Publication Cover
Drying Technology
An International Journal
Volume 42, 2024 - Issue 3
210
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Drying technology development for future starchy staples food processing: Research progress, challenges, and application prospects

, , , &
Pages 518-539 | Received 01 Jul 2023, Accepted 05 Oct 2023, Published online: 17 Oct 2023

References

  • Chen, L.; Msigwa, G.; Yang, M.; Osman, A. I.; Fawzy, S.; Rooney, D. W.; Yap, P. S. Strategies to Achieve a Carbon Neutral Society: A Review. Environ. Chem. Lett. 2022, 20, 2277–2310. DOI: 10.1007/s10311-022-01435-8.
  • Hussain, M. A.; Bekhit, A. E. A. Innovative Foods: The Future Food Supply, Nutrition and Health. Foods 2023, 12, 1359. DOI: 10.3390/foods12071359.
  • Du, Y.; Yang, F.; Yu, H.; Xie, Y.; Yao, W. Improving Food Drying Performance by Cold Plasma Pretreatment: A Systematic Review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 4402–4421. DOI: 10.1111/1541-4337.13027.
  • Rajan, A.; Boopathy, B.; Radhakrishnan, M.; Rao, L.; Schlüter, O. K.; Tiwari, B. K. Plasma Processing: A Sustainable Technology in Agri-Food Processing. Sustain. Food Technol. 2023, 1, 9–49. DOI: 10.1039/D2FB00014H.
  • Liu, Y.; Galani Yamdeu, J. H.; Gong, Y. Y.; Orfila, C. A Review of Postharvest Approaches to Reduce Fungal and Mycotoxin Contamination of Foods. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1521–1560. DOI: 10.1111/1541-4337.12562.
  • Eskola, M.; Kos, G.; Elliott, C. T.; Hajslova, J.; Mayar, S.; Krska, R. Worldwide Contamination of Food-Crops with Mycotoxins: Validity of the Widely Cited ‘Fao Estimate’ of 25. Crit. Rev. Food Sci. Nutr. 2020, 60, 2773–2789. DOI: 10.1080/10408398.2019.1658570.
  • Liu, H.; Liu, H.; Liu, H.; Zhang, X.; Hong, Q.; Chen, W.; Zeng, X. Microwave Drying Characteristics and Drying Quality Analysis of Corn in China. Processes 2021, 9, 1511. DOI: 10.3390/pr9091511.
  • Omohimi, C.; Piccirillo, C.; Ferraro, V.; Roriz, M. C.; Omemu, M. A.; Santos, S. M. D.; Da Ressurreicao, S.; Abayomi, L.; Adebowale, A.; Vasconcelos, M. W.; et al. Safety of Yam-Derived (Dioscorea rotundata) Foodstuffs-Chips, Flakes and Flour: Effect of Processing and Post-Processing Conditions. Foods 2019, 8, 12. DOI: 10.3390/foods8010012.
  • Jangde, P. K.; Singh, A.; Arjunan, T. V. Efficient Solar Drying Techniques: A Review. Environ. Sci. Pollut. Res. Int. 2022, 29, 50970–50983. DOI: 10.1007/s11356-021-15792-4.
  • He, C.; Zheng, J.; Liu, F.; Woo, M. W.; Xiong, H.; Zhao, Q. Fabrication and Characterization of Oat Flour Processed by Different Methods. J. Cereal Sci. 2020, 96, 103123. DOI: 10.1016/j.jcs.2020.103123.
  • Wang, R.; Zhang, M.; Mujumdar, A. S.; Jiang, H. Effect of Salt and Sucrose Content on Dielectric Properties and Microwave Freeze Drying Behavior of Re-Structured Potato Slices. J. Food Eng. 2011, 106, 290–297. DOI: 10.1016/j.jfoodeng.2011.05.015.
  • Yan, W.-Q.; Zhang, M.; Huang, L.-L.; Tang, J.; Mujumdar, A. S.; Sun, J.-C. Studies on Different Combined Microwave Drying of Carrot Pieces. Int. J. Food Sci. Technol. 2010, 45, 2141–2148. DOI: 10.1111/j.1365-2621.2010.02380.x.
  • Wang, Y.; Zhang, M.; Mujumdar, A. S.; Mothibe, K. J. Microwave-Assisted Pulse-Spouted Bed Freeze-Drying of Stem Lettuce Slices—Effect on Product Quality. Food Bioprocess Technol. 2013, 6, 3530–3543. DOI: 10.1007/s11947-012-1017-0.
  • Bird, A. R.; Regina, A. High Amylose Wheat: A Platform for Delivering Human Health Benefits. J. Cereal Sci. 2018, 82, 99–105. DOI: 10.1016/j.jcs.2018.05.011.
  • Erenstein, O.; Poole, N.; Donovan, J. Role of Staple Cereals in Human Nutrition: Separating the Wheat from the Chaff in the Infodemics Age. Trends Food Sci. Technol. 2022, 119, 508–513. DOI: 10.1016/j.tifs.2021.11.033.
