. K. A Comparative Study between Intermittent Microwave and Infrared Drying of Bioproducts. Int. J. Food Sci. Technol. 2005, 40, 23–39. DOI: 10.1111/j.1365-2621.2004.00903.x.
  • Onwude, D. I.; Hashim, N.; Abdan, K.; Janius, R.; Chen, G. Experimental Studies and Mathematical Simulation of Intermittent Infrared and Convective Drying of Sweet Potato (Ipomoea batatas L.). Food Bioprod. Process 2019, 114, 163–174. DOI: 10.1016/j.fbp.2018.12.006.
  • Aktaş, M.; Şevik, S.; Aktekeli, B. Development of Heat Pump and Infrared-Convective Dryer and Performance Analysis for Stale Bread Drying. Energy Convers. Manag. 2016, 113, 82–94. DOI: 10.1016/j.enconman.2016.01.028.
  • Polat, A.; Taskin, O.; Izli, N. Intermittent and Continuous Infrared Drying of Sweet Potatoes. Heat Mass Transfer 2022, 58, 1709–1721. DOI: 10.1007/s00231-022-03212-3.
  • Sui, Y.; Yang, J.; Ye, Q.; Li, H.; Wang, H. Infrared, Convective, and Sequential Infrared and Convective Drying of Wine Grape Pomace. Drying Technol. 2014, 32, 686–694. DOI: 10.1080/07373937.2013.853670.
  • Ziaforoughi, A.; Esfahani, J. A. A Salient Reduction of Energy Consumption and Drying Time in a Novel PV-Solar Collector-Assisted Intermittent Infrared Dryer. Sol. Energy 2016, 136, 428–436. DOI: 10.1016/j.solener.2016.07.025.
  • Afzal, M. T. Intermittent Far Infrared Radiation Drying. American Society of Agricultural and Biological Engineers, St. Joseph, Michigan Paper number 036201, Annual Meeting 2003.
  • Vega-Mercado, H.; Marcela Góngora-Nieto, M.; Barbosa-Cánovas, G. V. Advances in Dehydration of Foods. J. Food Eng. 2001, 49, 271–289. DOI: 10.1016/S0260-8774(00)00224-7.
  • Azharul, K. C.-L. Microwave-Assisted Pulsed Fluidized and Spouted Bed Drying. In Intermittent and Nonstationary Drying Technologies: Principles and Applications, Azharul, K., Chung-Lim, L., Wang, Y., Mujumdar, A.S., Zhang, M., Eds.; CRC Press, 1st edition 2017, p. 24.