Publication Cover
Drying Technology
An International Journal
Volume 41, 2023 - Issue 15
125
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A generic drying model for cassava products

ORCID Icon, , , ORCID Icon & ORCID Icon
Pages 2487-2500 | Received 01 Mar 2023, Accepted 25 Aug 2023, Published online: 14 Sep 2023

References

  • Vernier, P.; N’zué, B.; Zakhia-Rozis, N. Le Manioc, Entre Culture Alimentaire et Filière Agro-Industrielle; Éditions Quae: France, 2018.
  • Precoppe, M.; Chapuis, A.; Müller, J.; Abass, A. Tunnel Dryer and Pneumatic Dryer Performance Evaluation to Improve Small-Scale Cassava Processing in Tanzania. J. Food Process Eng. 2017, 40, e12274. DOI: 10.1111/jfpe.12274.
  • Joulia, X. Simulateurs de Procédés, Techniques de L’ingénieur. Industrialisation des procédés et usine du futur. 2008, Base documentaire: TIB602DUO. (ref. article: J 1022).
  • Lambert, C.; Goujot, D.; Romdhana, H.; Courtois, F. Toward a Generic Approach to Build up Air Drying Models. Drying Technol. 2016, 34, 346–359. DOI: 10.1080/07373937.2015.1054510.
  • Madoumier, M.; Trystram, G.; Sébastian, P.; Collignan, A. Towards a Holistic Approach for Multi-Objective Optimization of Food Processes: A Critical Review. Trends in Food Science & Technology 2019, 86, 1–15. DOI: 10.1016/j.tifs.2019.02.002.
  • Chen, C.; Pan, Z. An Overview of Progress, Challenges, Needs and Trends in Mathematical Modeling Approaches in Food Drying. Drying Technol. 2023, 1–20. DOI: 10.1080/07373937.2023.2207636.
  • Perré, P.; Rémond, R.; Almeida, G.; Augusto, P.; Turner, I. State-of-the-Art in the Mechanistic Modeling of the Drying of Solids: A Review of 40 Years of Progress and Perspectives. Drying Technol. 2023, 41, 817–842. DOI: 10.1080/07373937.2022.2159974.
  • Tanaka, F.; Tanaka, F.; Tanaka, A.; Uchino, T. Mathematical Modelling of Thin-Layer Drying according to Particle Size Distribution in Crushed Feed Rice. Biosyst. Eng. 2015, 136, 87–91. DOI: 10.1016/j.biosystemseng.2015.05.007.
  • Choi, Y.; Okos, M. Effects of Temperature and Composition on the Thermal Properties of Foods. In Food Engineering and Process Applications; Le Maguer, M., Jelen, P., Eds.; Elsevier Applied Science: England, 1986; pp 93–101
  • van der Werf, L.; Chapuis, A.; Courtois, F. A Global Sorption Equation for Raw and Processed Cassava Based on a Review and Compilation of Sorption Properties. Drying Technol. 2022, 40, 3661–3674. DOI: 10.1080/07373937.2022.2076238.
  • Zogzas, N.; Maroulis, Z.; Marinos-Kouris, D. Moisture Diffusivity Data Compilation in Foodstuffs. Drying Technol. 1996, 14, 2225–2253. DOI: 10.1080/07373939608917205.
  • Roca, E.; Guillard, V.; Broyart, B.; Guilbert, S.; Gontard, N. Effective Moisture Diffusivity Modelling versus Food Structure and Hygroscopicity. Food Chem. 2008, 106, 1428–1437. DOI: 10.1016/j.foodchem.2007.03.078.
  • Dadmohammadi, Y.; Datta, A. K. Prediction of Effective Moisture Diffusivity in Plant Tissue Food Materials over Extended Moisture Range. Drying Technol. 2020, 38, 2202–2216. DOI: 10.1080/07373937.2019.1690500.
  • Gevaudan, A. Etude du Séchage Par Contact de Milieux Granulaires agités - Application à L’opération de Cuisson-Séchage de la Pulpe de Manioc. Ph.D. Thesis, Institut National Des Sciences Appliquees de Lyon, 1989.