  • Poole, N.; Donovan, J.; Erenstein, O. Viewpoint: Agri-Nutrition Research: Revisiting the Contribution of Maize and Wheat to Human Nutrition and Health. Food Policy 2021, 100, 101976. DOI: 10.1016/j.foodpol.2020.101976.
  • Li, T.; Li, C.; Li, B.; Li, C.; Fang, Z.; Zeng, Z.; Ou, W.; Huang, J. Characteristic Analysis of Heat Loss in Multistage Counter-Flow Paddy Drying Process. Energy Rep. 2020, 6, 2153–2166. DOI: 10.1016/j.egyr.2020.08.006.
  • Park, H. W.; Han, W. Y.; Yoon, W. B. Drying Characteristics of Soybean (Glycine Max) Using Continuous Drying and Intermittent Drying. Int. J. Food Eng. 2018, 14, 20180057. DOI: 10.1515/ijfe-2018-0057.
  • Ashfaq, S.; Ahmad, M.; Munir, A.; Ghafoor, A. Improvement of Air Homogeneity in Paddy Dryer with Central Air Flow Channel. Int. J. Food Eng. 2017, 13, 20150408. DOI: 10.1515/ijfe-2015-0408.
  • Chen, K.; Zhang, M.; Bhandari, B.; Chen, J. Instant Quinoa Prepared by Different Cooking Methods and Infrared-Assisted Freeze Drying: Effects of Variables on the Physicochemical Properties. Food Chem. 2022, 370, 131091. DOI: 10.1016/j.foodchem.2021.131091.
  • de Faria, R. Q.; dos Santos, A. R. P.; Gariepy, Y.; da Silva, E. A. A.; Sartori, M. M. P.; Raghavan, V. Optimization of the Process of Drying of Corn Seeds with the Use of Microwaves. Drying Technol. 2020, 38, 676–684. DOI: 10.1080/07373937.2019.1686009.
  • Jimoh, K. A.; Hashim, N.; Shamsudin, R.; Man, H. C.; Jahari, M.; Onwude, D. I. Recent Advances in the Drying Process of Grains. Food Eng. Rev. 2023, 15, 548–576. DOI: 10.1007/s12393-023-09333-7.
  • Lisiecka, K.; Wojtowicz, A.; Dziki, D.; Gawlik-Dziki, U. The Influence of Cistus incanus L. Leaves on Wheat Pasta Quality. J. Food Sci. Technol. 2019, 56, 4311–4322. DOI: 10.1007/s13197-019-03900-9.
  • Motevali, A.; Amiri Chayjan, R. Effect of Various Drying Bed on Thermodynamic Characteristics. Case Stud. Therm. Eng. 2017, 10, 399–406. DOI: 10.1016/j.csite.2017.09.007.
  • Jiang, M.; Wu, P.; Xing, H.; Li, L.; Jia, C.; Chen, S.; Zhang, S.; Wang, L. Water Migration and Diffusion Mechanism in the Wheat Drying. Drying Technol. 2021, 39, 738–751. DOI: 10.1080/07373937.2020.1716001.
  • Jia, C.; Wang, L.; Li, R.; Liu, C. Experimental Study on Drying Characteristics of Wheat by Low-Field Nuclear Magnetic Resonance. Drying Technol. 2017, 35, 1258–1265. DOI: 10.1080/07373937.2016.1242492.
  • Chan, D.-S.; Chan, J.-S.; Kuo, M.-I. Modelling Condensation and Simulation for Wheat Germ Drying in Fluidized Bed Dryer. Processes 2018, 6, 71. DOI: 10.3390/pr6060071.
  • Carcea, M. Value of Wholegrain Rice in a Healthy Human Nutrition. Agriculture 2021, 11, 720. DOI: 10.3390/agriculture11080720.
  • Mridha, D.; Gorain, P. C.; Joardar, M.; Das, A.; Majumder, S.; De, A.; Chowdhury, N. R.; Lama, U.; Pal, R.; Roychowdhury, T. Rice Grain Arsenic and Nutritional Content during Post Harvesting to Cooking: A Review on Arsenic Bioavailability and Bioaccessibility in Humans. Food Res. Int. 2022, 154, 111042. DOI: 10.1016/j.foodres.2022.111042.
  • Zhao, M.; Lin, Y.; Chen, H. Improving Nutritional Quality of Rice for Human Health. Theor. Appl. Genet. 2020, 133, 1397–1413. DOI: 10.1007/s00122-019-03530-x.
  • Donlao, N.; Matsushita, Y.; Ogawa, Y. Influence of Postharvest Drying Conditions on Resistant Starch Content and Quality of Non-Waxy Long-Grain Rice (Oryza sativa L.). Drying Technol. 2018, 36, 952–964. DOI: 10.1080/07373937.2017.1366505.
  • Dunford, E. K.; Miles, D. R.; Popkin, B.; Ng, S. W. Whole Grain and Refined Grains: An Examination of Us Household Grocery Store Purchases. J. Nutr. 2022, 152, 550–558. DOI: 10.1093/jn/nxab382.
