Publication Cover
Drying Technology
An International Journal
Volume 41, 2023 - Issue 15
249
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Spray-drying optimization for Dunaliella salina and Porphyridium cruentum biomass

, , , &
Pages 2371-2384 | Received 19 Jun 2023, Accepted 28 Jul 2023, Published online: 10 Aug 2023

References

  • Balti, R.; Le Balc’h, R.; Brodu, N.; Gilbert, M.; Gouic, L. B.; Le Gall, S.; Sinquin, C.; Massé, A. Concentration and Purification of Porphyridium Cruentum Exopolysaccharides by Membrane Filtration at Various Cross-Flow Velocities. Process Biochem. 2018, 74, 175–184. DOI: 10.1016/j.procbio.2018.06.021.
  • Rebolloso Fuentes, M. M.; Acién Fernández, G. G.; Sánchez Pérez, J. A.; Guil Guerrero, J. L. Biomass Nutrient Profiles of the Microalga Porphyridium Cruentum. Food Chem. 2000, 70, 345–353. DOI: 10.1016/S0308-8146(00)00101-1.
  • Durmaz, Y.; Kilicli, M.; Toker, O. S.; Konar, N.; Palabiyik, I.; Tamtürk, F. Using Spray-Dried Microalgae in Ice Cream Formulation as a Natural Colorant: Effect on Physicochemical and Functional Properties. Algal Res. 2020, 47, 101811. DOI: 10.1016/j.algal.2020.101811.
  • Yücel, H. G.; Karatay, S.; Aksu, Z.; Dönmez, G. Lithium (I) biofortified Dunaliella Salina as a Potential Functional Nutrition Supplement. Algal Res. 2021, 56, 102257. DOI: 10.1016/j.algal.2021.102257.
  • Ljubic, A.; Thulesen, E. T.; Jacobsen, C.; Jakobsen, J. UVB Exposure Stimulates Production of Vitamin D3 in Selected Microalgae. Algal Res. 2021, 59, 102472. DOI: 10.1016/j.algal.2021.102472.
  • Lafarga, T.; Rodríguez-Bermúdez, R.; Morillas-España, A.; Villaró, S.; García-Vaquero, M.; Morán, L.; Sanchez-Suran, A.; Gonzalez-Lopez, C. V.; Acién-Fernández, F. G. Consumer Knowledge and Attitudes towards Microalgae as Food: The Case of Spain. Algal Res. 2021, 54, 102174. DOI: 10.1016/j.algal.2020.102174.
  • Mehariya, S.; Goswami, R. K.; Karthikeysan, O. P.; Verma, P. Microalgae for High-Value Products: A Way towards Green Nutraceutical and Pharmaceutical Compounds. Chemosphere. 2021, 280, 130553. DOI: 10.1016/j.chemosphere.2021.130553.
  • Konar, N.; Durmaz, Y.; Polat, D. G.; Mert, B. Optimization of Spray Drying for Chlorella Vulgaris by Using RSM Methodology and Maltodextrin. Food Process. Preserv. 2022, 46, 5. DOI: 10.1111/jfpp.16594.
  • Francavilla, M.; Trotta, P.; Luque, R. Phytosterols from Dunaliella tertiolecta and Dunaliella Salina: A Potentially Novel Industrial Application. Bioresour. Technol. 2010, 101, 4144–4150. DOI: 10.1016/j.biortech.2009.12.139.
  • Bernaerts, T. M.; Gheysen, L.; Kyomugasho, C.; Kermani, Z. J.; Vandionant, S.; Foubert, I.; Hendrickx, M. E.; Van Loey, A. M. Comparison of Microalgal Biomasses as Functional Food Ingredients: Focus on the Composition of Cell Wall Related Polysaccharides. Algal Res. 2018, 32, 150–161. DOI: 10.1016/j.algal.2018.03.017.
  • Depra, M. C.; Severo, I. A.; dos Santos, A. M.; Zepka, L. Q.; Jacob-Lopes, E. Environmental Impacts on Commercial Microalgae-Based Products: Sustainability Metrics and Indicators. Algal Res. 2020, 51, 102056. DOI: 10.1016/j.algal.2020.102056.
