Publication Cover
Drying Technology
An International Journal
Volume 41, 2023 - Issue 15
166
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Modeling the inactivation kinetics of lactic acid bacteria in a spray dryer

, , , , , & show all
Pages 2385-2404 | Received 25 May 2023, Accepted 04 Aug 2023, Published online: 17 Aug 2023

References

  • Xu, Y. N.; Zeng, L. P.; Xiao, N.; Wang, C.; Liang, Z. H.; Wu, Q. J.; Zhang, Y. J.; Du, B.; Li, P. Quality Enhancement of Dendrobium Officinale and Banana Juice through Probiotic Fermentation Using Beneficial Lactic Acid-Producing Bacteria. Int. J. Food Eng. 2020, 16, 20190370. DOI: 10.1515/ijfe-2019-0370.
  • Wang, N.; Fu, N.; Chen, X. D. The Extent and Mechanism of the Effect of Protectant Material in the Production of Active Lactic Acid Bacteria Powder Using Spray Drying: A Review. Curr. Opin. Food Sci. 2022, 44, 100807. DOI: 10.1016/j.cofs.2022.01.003.
  • Di Battista, C. A.; Constenla, D.; Rigo, M. V. R.; Piña, J. Process Analysis and Global Optimization for the Microencapsulation of Phytosterols by Spray Drying. Powder Technol. 2017, 321, 55–65. DOI: 10.1016/j.powtec.2017.08.008.
  • Perdana, J.; Bereschenko, L.; Fox, M. B.; Kuperus, J. H.; Kleerebezem, M.; Boom, R. M.; Schutyser, M. A. I. Dehydration and Thermal Inactivation of Lactobacillus plantarum WCFS1: Comparing Single Droplet Drying to Spray and Freeze Drying. Food Res. Int. 2013, 54, 1351–1359. DOI: 10.1016/j.foodres.2013.09.043.
  • Mao, H.; Chen, X. D.; Fu, N. Exploring the Integrity of Cellular Membrane and Resistance to Digestive Juices of Dehydrated Lactic Acid Bacteria as Influenced by Drying Kinetics. Food Res. Int. 2022, 157, 111395. DOI: 10.1016/j.foodres.2022.111395.
  • Liu, H.; Gong, J.; Chabot, D.; Miller, S. S.; Cui, S. W.; Zhong, F.; Wang, Q. Improved Survival of Lactobacillus zeae LB1 in a Spray Dried Alginate-Protein Matrix. Food. Hydrocolloids. 2018, 78, 100–108. DOI: 10.1016/j.foodhyd.2017.07.004.
  • Jiang, N.; Dev Kumar, G.; Chen, J.; Mishra, A.; Mis Solval, K. Comparison of Concurrent and Mixed-Flow Spray Drying on Viability, Growth Kinetics and Biofilm Formation of Lactobacillus rhamnosus GG Microencapsulated with Fish Gelatin and Maltodextrin. LWT – Food Sci. Technol. 2020, 124, 109200. DOI: 10.1016/j.lwt.2020.109200.
  • Hao, F.; Fu, N.; Ndiaye, H.; Woo, M. W.; Jeantet, R.; Chen, X. D. Thermotolerance, Survival, and Stability of Lactic Acid Bacteria after Spray Drying as Affected by the Increase of Growth Temperature. Food. Bioprocess Technol. 2021, 14, 120–132. DOI: 10.1007/s11947-020-02571-1.
  • Woo, M. W.; Daud, W. R. W.; Mujumdar, A. S.; Talib, M. Z. M.; Hua, W. Z.; Masrinda, T. S. Comparative Study of Droplet Drying Models for CFD Modelling. Chem. Eng. Res. Des. 2008, 86, 1038–1048. DOI: 10.1016/j.cherd.2008.04.003.
  • Fu, N.; Woo, M. W.; Selomulya, C.; Chen, X. D. Inactivation of Lactococcus lactis Ssp. cremoris Cells in a Droplet during Convective Drying. Biochem. Eng. J. 2013, 79, 46–56. DOI: 10.1016/j.bej.2013.06.015.
  • Perdana, J.; Fox, M. B.; Siwei, C.; Boom, R. M.; Schutyser, M. A. I. Interactions between Formulation and Spray Drying Conditions Related to Survival of Lactobacillus plantarum WCFS1. Food Res. Int. 2014, 56, 9–17. DOI: 10.1016/j.foodres.2013.12.007.
  • Ghandi, A.; Powell, I.; Chen, X. D.; Adhikari, B. Drying Kinetics and Survival Studies of Dairy Fermentation Bacteria in Convective Air Drying Environment Using Single Droplet Drying. J. Food Eng. 2012, 110, 405–417. DOI: 10.1016/j.jfoodeng.2011.12.031.
  • Xiao, J.; Yang, S.; George, O. A.; Putranto, A.; Wu, W. D.; Chen, X. D. Numerical Simulation of Mono-Disperse Droplet Spray Dryer: Coupling Distinctively Different Sized Chambers. Chem. Eng. Sci. 2019, 200, 12–26. DOI: 10.1016/j.ces.2019.01.030.