  • van der Kamp, J.-W.; Jones, J. M.; Miller, K. B.; Ross, A. B.; Seal, C. J.; Tan, B.; Beck, E. J. Consensus, Global Definitions of Whole grain as a Food Ingredient and of Whole-Grain Foods Presented on Behalf of the Whole Grain Initiative. Nutrients 2021, 14, 138. DOI: 10.3390/nu14010138.
  • Tong, C.; Gao, H.; Luo, S.; Liu, L.; Bao, J. Impact of Postharvest Operations on Rice Grain Quality: A Review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 626–640. DOI: 10.1111/1541-4337.12439.
  • Jin, Y.; Wong, K. W.; Wu, Z.; Qi, D.; Wang, R.; Han, F.; Wu, W. Relationship between Accumulated Temperature and Quality of Paddy. Int. J. Food Prop. 2019, 22, 19–33. DOI: 10.1080/10942912.2019.1566241.
  • Tirawanichakul, Y. Simulation and Grain Quality for In-Store Drying of Paddy. J. Food Eng. 2004, 64, 405–415. DOI: 10.1016/j.jfoodeng.2003.09.001.
  • Tohidi, M.; Sadeghi, M.; Torki-Harchegani, M. Energy and Quality Aspects for Fixed Deep Bed Drying of Paddy. Renew. Sustain. Energy Rev. 2017, 70, 519–528. DOI: 10.1016/j.rser.2016.11.196.
  • Utari, F. D.; Yasintasia, C.; Ratridewi, M.; A'Yuni, D. Q.; Kumoro, A. C.; Djaeni, M.; Asiah, N. Evaluation of Paddy Drying with Vertical Screw Conveyor Dryer (VSCD) at Different Air Velocities and Temperatures. Chem. Eng. Process. Process Intensif. 2022, 174, 108881. DOI: 10.1016/j.cep.2022.108881.
  • Pati, J. R.; Dutta, S.; Eliaers, P.; Mahanta, P.; Chatterjee, P. K.; De Wilde, J. Experimental Study of Paddy Drying in a Vortex Chamber. Drying Technol. 2016, 34, 1073–1084. DOI: 10.1080/07373937.2015.1093498.
  • Prasanna, B. M.; Palacios-Rojas, N.; Hossain, F.; Muthusamy, V.; Menkir, A.; Dhliwayo, T.; Ndhlela, T.; San Vicente, F.; Nair, S. K.; Vivek, B. S.; et al. Molecular Breeding for Nutritionally Enriched Maize: Status and Prospects. Front. Genet. 2019, 10, 1392. DOI: 10.3389/fgene.2019.01392.
  • Ai, Y.; Jane, J-l Macronutrients in Corn and Human Nutrition. Compr. Rev. Food Sci. Food Saf. 2016, 15, 581–598. DOI: 10.1111/1541-4337.12192.
  • Ekpa, O.; Palacios-Rojas, N.; Kruseman, G.; Fogliano, V.; Linnemann, A. R. Sub-Saharan African Maize-Based Foods: Technological Perspectives to Increase the Food and Nutrition Security Impacts of Maize Breeding Programmes. Global Food Secur. 2018, 17, 48–56. DOI: 10.1016/j.gfs.2018.03.007.
  • Cardador-Martinez, A.; Pech-Almeida, J. L.; Allaf, K.; Palacios-Rojas, N.; Alonzo-Macias, M.; Tellez-Perez, C. A Preliminary Study on the Effect of the Instant Controlled Pressure Drop Technology (Dic) on Drying and Rehydration Kinetics of Maize Kernels (Zea mays L.). Foods 2022, 11, 2151. DOI: 10.3390/foods11142151.
  • Sanghi, A.; Ambrose, R. P. K.; Maier, D. CFD Simulation of Corn Drying in a Natural Convection Solar Dryer. Drying Technol. 2018, 36, 859–870. DOI: 10.1080/07373937.2017.1359622.
  • Jin, X.; Wang, C.; Bi, Q.; Liu, Z.; Zhang, Z. Study on Drying Characteristics of Corn Based on 3d Model. Int. J. Food Eng. 2020, 16, 20190320. DOI: 10.1515/ijfe-2019-0320.
  • Li, B.; Li, C.; Huang, J.; Li, C. Exergoeconomic Analysis of Corn Drying in a Novel Industrial Drying System. Entropy 2020, 22, 689. DOI: 10.3390/e22060689.
  • Obeng-Akrofi, G.; Akowuah, J. O.; Maier, D. E.; Addo, A. Techno-Economic Analysis of a Crossflow Column Dryer for Maize Drying in Ghana. Agriculture 2021, 11, 568. DOI: 10.3390/agriculture11060568.
  • Wijesinha-Bettoni, R.; Mouillé, B. The Contribution of Potatoes to Global Food Security, Nutrition and Healthy Diets. Am. J. Potato Res. 2019, 96, 139–149. DOI: 10.1007/s12230-018-09697-1.
