Publication Cover
Drying Technology
An International Journal
Volume 41, 2023 - Issue 15
69
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Internal stress development within wood during drying: A master curve concept and its application on drying stress evaluation

, , , &
Pages 2516-2532 | Received 24 May 2023, Accepted 12 Sep 2023, Published online: 25 Sep 2023

References

  • McMillen, J. M. Stresses in Wood during Drying (Report 1652); Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, 1958.
  • Langrish, T. A. G.; Brooke, A. S.; Davis, C. L.; Musch, H. E.; Barton, G. W. An Improved Drying Achedole for Australian Ironbark Timber: Optimisation and Experimental Validation. Drying Technol. 1997, 15, 47–70. DOI: 10.1080/07373939708917218.
  • Pang, S. Modelling of Stress Development during Drying and Relief during Steaming in Pinus Radiata Lumber. Drying Technol. 2000, 18, 1677–1696. DOI: 10.1080/07373930008917806.
  • Junior, E. U.; Allegretti, O.; Terziev, N.; Söderström, O. Application of Non-Symmetrical Drying Tests for Assessment of Drying Behaviour of Ntholo (Pseudolachnostylis maprounaefolia PAX). Holzforschung. 2010, 64, 363–368. DOI: 10.1515/hf.2010.043.
  • Majka, J.; Sydor, M. Analysis of Stress Development during Kiln Drying of Beech Timber. Eur. J. Wood Prod. 2023, 81, 1189–1200. DOI: 10.1007/s00107-023-01967-y.
  • Berrocal, A.; Moya, R.; Bond, B.; Rodriguez-Solis, M.; Munoz, F.; Perez, D. Schedule Modification of Drying Rate to Decrease the Drying Time of Juvenile Tectona grandis L. wood. Wood Fiber Sci. 2017, 49, 373–385.
  • Perré, P.; Rémond, R.; Almeida, G.; Augusto, P.; Turner, I. State-of-the-Art in the Mechanistic Modeling of the Drying of Solids: A Review of 40 Years of Progress and Perspectives. Drying Technol. 2023, 41, 817–842. DOI: 10.1080/07373937.2022.2159974.
  • Allegretti, O.; Rémond, R.; Perré, P. Nonsymmetrical Drying Tests – Experimental and Numerical Results for Free and Constrained Spruce Samples. Drying Technol. 2018, 36, 1554–1562. DOI: 10.1080/07373937.2017.1417869.
  • Sánchez, J.; Lima, J.; Silva, J.; Soares, B. Application of a Strain Gauge to Assess Drying Stresses in Normal and Tension Wood of Corymbia citriodora. Maderas Cienc. Tecnol. 2022, 24, 21: 1-10. DOI: 10.4067/S0718-221X2022000100421.
  • Tomad, J.; Leelatanon, S.; Jantawee, S.; Srisuchart, K.; Matan, N. Internal Stress Development within Wood during Drying: Regime and Kinetics. Drying Technol. 2023, 41, 77–88. DOI: 10.1080/07373937.2022.2084750.
  • Diawanich, P.; Matan, N.; Kyokong, B. Evolution of Internal Stress during Drying, Cooling and Conditioning of Rubberwood Lumber. Eur. J. Wood Prod. 2010, 68, 1–12. DOI: 10.1007/s00107-009-0343-z.
  • Jantawee, S.; Leelatanon, S.; Diawanich, P.; Matan, N. A New Assessment of Internal Stress within Kiln-Dried Lumber Using a Restoring Force Technique on a Half-Split Specimen. Wood Sci. Technol. 2016, 50, 1277–1292. DOI: 10.1007/s00226-016-0852-y.
  • Jantawee, S.; Leelatanon, S.; Diawanich, P.; Vannarat, S.; Matan, N. Comparison of Techniques for Quantification of Internal Stress within Industrial Kiln-Dried Timber. Eur. J. Wood Prod. 2018, 76, 617–627. DOI: 10.1007/s00107-017-1243-2.
  • Leelatanon, S.; Jantawee, S.; Vannarat, S.; Matan, N. Applications of Timoshenko Beam Theory and Free Edge Effect for Interpretation of Stress in Kiln-Dried Lumber Using the Restoring Force Technique. Mech. Mater. 2020, 150, 103568. DOI: 10.1016/j.mechmat.2020.103568.
  • Elustondo, D.; Matan, N.; Langrish, T. A. G.; Pang, S. Advances in Wood Drying Research and Development. Drying Technol. 2023, 41, 890–914. DOI: 10.1080/07373937.2023.2205530.
  • Glass, S. V.; Zelinka, S. L. Moisture Relations and Physical Properties of Wood. In: Wood Handbook—Wood as an Engineering Material. General Technical Report, FPL-GTR-190. USDA Forest Service, Forest Products Laboratory: Madison, Wisconsin, 2010; pp. 41–49.
  • Nopens, M.; Riegler, M.; Hansmann, C.; Krause, A. Simultaneous Change of Wood Mass and Dimension Caused by Moisture Dynamics. Sci. Rep. 2019, 9, 10309. DOI: 10.1038/s41598-019-46381-8.
