Publication Cover
Drying Technology
An International Journal
Volume 42, 2024 - Issue 3
81
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Multiscale modeling of transport mechanisms, strain, and stress in bananas during drying

, &
Pages 540-562 | Received 14 Dec 2022, Accepted 04 Nov 2023, Published online: 21 Nov 2023

References

  • Siddiq, M.; Ahmed, J.; Lobo, M. G. Handbook of Banana Production, Postharvest Science, Processing Technology, and Nutrition; Wiley Online Library: Hoboken, NJ, 2020.
  • Prachayawarakorn, S.; Tia, W.; Plyto, N.; Soponronnarit, S. Drying Kinetics and Quality Attributes of Low-Fat Banana Slices Dried at High Temperature. J. Food Eng. 2008, 85, 509–517. DOI: 10.1016/j.jfoodeng.2007.08.011.
  • Takhar, P. S. Hybrid Mixture Theory Based Moisture Transport and Stress Development in Corn Kernels during Drying: Coupled Fluid Transport and Stress Equations. J. Food Eng. 2011, 105, 663–670. DOI: 10.1016/j.jfoodeng.2011.03.033.
  • Yang, W.; Jia, C.-C.; Siebenmorgen, T.; Pan, Z.; Cnossen, A. Relationship of Kernel Moisture Content Gradients and Glass Transition Temperatures to Head Rice Yield. Biosyst. Eng. 2003, 85, 467–476. DOI: 10.1016/S1537-5110(03)00091-6.
  • Arora, V.; Henderson, S.; Burkhardt, T. Rice Drying Cracking versus Thermal and Mechanical Properties. Trans. ASAE 1973, 16, 320–0323. DOI: 10.13031/2013.37511.
  • Defraeye, T. Advanced Computational Modelling for Drying Processes–a Review. Appl. Energy 2014, 131, 323–344. DOI: 10.1016/j.apenergy.2014.06.027.
  • Katekawa, M.; Silva, M. A Review of Drying Models Including Shrinkage Effects. Dry. Technol. 2006, 24, 5–20. DOI: 10.1080/07373930500538519.
  • Mahiuddin, M.; Khan, M. I. H.; Kumar, C.; Rahman, M. M.; Karim, M. Shrinkage of Food Materials during Drying: Current Status and Challenges. Comp. Rev. Food Sci. Food Saf. 2018, 17, 1113–1126. DOI: 10.1111/1541-4337.12375.
  • Mayor, L.; Sereno, A. Modelling Shrinkage during Convective Drying of Food Materials: A Review. J. Food Eng. 2004, 61, 373–386. DOI: 10.1016/S0260-8774(03)00144-4.
  • Purlis, E.; Cevoli, C.; Fabbri, A. Modelling Volume Change and Deformation in Food Products/Processes: An Overview. Foods 2021, 10, 778. DOI: 10.3390/foods10040778.
  • Rahman, M. M.; Joardder, M. U.; Khan, M. I. H.; Pham, N. D.; Karim, M. Multi-Scale Model of Food Drying: Current Status and Challenges. Crit. Rev. Food Sci. Nutr. 2018, 58, 858–876. DOI: 10.1080/10408398.2016.1227299.
  • Queiroz, M.; Nebra, S. Theoretical and Experimental Analysis of the Drying Kinetics of Bananas. J. Food Eng. 2001, 47, 127–132. DOI: 10.1016/S0260-8774(00)00108-4.
  • Johnson, P. T.; Brennan, J.; Addo-Yobo, F. Air-Drying Characteristics of Plantain (Musa AAB). J. Food Eng. 1998, 37, 233–242. DOI: 10.1016/S0260-8774(98)00076-4.
  • Jannot, Y.; Talla, A.; Nganhou, J.; Puiggali, J.-R. Modeling of Banana Convective Drying by the Drying Characteristic Curve (DCC) Method. Dry. Technol. 2004, 22, 1949–1968. DOI: 10.1081/DRT-200032888.
  • Dandamrongrak, R.; Young, G.; Mason, R. Evaluation of Various Pre-Treatments for the Dehydration of Banana and Selection of Suitable Drying Models. J. Food Eng. 2002, 55, 139–146. DOI: 10.1016/S0260-8774(02)00028-6.
  • Karim, M. A.; Hawlader, M. Drying Characteristics of Banana: Theoretical Modelling and Experimental Validation. J. Food Eng. 2005, 70, 35–45. DOI: 10.1016/j.jfoodeng.2004.09.010.