  • Lu, Y.; Kear, P.; Lu, X.; Gatto, M. The Status and Challenges of Sustainable Intensification of Rice-Potato Systems in Southern China. Am. J. Potato Res. 2021, 98, 361–373. DOI: 10.1007/s12230-021-09848-x.
  • Zhang, H.; Xu, F.; Wu, Y.; Hu, H.; Dai, X. Progress of Potato Staple Food Research and Industry Development in China. J. Integr. Agric. 2017, 16, 2924–2932. DOI: 10.1016/s2095-3119(17)61736-2.
  • Qiu, G.; Jiang, Y-l.; Deng, Y. Drying Characteristics, Functional Properties and In Vitro Digestion of Purple Potato Slices Dried by Different Methods. J. Integr. Agric. 2019, 18, 2162–2172. DOI: 10.1016/S2095-3119(19)62654-7.
  • Anwar, M.; Birch, E. J.; Ding, Y.; Bekhit, A. E. Water-Soluble Non-starch Polysaccharides of Root and Tuber Crops: Extraction, Characteristics, Properties, Bioactivities, and Applications. Crit. Rev. Food Sci. Nutr. 2022, 62, 2309–2341. DOI: 10.1080/10408398.2020.1852388.
  • Singh, D.; Patel, S. K.; Singh, D. Computational Studies of Drying Characteristics in Thin-Layer Microwave-Heated Solanum Tuberosum. Chem. Pap. 2021, 75, 2727–2735. DOI: 10.1007/s11696-021-01510-4.
  • Bao, H.; Zhou, J.; Yu, J.; Wang, S. Effect of Drying Methods on Properties of Potato Flour and Noodles Made with Potato Flour. Foods 2021, 10, 1115. DOI: 10.3390/foods10051115.
  • Kemal, E.; Özbek, H. N.; Göğüş, F.; Yanık, D. K. Hot Air-Assisted Radio Frequency Drying of Grated Potato (Solanum tuberosum L.): Drying Behavior and the Associated Effect on Characteristics of Potato Flour. J. Food Sci. 2022, 87, 4068–4081. DOI: 10.1111/1750-3841.16265.
  • Tomas-Egea, J. A.; Traffano-Schiffo, M. V.; Castro-Giraldez, M.; Fito, P. J. Hot Air and Microwave Combined Drying of Potato Monitored by Infrared Thermography. Appl. Sci. 2021, 11, 1730. DOI: 10.3390/app11041730.
  • Kumar, S.; Pandey, G. Biofortification of Pulses and Legumes to Enhance Nutrition. Heliyon 2020, 6, e03682. DOI: 10.1016/j.heliyon.2020.e03682.
  • Hall, C.; Hillen, C.; Garden Robinson, J. Composition, Nutritional Value, and Health Benefits of Pulses. Cereal Chem. 2017, 94, 11–31. DOI: 10.1094/CCHEM-03-16-0069-FI.
  • Atungulu, G. G.; Olatunde, G. A. Assessment of New In-Bin Drying and Storage Technology for Soybean Seed. Drying Technol. 2018, 36, 383–399. DOI: 10.1080/07373937.2017.1335751.
  • Souza, G. F. M. V.; Avendaño, P. S.; Ferreira, F. R. C.; Duarte, C. R.; Barrozo, M. A. S. A Study on a Novel System for Soybean Seeds Drying: Performance and Seed Quality. Drying Technol. 2022, 40, 2872–2879. DOI: 10.1080/07373937.2021.1970579.
  • Defendi, R. O.; Paraíso, P. R.; Jorge, L. M. d M. Optimization Study of Soybean Intermittent Drying in Fixed-Bed Drying Technology. Drying Technol. 2017, 35, 125–137. DOI: 10.1080/07373937.2016.1162171.
  • Khampakool, A.; Soisungwan, S.; Park, S. H. Potential Application of Infrared Assisted Freeze Drying (IRAFD) for Banana Snacks: Drying Kinetics, Energy Consumption, and Texture. LWT-Food Sci. Technol. 2019, 99, 355–363. DOI: 10.1016/j.lwt.2018.09.081.
  • Mahmood, N.; Liu, Y.; Munir, Z.; Zhang, Y.; Niazi, B. M. K. Effects of Hot Air Assisted Radio Frequency Drying on Heating Uniformity, Drying Characteristics and Quality of Paddy. LWT-Food Sci. Technol. 2022, 158, 113131. DOI: 10.1016/j.lwt.2022.113131.
  • Wei, S.; Xie, W.; Zheng, Z.; Yang, D. Numerical and Experimental Studies on Drying Behavior of Radio Frequency Assisted Convective Drying for Thin-Layer Corn Kernels. Comput. Electron. Agric. 2021, 191, 106520. DOI: 10.1016/j.compag.2021.106520.
  • Dibagar, N.; Amiri Chayjan, R.; Figiel, A.; Ghasemi, A. A Modeling Strategy for Hot Drying of Rough Rice Assisted by Ultrasonic Wave. Food Bioprod. Process. 2022, 132, 114–129. DOI: 10.1016/j.fbp.2022.01.004.