  • Rammuni, M. N.; Ariyadasa, T. U.; Nimarshana, P. H. V.; Attalage, R. A. Comparative Assessment on the Extraction of Carotenoids from Microalgal Sources: Astaxanthin from H. pluvialis and β-Carotene from D. salina. Food Chem. 2019, 277, 128–134. DOI: 10.1016/j.foodchem.2018.10.066.
  • Prieto, A.; Cañavate, J. P.; García-González, M. Assessment of Carotenoid Production by Dunaliella Salina in Different Culture Systems and Operation Regimes. J. Biotechnol. 2011, 151, 180–185. DOI: 10.1016/j.jbiotec.2010.11.011.
  • Khadim, S. R.; Singh, P.; Singh, A. K.; Tiwari, A.; Mohanta, A.; Asthana, R. K. Mass Cultivation of Dunaliella Salina in a Flat Plate Photobioreactor and Its Effective Harvesting. Bioresour. Technol. 2018, 270, 20–29. DOI: 10.1016/j.biortech.2018.08.071.
  • Colusse, G. A.; Mendes, C. R. B.; Duarte, M. E. R.; de Carvalho, J. C.; Noseda, M. D. Effects of Different Culture Media on Physiological Features and Laboratory Scale Production Cost of Dunaliella Salina. Biotechnol. Rep. (Amst) 2020, 27, e00508. DOI: 10.1016/j.btre.2020.e00508.
  • Hosseini, S. R. P.; Tavakoli, O.; Sarrafzadeh, M. H. Experimental Optimization of SC-CO2 Extraction of Carotenoids from Dunaliella Salina. J. Supercrit. Fluids. 2017, 121, 89–95. DOI: 10.1016/j.supflu.2016.11.006.
  • Morowvat, M. H.; Ghasemi, Y. Culture Medium Optimization for Enhanced β-Carotene and Biomass Production by Dunaliella Salina in Mixotrophic Culture. Biocatal. Agric. Biotechnol. 2016, 7, 217–223. DOI: 10.1016/j.bcab.2016.06.008.
  • Oh, S. H.; Han, J. H.; Kim, Y.; Ha, J. H.; Kim, S. S.; Jeong, M. H.; Jeong, H. S.; Kim, N. Y.; Cho, J. S.; Yoon, W. B.; et al. Lipid Production in Porphyridium Cruentum Grown under Different Culture Conditions. J. Biosci. Bioeng. 2009, 108, 429–434. DOI: 10.1016/j.jbiosc.2009.05.020.
  • García-González, M.; Moreno, J.; Manzano, J. C.; Florencio, F. J.; Guerrero, M. G. Production of Dunaliella Salina Biomass Rich in 9-Cis-β-Carotene and Lutein in a Closed Tubular Photobioreactor. J. Biotechnol. 2005, 115, 81–90. DOI: 10.1016/j.jbiotec.2004.07.010.
  • Pereira, S.; Otero, A. Effect of Light Quality on Carotenogenic and Non-carotenogenic Species of the Genus Dunaliella under Nitrogen Deficiency. Algal Res. 2019, 44, 101725. DOI: 10.1016/j.algal.2019.101725.
  • Chen, Y.; Bi, C.; Zhang, J.; Hou, H.; Gong, Z. Astaxanthin Biosynthesis in Transgenic Dunaliella Salina (Chlorophyceae) Enhanced Tolerance to High Irradiation Stress. South African J. Bot. 2020, 133, 132–138. DOI: 10.1016/j.sajb.2020.07.008.
  • López, C. V. G.; García, M. D. C. C.; Fernández, F. G. A.; Bustos, C. S.; Chisti, Y.; Sevilla, J. M. F. Protein Measurements of Microalgal and Cyanobacterial Biomass. Bioresour. Technol. 2010, 101, 7587–7591. DOI: 10.1016/j.biortech.2010.04.077.
  • Guillard, R. R. L. Culture of Phytoplankton for Feeding Marine Invertebrate. In Culture of Marine Invertebrates Animals; Smith, W.L.; Chanley, M.H. Eds.; Plenum: New York; 1975, 296–360. DOI: 10.1007/978-1-4615-8714-9_3.