  • Escobar, A.; Dahdouh, L.; Rondet, E.; Ricci, J.; Dufour, D.; Tran, T.; Cuq, B.; Delalonde, M. Development of a Novel Integrated Approach to Monitor Processing of Cassava Roots into Gari: Macroscopic and Microscopic Scales. Food Bioprocess Technol 2018, 11, 1370–1380. DOI: 10.1007/s11947-018-2106-5.
  • Da, G.; Dufour, D.; Giraldo, A.; Moreno, M.; Tran, T.; Velez, G.; Sanchez, T.; Le-Thanh, M.; Marouze, C.; Marechal, P. A. Cottage Level Cassava Starch Processing Systems in Colombia and Vietnam. Food Bioprocess Technol 2013, 6, 2213–2222. DOI: 10.1007/s11947-012-0810-0.
  • van der Werf, L.; Chiadò Rana, A.; Chapuis, A.; Delpech, C.; Wisniewski, C.; Courtois, F. Experimental Study and Modelling of a Filtration-Consolidation Step: Towards the Development of a Design Tool for Cassava Dewatering. J. Food Eng. 2023, 342, 111338. DOI: 10.1016/j.jfoodeng.2022.111338.
  • Brauman, A.; Kéléké, S.; Mavoungou, O.; Ampe, F.; Miambi, E. Etude Cinétique du Rouissage Traditionnel Des Racines de Manioc en Afrique Centrale (Congo). In Transformation Alimentaire du Manioc; Agbor Egbe, T., A. B., Griffon, D.  , Trech, S., Eds.; Colloques et séminaires; ORSTOM editions: Paris, 1995; pp 725–738
  • Horwitz, W.; Latimer, G. Official Methods of Analysis of AOAC International, 18th ed.; Maryland: Association of Official Analytical Chemistry International, 2005; Vol. 1.
  • Whitaker, S. Forced Convection Heat Transfer Correlations for Flow in Pipes, past Flat Plates, Single Cylinders, Single Spheres, and for Flow in Packed Beds and Tube Bundles. AIChE J 1972, 18, 361–371. DOI: 10.1002/aic.690180219.
  • Romdhana, H.; Lambert, C.; Goujot, D.; Courtois, F. Model Reduction Technique for Faster Simulation of Drying of Spherical Solid Foods. J. Food Eng. 2016, 170, 125–135. DOI: 10.1016/j.jfoodeng.2015.09.021.
  • Goujot, D.; Meyer, X.; Courtois, F. Identification of a Rice Drying Model with an Improved Sequential Optimal Design of Experiments. J. Process Control 2012, 22, 95–107. DOI: 10.1016/j.jprocont.2011.10.003.
  • Bergman, T.L.; Incropera, F.P., Eds. Fundamentals of Heat and Mass Transfer, 7th ed.; Wiley: Hoboken, 2011.
  • Karathanos, V. Water Diffusivity in Starches at Extrusion Temperatures and Pressures. Ph.D. Thesis, Rutgers University, New Brunswick, USA, 1990.
  • Welsh, Z. G.; Simpson, M. J.; Khan, M. I. H.; Karim, A. A Multiscale Approach to Estimate the Cellular Diffusivity during Food Drying. Biosyst. Eng. 2021, 212, 273–289. DOI: 10.1016/j.biosystemseng.2021.10.017.
  • Lambert, C.; Romdhana, H.; Courtois, F. Reverse Methodology to Identify Moisture Diffusivity during Air-Drying of Foodstuffs. Drying Technol. 2015, 33, 1076–1085. DOI: 10.1080/07373937.2014.985792.
  • Goujot, D.; Courtois, F. Comparison and Discussion of Experimental Strategies to Improve Parameter Identification of a Drying Model. Drying Technol. 2015, 33, 896–906. DOI: 10.1080/07373937.2014.997880.
  • Churchill, S. W.; Bernstein, M. A Correlating Equation for Forced Convection from Gases and Liquids to a Circular Cylinder in Crossflow. Trans. ASME, J. Heat Transf. 1977, 99, 300–306. DOI: 10.1115/1.3450685.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.