  • Zare, D.; Akbarzadeh, S.; Nematollahi, M. A.; Loghavi, M. Simulation of Hot Air Infrared‐Assisted Green Peas Drying Using Finite Element Method. J. Food Process Eng. 2020, 43, e13500. DOI: 10.1111/jfpe.13500.
  • Hnin, K. K.; Zhang, M.; Li, Z.; Wang, B. Comparison of Quality Aspects and Energy Consumption of Restructured Taro and Potato Chips under Three Drying Methods. J. Food Process Eng. 2019, 42, e13249. DOI: 10.1111/jfpe.13249.
  • Wei, S.; Xie, W.; Zheng, Z.; Ren, L.; Yang, D. Numerical Study on Drying Uniformity of Bulk Corn Kernels during Radio Frequency-Assisted Hot Air Drying. Biosyst. Eng. 2023, 227, 117–129. DOI: 10.1016/j.biosystemseng.2023.01.020.
  • Li, L.; Zhang, M.; Wang, W. A Novel Low-Frequency Microwave Assisted Pulse-Spouted Bed Freeze-Drying of Chinese Yam. Food Bioprod. Process. 2019, 118, 217–226. DOI: 10.1016/j.fbp.2019.09.012.
  • Meng, Z.; Cui, X.; Zhang, H.; Liu, Y.; Wang, Z.; Zhang, F. Study on Drying Characteristics of Yam Slices under Heat Pump-Electrohydrodynamics Combined Drying. Case Stud. Therm. Eng. 2023, 41, 102601. DOI: 10.1016/j.csite.2022.102601.
  • Harguindeguy, M.; Fissore, D. On the Effects of Freeze-Drying Processes on the Nutritional Properties of Foodstuff: A Review. Drying Technol. 2020, 38, 846–868. DOI: 10.1080/07373937.2019.1599905.
  • Wang, R.; Zhang, M.; Mujumdar, A. S. Effects of Vacuum and Microwave Freeze Drying on Microstructure and Quality of Potato Slices. J. Food Eng. 2010, 101, 131–139. DOI: 10.1016/j.jfoodeng.2010.05.021.
  • Jiang, H.; Zhang, M.; Mujumdar, A. S.; Lim, R.-X. Comparison of Drying Characteristic and Uniformity of Banana Cubes Dried by Pulse-Spouted Microwave Vacuum Drying, Freeze Drying and Microwave Freeze Drying. J. Sci. Food Agric. 2014, 94, 1827–1834. DOI: 10.1002/jsfa.6501.
  • Li, L.; Zhang, M.; Bhandari, B. Influence of Drying Methods on Some Physicochemical, Functional and Pasting Properties of Chinese Yam Flour. LWT-Food Sci. Technol. 2019, 111, 182–189. DOI: 10.1016/j.lwt.2019.05.034.
  • Wu, X.; Zhang, M.; Bhandari, B.; Li, Z. Effects of Microwave Assisted Pulse Fluidized Bed Freeze-Drying (MPFFD) on Quality Attributes of Cordyceps militaris. Food Biosci. 2019, 28, 7–14. DOI: 10.1016/j.fbio.2019.01.001.
  • Duarte‐Correa, Y.; Vargas‐Carmona, M. I.; Vásquez‐Restrepo, A.; Ruiz Rosas, I. D.; Pérez Martínez, N. Native Potato (Solanum phureja) Powder by Refractance Window Drying: A Promising Way for Potato Processing. J. Food Process Eng. 2021, 44, e13819. DOI: 10.1111/jfpe.13819.
  • Santos, S. J. L.; Canto, H. K. F.; da Silva, L. H. M.; Rodrigues, A. M. C. Characterization and Properties of Purple Yam (Dioscorea trifida) Powder Obtained by Refractance Window Drying. Drying Technol. 2022, 40, 1103–1113. DOI: 10.1080/07373937.2020.1847140.
  • Padhi, S.; Murakonda, S.; Dwivedi, M. Investigation of Drying Characteristics and Nutritional Retention of Unripe Green Banana Flour by Refractance Window Drying Technology Using Statistical Approach. Food Meas. 2022, 16, 2375–2385. DOI: 10.1007/s11694-022-01349-7.
  • Rajoriya, D.; Shewale, S. R.; Bhavya, M. L.; Hebbar, H. U. Far Infrared Assisted Refractance Window Drying of Apple Slices: Comparative Study on Flavour, Nutrient Retention and Drying Characteristics. Innov. Food Sci. Emerg. Technol. 2020, 66, 102530. DOI: 10.1016/j.ifset.2020.102530.
  • Cao, Z.; Ding, C.; Zhao, R.; Song, Z.; Chen, H.; Apetrei, C. Ultrasonic Pretreatment-Assisted Electrohydrodynamic Drying of Potato Slices. J. Food Qual. 2021, 2021, 1–13. DOI: 10.1155/2021/5356645.