  • De Oliveira, T. T. B.; dos Reis, I. M.; de Souza, M. B.; da Silva Bispo, E.; Maciel, L. F.; Druzian, J. I.; Tavares, P. P. L. G.; Cerqueira, A. D.; Morte, E. D. S. B.; Gloria, M. B. A.; et al. Microencapsulation of Spirulina sp. LEB-18 and Its Incorporation in Chocolate Milk: Properties and Functional Potential. LWT-Food Sci. Technol 2021, 148, 111674. DOI: 10.1016/j.lwt.2021.111674.
  • Nunes, I. L.; Mercadante, A. Z. Encapsulation of Lycopene Using Spray-Drying and Molecular Inclusion Processes. Braz. Arch. Biol. Technol. 2007, 50, 893–900. DOI: 10.1590/S1516-89132007000500018.
  • Zou, N.; Richmond, A. Light-Path Length and Population Density in Photoacclimation of Nannochloropsis sp. (Eustigmatophyceae). J. Appl. Phycol. 2000, 12, 349–354. DOI: 10.1023/A:1008151004317.
  • Macı́as-Sánchez, M. D.; Mantell, C.; Rodrı́guez, M.; Martı́nez de la Ossa, E.; Lubián, L. M.; Montero, O. Supercritical Fluid Extraction of Carotenoids and Chlorophyll a from Nannochloropsis Gaditana. J. Food Eng. 2005, 66, 245–251. DOI: 10.1016/j.jfoodeng.2004.03.021.
  • Fidaleo, M.; Mainardi, S.; Nardi, R. Modeling the Refining Process of a Anhydrous Hazelnut and Cocoa Paste in Stirred Ball Mills. Food Bioprod. Process. 2017, 105, 147–156. DOI: 10.1016/j.fbp.2017.07.004.
  • Fritzen-Freire, C. B.; Prudencio, E. S.; Amboni, R. D.; Pinto, S. S.; Negrao-Murakami, A. N.; Murakami, F. S. Microencapsulation of Bifidobacteria by Spray Drying in the Presence of Prebiotics. Food Res. Int. 2012, 45, 306–312. DOI: 10.1016/j.foodres.2011.09.020.
  • Hammes, M. V.; Englert, A. H.; Norena, C. P. Z.; Cardozo, N. S. M. Study of the Influence of Soy Lecithin Addition on the Wettability of Buffalo Milk Powder Obtained by Spray Drying. Powder Technol. 2015, 277, 237–243. DOI: 10.1016/j.powtec.2015.02.047.
  • Iqbal, M. N.; Hadiyanto, H. Experimental Investigation of Phycocyanin Microencapsulation Using Maltodextrin as a Coating Material with Spray Drying Method. AIP Conf. Proc., 2020, 2197, 1. DOI: 10.1063/1.5140953.
  • Eteshola, E.; Karpasas, M.; Arad, S.; Gottlieb, M. Red Microalgae Exopolysaccharides: 2. Study of the Rheology, Morphology and Thermal Gelation of Aqueous Preparations. Acta Polym. 1998, 49, 549–556. DOI: 10.1002/(SICI)1521-4044(199810)49:10/11<549::AID-APOL549>3.0.CO;2-T.
  • García, F.; Freile-Pelegrín, Y.; Robledo, D. Physiological Characterization of Dunaliella sp. (Chlorophyta, Volvocales) from Yucatan, Mexico. Bioresour. Technol. 2007, 98, 1359–1365. DOI: 10.1016/j.biortech.2006.05.051.
  • Genc Polat, D.; Durmaz, Y.; Konar, N.; Pirouzian, H. R.; Toker, O. S.; Palabiyik, I.; Tasan, M. Using Spray-Dried and Encapsulated Nannochloropsis Oculata Biomasses in White Spread. J. Appl. Phycol. 2022, 34, 375–383. DOI: 10.1007/s10811-021-02669-9.
  • Genc Polat, D.; Durmaz, Y.; Konar, N.; Toker, O. S.; Palabiyik, I.; Tasan, M. Using Encapsulated Nannochloropsis Oculata in White Chocolate as Coloring Agent. J. Appl. Phycol. 2020, 32, 3077–3088. DOI: 10.1007/s10811-020-02205-1.
  • Desai, K. G. H.; Jin Park, H. Recent Developments in Microencapsulation of Food Ingredients. Drying Technol. 2005, 23, 1361–1394. DOI: 10.1081/DRT-200063478.