  • Baini, R.; Langrish, T. Choosing an Appropriate Drying Model for Intermittent and Continuous Drying of Bananas. J. Food Eng. 2007, 79, 330–343. DOI: 10.1016/j.jfoodeng.2006.01.068.
  • Seyedabadi, E.; Khojastehpour, M.; Abbaspour-Fard, M. H. Convective Drying Simulation of Banana Slabs considering Non-Isotropic Shrinkage Using FEM with the Arbitrary Lagrangian–Eulerian Method. Int. J. Food Prop. 2017, 20, S36–S49. DOI: 10.1080/10942912.2017.1288134.
  • da Silva, W. P.; Rodrigues, A. F.; e Silva, C. M. D.; de Castro, D. S.; Gomes, J. P. Comparison between Continuous and Intermittent Drying of Whole Bananas Using Empirical and Diffusion Models to Describe the Processes. J. Food Eng. 2015, 166, 230–236. DOI: 10.1016/j.jfoodeng.2015.06.018.
  • Ranjan, R.; Irudayaraj, J.; Reddy, J.; Mujumdar, A. Finite-Element Simulation and Validation of Stepwise Drying of Bananas. Numer. Heat Transf. A 2004, 45, 997–1012. DOI: 10.1080/10407780490453963.
  • Davila, R. F. Z. Mathematical Modeling of Drying Process of Unripe Banana Slices; Universidade de São Paulo: São Paulo, Brazil, 2016.
  • Caballero-Cerón, C.; Serment-Moreno, V.; Velazquez, G.; Torres, J. A.; Welti-Chanes, J. Hygroscopic Properties and Glass Transition of Dehydrated Mango, Apple and Banana. J. Food Sci. Technol. 2018, 55, 540–549. DOI: 10.1007/s13197-017-2963-3.
  • Battiato, I.; Ferrero V, P. T.; O’ Malley, D.; Miller, C. T.; Takhar, P. S.; Valdés-Parada, F. J.; Wood, B. D. Theory and Applications of Macroscale Models in Porous Media. Trans. Porous Med. 2019, 130, 5–76. DOI: 10.1007/s11242-019-01282-2.
  • Takhar, P. S. Unsaturated Fluid Transport in Swelling Poroviscoelastic Biopolymers. Chem. Eng. Sci. 2014, 109, 98–110. DOI: 10.1016/j.ces.2014.01.016.
  • De Vries, D. Simultaneous Transfer of Heat and Moisture in Porous Media. Eos, Trans. Am. Geophys. Union 1958, 39, 909–916. DOI: 10.1029/TR039i005p00909.
  • Singh, P. P.; Cushman, J. H.; Maier, D. E. Three Scale Thermomechanical Theory for Swelling Biopolymeric Systems. Chem. Eng. Sci. 2003, 58, 4017–4035. DOI: 10.1016/S0009-2509(03)00283-5.
  • Ozturk, O. K.; Takhar, P. S. Hybrid Mixture Theory-Based Modeling of Moisture Transport Coupled with Quality Changes in Strawberries and Carrots. Dry. Technol. 2021, 39, 932–949. DOI: 10.1080/07373937.2020.1733005.
  • Eringen, A. C. Mechanics of Continua. Huntington; R.E. Krieger Pub. Co.: Huntington, NY, 1980.
  • Ditudompo, S.; Takhar, P. S. Hybrid Mixture Theory Based Modeling of Transport Mechanisms and Expansion‐Thermomechanics of Starch during Extrusion. AlChE. J. 2015, 61, 4517–4532. DOI: 10.1002/aic.14936.
  • Bennethum, L. S.; Cushman, J. H. Multiscale, Hybrid Mixture Theory for Swelling Systems—I: Balance Laws. Int. J. Eng. Sci. 1996, 34, 125–145. DOI: 10.1016/0020-7225(95)00089-5.
  • Poling, B. E.; Prausnitz, J. M.; O’connell, J. P. Properties of Gases and Liquids; McGraw-Hill Education: New York, NY, 2001.
  • Bart-Plange, A.; Addo, A.; Ofori, H.; Asare, V. Thermal Properties of Gros Michel Banana Grown in Ghana. ARPN J. Eng. Appl. Sci. 2012, 7, 478–484. https://www.arpnjournals.com/jeas/research_papers/rp_2012/jeas_0412_679.pdf.