  • Yu, H.; Bai, A.; Yang, X.; Wang, Y. Electrohydrodynamic Drying of Potato and Process Optimization. J. Food Process. Preserv. 2018, 42, e13492. DOI: 10.1111/jfpp.13492.
  • Llavata, B.; García-Pérez, J. V.; Simal, S.; Cárcel, J. A. Innovative Pre-Treatments to Enhance Food Drying: A Current Review. Curr. Opin. Food Sci. 2020, 35, 20–26. DOI: 10.1016/j.cofs.2019.12.001.
  • Zhu, A.; Zhao, J.; Wu, Y. Modeling and Mass Transfer Performance of Dioscorea alata L. Slices Drying in Convection Air Dryer. J. Food Process Eng. 2020, 43, e13427. DOI: 10.1111/jfpe.13427.
  • Wang, R.; Zhang, M.; Mujumdar, A. S. Effect of Osmotic Dehydration on Microwave Freeze-Drying Characteristics and Quality of Potato Chips. Drying Technol. 2010, 28, 798–806. DOI: 10.1080/07373937.2010.482700.
  • Beigi, M. Influence of Blanching-Freezing Pre-Treatment on Moisture Removal Characteristics of Microwave-Dried Potatoes. J. Microw. Power Electromagn. Energy 2022, 56, 45–57. DOI: 10.1080/08327823.2022.2029118.
  • Li, S.; Chen, S.; Han, F.; Xv, Y.; Sun, H.; Ma, Z.; Chen, J.; Wu, W. Development and Optimization of Cold Plasma Pretreatment for Drying on Corn Kernels. J. Food Sci. 2019, 84, 2181–2189. DOI: 10.1111/1750-3841.14708.
  • Guedes, J. S.; Santos, K. C.; Castanha, N.; Rojas, M. L.; Matta Junior, M. D.; Lima, D. C.; Augusto, P. E. D. Structural Modification on Potato Tissue and Starch Using Ethanol Pre-Treatment and Drying Process. Food Struct. 2021, 29, 100202. DOI: 10.1016/j.foostr.2021.100202.
  • Liu, C.; Grimi, N.; Lebovka, N.; Vorobiev, E. Effects of Pulsed Electric Fields Treatment on Vacuum Drying of Potato Tissue. LWT-Food Sci. Technol. 2018, 95, 289–294. DOI: 10.1016/j.lwt.2018.04.090.
  • Zhao, D.; Wang, Y.; Zhu, Y.; Ni, Y. Effect of Carbonic Maceration Pre-Treatment on the Drying Behavior and Physicochemical Compositions of Sweet Potato Dried with Intermittent or Continuous Microwave. Drying Technol. 2016, 34, 1604–1612. DOI: 10.1080/07373937.2016.1138231.
  • Olagunju, T. M.; Aregbesola, O. A.; Akpan, G. E. Modeling and Optimization of Thin‐Layer Drying Data of Pretreated Taro (Colocasia esculenta) Corm Slices. J. Food Process Eng. 2020, 43, e13564. DOI: 10.1111/jfpe.13564.
  • Li, M.; Wang, B.; Lv, W.; Zhao, D. Effect of Ultrasound Pretreatment on the Drying Kinetics and Characteristics of Pregelatinized Kidney Beans Based on Microwave-Assisted Drying. Food Chem. 2022, 397, 133806. DOI: 10.1016/j.foodchem.2022.133806.
  • Belmiro, R. H.; Tribst, A. A. L.; Cristianini, M. Impact of High Pressure Processing in Hydration and Drying Curves of Common Beans (Phaseolus vulgaris L.). Innov. Food Sci. Emerg. Technol. 2018, 47, 279–285. DOI: 10.1016/j.ifset.2018.03.013.
  • Malakar, S.; Arora, V. K.; Munshi, M.; Yadav, D. K.; Pou, K. R. J.; Deb, S.; Chandra, R. Application of Novel Pretreatment Technologies for Intensification of Drying Performance and Quality Attributes of Food Commodities: A Review. Food Sci. Biotechnol. 2023, 32, 1303–1335. DOI: 10.1007/s10068-023-01322-0.
  • Osae, R.; Essilfie, G.; Alolga, R. N.; Akaba, S.; Song, X.; Owusu-Ansah, P.; Zhou, C. Application of Non-Thermal Pretreatment Techniques on Agricultural Products Prior to Drying: A Review. J. Sci. Food Agric. 2020, 100, 2585–2599. DOI: 10.1002/jsfa.10284.
  • Rojas, M. L.; Augusto, P. E. D. Ethanol and Ultrasound Pre-Treatments to Improve Infrared Drying of Potato Slices. Innov. Food Sci. Emerg. Technol. 2018, 49, 65–75. DOI: 10.1016/j.ifset.2018.08.005.