  • Schajer, G. S.; Ruud, C. O. Overview of Residual Stresses and Their Measurement. In Practical Residual Stress Measurement Methods; Schajer, G. S. Ed.; Wiley: West Sussex, 2013; pp. 1–27.
  • Moutee, M.; Fortin, Y.; Fafard, M. A. Global Rheological Model of Wood Cantilever as Applied to Wood Drying. Wood Sci. Technol. 2007, 41, 209–234.
  • Ormarsson, S.; Dahlblom, O.; Petersson, H. A Numerical Study of the Shape Stability of Sawn Timber Subjected to Moisture Part 2: Simulation of Drying Board. Wood Sci. Technol. 1999, 33, 407–423. DOI: 10.1007/s002260050126.
  • Florisson, S.; Ormarsson, S.; Vessby, J. A Numerical Study of the Effect of Green-State Moisture Content on Stress Development in Timber Boards during Drying. W&FS. 2019, 51, 41–57. 2019, DOI: 10.22382/wfs-2019-005.
  • Chávez, C. A.; Moraga, N. O.; Salinas, C. H.; Cabrales, R. C.; Ananías, R. A. Modeling Unsteady Heat and Mass Transfer with Prediction of Mechanical Stresses in Wood Drying. Int. Commun. Heat Mass Transfer. 2021, 123, 105230. DOI: 10.1016/j.icheatmasstransfer.2021.105230.
  • Navi, P.; Stanzl-Tschegg, S. Micromechanics of Creep and Relaxation of Wood. A Review. Holzforschung. 2009, 63, 186–195. DOI: 10.1515/HF.2009.013.
  • Balsiger, J.; Bahdon, J.; Whiteman, A. The Utilization, Processing and Demand for Rubberwood as a Source of Wood Supply; Forestry Policy and Planning Division: Rome, 2000.
  • Ferreira, A. L.; Severo, E. T. D.; Calonego, F. W. Determination of Fiber Length and Juvenile and Mature Wood Zones from Hevea Brasiliensis Trees Grown in Brazil. Eur. J. Wood Prod. 2011, 69, 659–662. DOI: 10.1007/s00107-010-0510-2.
  • Tomad, J.; Jantawee, S.; Preechatiwong, W.; Matan, N. Within-Tree Variability of Internal Stress Generated during Drying of Rubberwood Lumber. Eur. J. Wood Prod. 2018, 76, 113–122. DOI: 10.1007/s00107-017-1204-9.
  • ASTM D143. Standard Test Methods for Small Clear Specimens of Timber; ASTM International: West Conshohocken, PA, 2014.
  • Keey, R. B.; Langrish, T. A. G.; Walker, J. C. Kiln-Drying of Lumber; Springer Science & Business Media: Berlin, Germany, 2000; p. 326.
  • McCurdy, M. C.; Keey, R. B. Influence of Sawing Orientation on Moisture Movement through Softwood Boards. Maderas Cienc. Tecnol. 2002, 4, 26–39. DOI: 10.4067/S0718-221X2002000100003.
  • Pang, S.; Haslett, A. N. Effects of Sawing Pattern on Drying Rate and Residual Drying Stresses of Pinus radiata Lumber. Maderas Cienc. Tecnol. 2002, 4, 40–49. DOI: 10.4067/S0718-221X2002000100004.
  • Siau, J. F. Transport Processes in Wood; Springer-Verlag: Berlin, Germany, 1984.
  • Riley, S.; Harrington, J.; Elustondo, D. A Theoretical Analysis of the Potential Effect of Negative Pressure in Wood Drying Based on a CT-Scanner Study. Drying Technol. 2022, 40, 2975–2989. DOI: 10.1080/07373937.2021.1986062.
  • Penvern, H.; Zhou, M.; Maillet, B.; Courtier-Murias, D.; Scheel, M.; Perrin, J.; Weitkamp, T.; Bardet, S.; Caré, S.; Coussot, P. How Bound Water Regulates Wood Drying. Phys. Rev. Appl. 2020, 14, 054051. DOI: 10.1103/PhysRevApplied.14.054051.
  • Cocusse, M.; Rosales, M.; Maillet, B.; Sidi-Boulenouar, R.; Julien, E.; Caré, S.; Coussot, P. Two-Step Diffusion in Cellular Hygroscopic (Vascular Plant-like) Materials. Sci. Adv. 2022, 8, eabm7830. Published online. DOI: 10.1126/sciadv.abm7830.
  • Takahashi, C.; Ishimaru, Y.; Iida, I.; Furuta, Y. The Creep of Wood Destabilized by Change in Moisture Content. Part 3: The Influence of Changing Moisture History on Creep Behavior. Holzforschung. 2006, 60, 299–303. DOI: 10.1515/HF.2006.048.
  • Hanhijärvi, A. Creep Deformation in Drying Wood. In Fundamental of Wood Drying; Perre’, P. Ed.; European COST E15; A.R.BO.LOR: Nancy, France, 2007; pp 157–174.
  • Srivaro, S.; Wongprot, T.; Matan, N.; Kyokong, B. Accelerated Conventional Temperature Drying of 30mm Thick Rubberwood Lumber. Songklanakarin J. Sci. Technol. 2008, 30, 475–483.
  • Green, D. W.; Winandy, J. E.; Kretschmann, D. E. Mechanical Properties of Wood. In Wood Handbook; United States Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, 1999; pp. 41–45.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.