  • Gharsallaoui, A.; Roudaut, G.; Chambin, O.; Voilley, A.; Saurel, R. Applications of Spray-Drying in Microencapsulation of Food Ingredients: An Overview. Food Res. Int. 2007, 40, 1107–1121. DOI: 10.1016/j.foodres.2007.07.004.
  • Nedovic, V.; Kalusevic, A.; Manojlovic, V.; Levic, S.; Bugarski, B. An Overview of Encapsulation Technologies for Food Applications. Proc. Food Sci. 2011, 1, 1806–1815. DOI: 10.1016/j.profoo.2011.09.265.
  • Lei, Z.; Langrish, T. A Review of the Extraction and Closed-Loop Spray Drying-Assisted Micro-Encapsulation of Algal Lutein for Functional Food Delivery. Processes. 2021, 9, 1143. DOI: 10.3390/pr9071143.
  • Shivakumar, K. M.; Chetana, R.; Reddy, S. Y. Preparation and Properties of Encapsulated Fat Powders Containing Speciality Fat and ω/PUFA-Rich Oils. Int. J. Food Prop. 2012, 15, 412–425. DOI: 10.1080/10942912.2010.487966.
  • Castejon, N.; Luna, P.; Señoráns, F. J. Microencapsulation by Spray Drying of Omega-3 Lipids Extracted from Oilseeds and Microalgae: Effect on Polyunsaturated Fatty Acid Composition. LWT Food Sci. Technol. 2021, 148, 111789. DOI: 10.1016/j.lwt.2021.111789.
  • Foo, S. C.; Khong, N. M.; Yusoff, F. M. Physicochemical, Microstructure and Antioxidant Properties of Microalgae-Derived Fucoxanthin Rich Microcapsules. Algal Res. 2020, 51, 102061. DOI: 10.1016/j.algal.2020.102061.
  • Chávez Montes, E.; Dogan, N.; Nelissen, R.; Marabi, A.; Ducasse, L.; Ricard, G. Effects of Drying and Agglomeration on the Dissolution of Multi-Component Food Powders. Chem. Eng. Technol. 2011, 34, 1159–1163. DOI: 10.1002/ceat.201100090.
  • Kapoor, R.; Feng, H. Characterization of Physicochemical, Packing and Microstructural Properties of Beet, Blueberry, Carrot and Cranberry Powders: The Effect of Drying Method. Powder Technol. 2022, 395, 290–300. DOI: 10.1016/j.powtec.2021.09.058.
  • Caparino, O. A.; Tang, J.; Nindo, C. I.; Sablani, S. S.; Powers, J. R.; Fellman, J. K. Effect of Drying Methods on the Physical Properties and Microstructures of Mango (Philippine ‘Carabao’ Var.) Powder. J. Food Eng. 2012, 111, 135–148. DOI: 10.1016/j.jfoodeng.2012.01.010.
  • Tonon, R. V.; Grosso, C. R. F.; Hubinger, M. D. Influence of Emulsion Composition and Inlet Air Temperature on the Microencapsulation of Flaxseed Oil by Spray Drying. Food Res. Int. 2011, 44, 282–289. DOI: 10.1016/j.foodres.2010.10.018.
  • Kuck, L. S.; Noreña, C. P. Z. Microencapsulation of Grape (Vitis Labrusca Var. Bordo) Skin Phenolic Extract Using Gum Arabic, Polydextrose, and Partially Hydrolyzed Guar Gum as Encapsulating Agents. Food Chem. 2016, 194, 569–576. DOI: 10.1016/j.foodchem.2015.08.066.
  • Mouahid, A.; Crampon, C.; Toudji, S. A. A.; Badens, E. Effects of High Water Content and Drying Pre-Treatment on Supercritical CO2 Extraction from Dunaliella Salina Microalgae: Experiments and Modelling. J. Supercrit. Fluids. 2016, 116, 271–280. DOI: 10.1016/j.supflu.2016.06.007.
  • Lauceri, R.; Zittelli, G. C.; Torzillo, G. A Simple Method for Rapid Purification of Phycobiliproteins from Arthrospira Platensis and Porphyridium Cruentum Biomass. Algal Res. 2019, 44, 101685. DOI: 10.1016/j.algal.2019.101685.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.