  • Granella, S. J.; Bechlin, T. R.; Christ, D. Moisture Diffusion by the Fractional-Time Model in Convective Drying with Ultrasound-Ethanol Pretreatment of Banana Slices. Innov. Food Sci. Emerg. Technol. 2022, 76, 102933. DOI: 10.1016/j.ifset.2022.102933.
  • Liu, C.; Grimi, N.; Lebovka, N.; Vorobiev, E. Convective Air, Microwave, and Combined Drying of Potato Pre-Treated by Pulsed Electric Fields. Drying Technol. 2019, 37, 1704–1713. DOI: 10.1080/07373937.2018.1536065.
  • Wu, Y.; Zhang, D. Effect of Pulsed Electric Field on Freeze-Drying of Potato Tissue. Int. J. Food Eng. 2014, 10, 857–862. DOI: 10.1515/ijfe-2014-0149.
  • Oliveira, M. M.; Tribst, A. A. L.; Leite Júnior, B. R. C.; Oliveira, R. A.; Cristianini, M. Effects of High Pressure Processing on Cocoyam, Peruvian Carrot, and Sweet Potato: Changes in Microstructure, Physical Characteristics, Starch, and Drying Rate. Innov. Food Sci. Emerg. Technol. 2015, 31, 45–53. DOI: 10.1016/j.ifset.2015.07.004.
  • Li, S.; Chen, S.; Liang, Q.; Ma, Z.; Han, F.; Xu, Y.; Jin, Y.; Wu, W. Low Temperature Plasma Pretreatment Enhances Hot‐Air Drying Kinetics of Corn Kernels. J. Food Process Eng. 2019, 42, e13195. DOI: 10.1111/jfpe.13195.
  • Misra, N. N.; Pankaj, S. K.; Segat, A.; Ishikawa, K. Cold Plasma Interactions with Enzymes in Foods and Model Systems. Trends Food Sci. Technol. 2016, 55, 39–47. DOI: 10.1016/j.tifs.2016.07.001.
  • Lagnika, C.; Jiang, N.; Song, J.; Li, D.; Liu, C.; Huang, J.; Wei, Q.; Zhang, M. Effects of Pretreatments on Properties of Microwave-Vacuum Drying of Sweet Potato Slices. Drying Technol. 2019, 37, 1901–1914. DOI: 10.1080/07373937.2018.1543702.
  • Karacabey, E.; Bardakçı, M. S.; Baltacıoğlu, H. Physical Pretreatments to Enhance Purple-Fleshed Potatoes Drying: Effects of Blanching, Ohmic Heating and Ultrasound Pretreatments on Quality Attributes. Potato Res. 2023. DOI: 10.1007/s11540-023-09618-8.
  • Sun, X.; Jin, X.; Fu, N.; Chen, X. Effects of Different Pretreatment Methods on the Drying Characteristics and Quality of Potatoes. Food Sci. Nutr. 2020, 8, 5767–5775. DOI: 10.1002/fsn3.1579.
  • Zhang, J.; Li, Y.; Cai, Y.; Ahmad, I.; Zhang, A.; Ding, Y.; Qiu, Y.; Zhang, G.; Tang, W.; Lyu, F. Hot Extrusion 3D Printing Technologies Based on Starchy Food: A Review. Carbohydr. Polym. 2022, 294, 119763. DOI: 10.1016/j.carbpol.2022.119763.
  • Rong, L.; Chen, X.; Shen, M.; Yang, J.; Qi, X.; Li, Y.; Xie, J. The Application of 3D Printing Technology on Starch-Based Product: A Review. Trends Food Sci. Technol. 2023, 134, 149–161. DOI: 10.1016/j.tifs.2023.02.015.
  • Ji, S.; Xu, T.; Liu, Y.; Li, H.; Luo, J.; Zou, Y.; Zhong, Y.; Li, Y.; Lu, B. Investigation of the Mechanism of Casein Protein to Enhance 3D Printing Accuracy of Cassava Starch Gel. Carbohydr. Polym. 2022, 295, 119827. DOI: 10.1016/j.carbpol.2022.119827.
  • Ma, S.; Liu, J.; Zhang, Q.; Lin, Q.; Liu, R.; Xing, Y.; Jiang, H. 3d Printing Performance Using Radio Frequency Electromagnetic Wave Modified Potato Starch. Innov. Food Sci. Emerg. Technol. 2022, 80, 103064. DOI: 10.1016/j.ifset.2022.103064.
  • Li, G.; Zhan, J.; Hu, Z.; Huang, J.; Luo, X.; Chen, J.; Yuan, C.; Takaki, K.; Hu, Y. 3d Printing Properties and Printability Definition of Pennahia argentata Surimi and Rice Starch. Food Biosci. 2022, 48, 101748. DOI: 10.1016/j.fbio.2022.101748.
  • Zheng, L.; Ren, A.; Liu, R.; Xing, Y.; Yu, X.; Jiang, H. Effect of Sodium Chloride Solution on Quality of 3D-Printed Samples Molded Using Wheat Starch Gel. Food Hydrocolloids 2022, 123, 107197. DOI: 10.1016/j.foodhyd.2021.107197.