  • Maryamnegari, S. M.; Ashrafizadeh, A.; Baake, E.; Guglielmi, M. Effects of Thermal Boundary Conditions on the Performance of Spray Dryers. J. Food Eng. 2023, 338, 111250. DOI: 10.1016/j.jfoodeng.2022.111250.
  • Jubaer, H.; Afshar, S.; Xiao, J.; Chen, X. D.; Selomulya, C.; Woo, M. W. On the Importance of Droplet Shrinkage in CFD-Modeling of Spray Drying. Drying Technol. 2018, 36, 1785–1801. DOI: 10.1080/07373937.2017.1349791.
  • Jaskulski, M.; Tran, T. T. H.; Tsotsas, E. Design Study of Printer Nozzle Spray Dryer by Computational Fluid Dynamics Modeling. Drying Technol. 2020, 38, 211–223. DOI: 10.1080/07373937.2019.1633541.
  • Heldman, D. R.; Hartel, R. W. Chapter 1. Introduction. In Principles of Food Processing; Heldman, D.R.; Hartel, R.W., Eds.; Aspen Publishers: New York, 1997; pp. 1–12.
  • Marechal, P. A.; Martı́nez de Marnañón, I.; Poirier, I.; Gervais, P. The Importance of the Kinetics of Application of Physical Stresses on the Viability of Microorganisms: Significance for Minimal Food Processing. Trends Food Sci. Techn. 1999, 10, 15–20. DOI: 10.1016/S0924-2244(99)00012-6.
  • Poirier, I.; Marechal, P.-A.; Gervais, P. Effects of the Kinetics of Water Potential Variation on Bacteria Viability. J. Appl. Microbiol. 1997, 82, 101–106. DOI: 10.1111/j.1365-2672.1997.tb03303.x.
  • Gong, P.; Sun, J.; Lin, K.; Di, W.; Zhang, L.; Han, X. Changes Process in the Cellular Structures and Constituents of Lactobacillus bulgaricus sp1.1 during Spray Drying. LWT – Food Sci. Technol. 2019, 102, 30–36. DOI: 10.1016/j.lwt.2018.12.005.
  • Hlaing, M. M.; Wood, B. R.; McNaughton, D.; Ying, D.; Dumsday, G.; Augustin, M. A. Effect of Drying Methods on Protein and DNA Conformation Changes in Lactobacillus rhamnosus GG Cells by Fourier Transform Infrared Spectroscopy. J. Agric. Food Chem. 2017, 65, 1724–1731. DOI: 10.1021/acs.jafc.6b05508.
  • Chen, X. D.; Patel, K. C. Micro-Organism Inactivation during Drying of Small Droplets or Thin-Layer slabs - A Critical Review of Existing Kinetics Models and an Appraisal of the Drying Rate Dependent Model. J. Food Eng. 2007, 82, 1–10. DOI: 10.1016/j.jfoodeng.2006.12.013.
  • Huang, H.; Brooks, M. S. L.; Huang, H. J.; Chen, X. D. Inactivation Kinetics of Yeast Cells during Infrared Drying. Drying Technol. 2009, 27, 1060–1068. DOI: 10.1080/07373930903218453.
  • Zheng, X.; Fu, N.; Duan, M.; Woo, M. W.; Selomulya, C.; Chen, X. D. The Mechanisms of the Protective Effects of Reconstituted Skim Milk during Convective Droplet Drying of Lactic Acid Bacteria. Food. Res. Int. 2015, 76, 478–488. DOI: 10.1016/j.foodres.2015.07.045.
  • Wu, W. D.; Amelia, R.; Hao, N.; Selomulya, C.; Zhao, D.; Chiu, Y.-L.; Chen, X. D. Assembly of Uniform Photoluminescent Microcomposites Using a Novel Micro-Fluidic-Jet-Spray-Dryer. AIChE J. 2011, 57, 2726–2737. DOI: 10.1002/aic.12489.
  • Su, Y.; Zheng, X.; Zhao, Q.; Fu, N.; Xiong, H.; Wu, W. D.; Chen, X. D. Spray Drying of Lactobacillus rhamnosus GG with Calcium-Containing Protectant for Enhanced Viability. Powder Technol. 2019, 358, 87–94. DOI: 10.1016/j.powtec.2018.09.082.
  • Zastawny, M.; Mallouppas, G.; Zhao, F.; Van Wachem, B. Derivation of Drag and Lift Force and Torque Coefficients for Non-Spherical Particles in Flows. Int. J. Multiphase Flow. 2012, 39, 227–239. DOI: 10.1016/j.ijmultiphaseflow.2011.09.004.
  • Clift, R.; Grace, J. R.; Weber, M. E. Bubbles, Drops and Particles, 1st ed.; Academic Press, Inc.: New York, USA, 1978; p. 380.
  • Lin, S.; Chen, X. D. Changes in Milk Droplet Diameter during Drying under Constant Drying Conditions Investigated Using the Glass-Filament Method. Food Bioprod. Process. 2004, 82, 213–218. DOI: 10.1205/fbio.82.3.213.44178.