  • Yan, B.; Zhao, Z.; Zhang, N.; Ruan, H.; Yu, X.; Zhao, J.; Zhang, H.; Chen, W.; Fan, D. 3D Food Printing Curing Technology Based on Gellan Gum. J. Food Eng. 2022, 327, 111036. DOI: 10.1016/j.jfoodeng.2022.111036.
  • Feng, L.; Wu, J.; Cai, L.; Li, M.; Dai, Z.; Li, D.; Liu, C.; Zhang, M. Effects of Different Hydrocolloids on the Water Migration, Rheological and 3D Printing Characteristics of Beta-Carotene Loaded Yam Starch-Based Hydrogel. Food Chem. 2022, 393, 133422. DOI: 10.1016/j.foodchem.2022.133422.
  • Guo, J.; Zhang, M.; Li, J.; Fang, Z. Using Soy Protein Isolate to Improve the Deformation Properties of 4D-Printed Oat Flour Butterfly. Food Bioprocess Technol. 2023, 16, 1165–1176. DOI: 10.1007/s11947-023-02994-6.
  • Guénard-Lampron, V.; Liu, X.; Masson, M.; Blumenthal, D. Screening of Different Flours for 3D Food Printing: Optimization of Thermomechanical Process of Soy and Rye Flour Dough. Innov. Food Sci. Emerg. Technol. 2023, 87, 103394. DOI: 10.1016/j.ifset.2023.103394.
  • Cui, Y.; Li, C.; Guo, Y.; Liu, X.; Zhu, F.; Liu, Z.; Liu, X.; Yang, F. Rheological & 3D Printing Properties of Potato Starch Composite Gels. J. Food Eng. 2022, 313, 110756. DOI: 10.1016/j.jfoodeng.2021.110756.
  • Maniglia, B. C.; Lima, D. C.; da Matta Junior, M.; Oge, A.; Le-Bail, P.; Augusto, P. E. D.; Le-Bail, A. Dry Heating Treatment: A Potential Tool to Improve the Wheat Starch Properties for 3D Food Printing Application. Food Res. Int. 2020, 137, 109731. DOI: 10.1016/j.foodres.2020.109731.
  • Lorenz, T.; Iskandar, M. M.; Baeghbali, V.; Ngadi, M. O.; Kubow, S. 3D Food Printing Applications Related to Dysphagia: A Narrative Review. Foods 2022, 11, 1789. DOI: 10.3390/foods11121789.
  • Kong, D.; Zhang, M.; Mujumdar, A. S.; Li, J. Feasibility of Hydrocolloid Addition for 3D Printing of Qingtuan with Red Bean Filling as a Dysphagia Food. Food Res. Int. 2023, 165, 112469. DOI: 10.1016/j.foodres.2023.112469.
  • Du, Y.; Tang, T.; Zhang, M.; Mujumdar, A. S.; Phuhongsung, P.; Yu, D. Double-Nozzle 3D-Printed Bean Paste Buns: Effect of Filling Ratio and Microwave Heating Time. J. Texture Stud. 2023, 54, 671–680. DOI: 10.1111/jtxs.12765.
  • Zhang, L. z.; Dong, H. s.; Yu, Y. b.; Liu, L. y.; Zang, P. Application and Challenges of 3D Food Printing Technology in Manned Spaceflight: A Review. Int. J. Food Sci. Tech. 2022, 57, 4906–4917. DOI: 10.1111/ijfs.15879.
  • Jiang, J.; Zhang, M.; Bhandari, B.; Cao, P. Current Processing and Packing Technology for Space Foods: A Review. Crit. Rev. Food Sci. Nutr. 2020, 60, 3573–3588. DOI: 10.1080/10408398.2019.1700348.
  • Venir, E.; Del Torre, M.; Stecchini, M. L.; Maltini, E.; Di Nardo, P. Preparation of Freeze-Dried Yoghurt as a Space Food. J. Food Eng. 2007, 80, 402–407. DOI: 10.1016/j.jfoodeng.2006.02.030.
  • Fournier, R.; Persad, A. H. A Low-Cost Adapter for the Rehydration of Commercially Available Food and Beverages for Spaceflight. Acta Astronaut. 2023, 210, 529–534. DOI: 10.1016/j.actaastro.2023.04.023.
  • Dziki, D. Recent Trends in Pretreatment of Food before Freeze-Drying. Processes 2020, 8, 1661. DOI: 10.3390/pr8121661.
  • Li, L.; Chen, J.; Zhou, S.; Ren, G.; Duan, X. Quality Evaluation of Probiotics Enriched Chinese Yam Snacks Produced Using Infrared‐Assisted Spouted Bed Drying. J. Food Process. Preserv. 2021, 45, e15358. DOI: 10.1111/jfpp.15358.
  • Zhang, L.; Lou, Y.; Schutyser, M. A. I. 3D Printing of Cereal-Based Food Structures Containing Probiotics. Food Struct. 2018, 18, 14–22. DOI: 10.1016/j.foostr.2018.10.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.