  • Chen, X. D.; Lin, S. X. Q. Air Drying of Milk Droplet under Constant and Time-Dependent Conditions. AIChE J. 2005, 51, 1790–1799. DOI: 10.1002/aic.10449.
  • Delignette-Muller, M. L. Principles of Predictive Modeling. In Safety of Meat and Processed Meat; Toldra, F., Ed. New York: Springer Science + Business Media, LLC., 2009; pp. 535–557. DOI: 10.1007/978-0-387-89026-5_21.
  • Peleg, M.; Cole, M. B. Reinterpretation of Microbial Survival Curves. Crit. Rev. Food Sci. Nutr. 1998, 38, 353–380. DOI: 10.1080/10408699891274246.
  • Mendes-Oliveira, G.; Jensen, J. L.; Keener, K. M.; Campanella, O. H. Modeling the Inactivation of Bacillus subtilis Spores during Cold Plasma Sterilization. Innov. Food Sci. Emerg. Technol. 2019, 52, 334–342. DOI: 10.1016/j.ifset.2018.12.011.
  • Yoon, J.-H.; Han, A.; Paek, J.; Lee, S.-Y. Evaluation of Non-Isothermal Inactivation on Survivals of Pathogenic Bacteria by Predictive Models. LWT – Food Sci. Technol. 2019, 101, 366–373. DOI: 10.1016/j.lwt.2018.11.023.
  • Peleg, M. Calculation of the Non-Isothermal Inactivation Patterns of Microbes Having Sigmoidal Isothermal Semi-Logarithmic Survival Curves. Crit. Rev. Food Sci. Nutr. 2003, 43, 645–658. DOI: 10.1080/10408690390251156.
  • Zhou, X.; Dong, J.; Gao, J.; Yu, Z. Activity-Loss Characteristics of Spores of Bacillus thuringiensis during Spray Drying. Food Bioprod. Pro. 2008, 86, 37–42. DOI: 10.1016/j.fbp.2007.10.017.
  • Rogers, S.; Wu, W. D.; Lin, S. X. Q.; Chen, X. D. Particle Shrinkage and Morphology of Milk Powder Made with a Monodisperse Spray Dryer. Biochem. Eng. J. 2012, 62, 92–100. DOI: 10.1016/j.bej.2011.11.002.
  • George, O. A.; Chen, X. D.; Xiao, J.; Woo, M.; Che, L. An Effective Rate Approach to Modeling Single-Stage Spray Drying. AIChE J. 2015, 61, 4140–4151. DOI: 10.1002/aic.14940.
  • Perdana, J.; Aguirre Zubia, A.; Kutahya, O.; Schutyser, M.; Fox, M. Spray Drying of Lactobacillus plantarum WCFS1 Guided by Predictive Modeling. Drying Technol. 2015, 33, 1789–1797. DOI: 10.1080/07373937.2015.1026975.
  • Gervais, P.; Martinez de Marañon, I. Effect of the Kinetics of Temperature Variation on Saccharomyces cerevisiae Viability and Permeability. Biochim. Biophys. Acta. 1995, 1235, 52–56. DOI: 10.1016/0005-2736(94)00299-5.
  • Xiong, X.; Zhang, S.; Fu, N.; Lei, H.; Wu, W. D.; Chen, X. D. Effects of Particle Formation Behavior on the Properties of Fish Oil Microcapsules Fabricated Using a Micro-Fluidic Jet Spray Dryer. Int. J. Food Eng. 2021, 17, 27–36. DOI: 10.1515/ijfe-2019-0162.
  • Ghandi, A.; Powell, I. B.; Chen, X. D.; Adhikari, B. The Effect of Dryer Inlet and Outlet Air Temperatures and Protectant Solids on the Survival of Lactococcus lactis during Spray Drying. Drying Technol. 2012, 30, 1649–1657. DOI: 10.1080/07373937.2012.703743.
  • Anekella, K.; Orsat, V. Optimization of Microencapsulation of Probiotics in Raspberry Juice by Spray Drying. LWT - Food Sci. Technol. 2013, 50, 17–24. DOI: 10.1016/j.lwt.2012.08.003.
  • Ahlawat, A.; Basak, S.; Ananthanarayan, L. Optimization of Spray-Dried Probiotic Buttermilk Powder Using Response Surface Methodology and Evaluation of Its Shelf Stability. Food Process. Preserv. 2022, 46, e16928. DOI: 10.1111/jfpp.16928.
  • Perdana, J.; Fox, M. B.; Boom, R. M.; Schutyser, M. A. I. Establishing Guidelines to Retain Viability of Probiotics during Spray Drying. Drying Technol. 2015, 33, 1560–1569. DOI: 10.1080/07373937.2015.1012264.
  • Menshutina, N. V.; Gordienko, M. G.; Voinovskiy, A. A.; Zbicinski, I. Spray Drying of Probiotics: Process Development and Scale-Up. Drying Technol. 2010, 28, 1170–1177. DOI: 10.1080/07373937.2010.483043.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.