  • Zábranský, M.; Růžička, V.Jr. Domalski, E. S. Heat Capacity of Liquids: Critical Review and Recommended Values. Supplement I. J. Phys. Chem. Ref. Data 2001, 30, 1199–1689. DOI: 10.1063/1.1407866.
  • Vargaftik, N. B. Tables on the Thermophysical Properties of Liquids and Gases; Hemisphere Pub. Corp.: Washington, DC, 1975.
  • Ajibola, O. Desorption Isotherms for Plantain at Several Temperatures. J. Food Sci. 1986, 51, 169–171. DOI: 10.1111/j.1365-2621.1986.tb10862.x.
  • Singh, P. P.; Maier, D. E.; Cushman, J. H.; Campanella, O. H. Effect of Viscoelastic Relaxation on Moisture Transport in Foods. Part II: Sorption and Drying of Soybeans. J. Math. Biol. 2004, 49, 20–34. DOI: 10.1007/s00285-003-0250-6.
  • Knauss, W. G.; Emri, I. Volume Change and the Nonlinearly Thermo‐Viscoelastic Constitution of Polymers. Polym. Eng. Sci. 1987, 27, 86–100. DOI: 10.1002/pen.760270113.
  • Dlubek, G.; Kilburn, D.; Bondarenko, V.; Pionteck, J.; Krause-Rehberg, R.; Alam, M. Characterisation of Free Volume in Amorphous Materials by PALS in Relation to Relaxation Phenomena. Presented at the 24th Arbeitskreistagung ‘Nichtkristalline Structuren’of DGK, Jena, Germany, September 2003.
  • Wästlund, C.; Maurer, F. H. Positron Lifetime Distributions and Free Volume Parameters of PEO/PMMA Blends Determined with the Maximum Entropy Method. Macromolecules 1997, 30, 5870–5876. DOI: 10.1021/ma961604j.
  • Abedi, F. M.; Takhar, P. S. Stress Relaxation Properties of Bananas during Drying. J. Texture Stud. 2022, 53, 146–156. DOI: 10.1111/jtxs.12637.
  • Hammerle, J.; Mohsenin, N. Tensile Relaxation Modulus of Corn Horny Endosperm as a Function of Time, Temperature and Moisture Content. Trans. ASAE 1970, 13, 372–0375. DOI: 10.13031/2013.38612.
  • Green, D.; Southard, M. Perry’s Chemical Engineering Handbook, 9th ed.; McGraw-Hill Publishing: New York, NY, 2019.
  • Cengel, Y. A.; Boles, M. A.; Kanoglu, M. Thermodynamics: An Engineering Approach; McGraw-Hill Education: New York, NY, 2015.
  • Nellis, G.; Klein, S. Mass Transfer. Heat Transfer; Cambridge University Press, New York, NY, 2009.
  • Bergman, T. L.; Bergman, T. L.; Incropera, F. P.; Dewitt, D. P.; Lavine, A. S. Fundamentals of Heat and Mass Transfer; John Wiley & Sons: Hoboken, NJ, 2011.
  • Mendoza, F.; Aguilera, J.; Dejmek, P. Predicting Ripening Stages of Bananas (Musa Cavendish) by Computer Vision. Presented at the V International Postharvest Symposium, Verona, Italy, June 30, 2004; pp. 1363–1370. DOI: 10.17660/ActaHortic.2005.682.183.
  • AACC. AACC Method 44-15.02 Moisture—Air-Oven Methods. In AACC Approved Methods of Analysis; AACC: Washington, DC, 1999.
  • Willmott, C. J.; Matsuura, K. Advantages of the Mean Absolute Error (MAE) over the Root Mean Square Error (RMSE) in Assessing Average Model Performance. Clim. Res. 2005, 30, 79–82. DOI: 10.3354/cr030079.
  • Giner, S. A. Influence of Internal and External Resistances to Mass Transfer on the Constant Drying Rate Period in High-Moisture Foods. Biosyst. Eng. 2009, 102, 90–94. DOI: 10.1016/j.biosystemseng.2008.09.022.
  • Marousis, S.; Karathanos, V.; Saravacos, G. Effect of Sugars on the Water Diffusivity in Hydrated Granular Starches. J. Food Sci. 1989, 54, 1496–1552. DOI: 10.1111/j.1365-2621.1989.tb05144.x.
  • Leslie, R.; Carillo, P.; Chung, T.; Gilbert, S.; Hayakawa, K.; Marousis, S.; Saravacos, G.; Solberg, M. Water Diffusivity in Starch-Based Systems. In Water Relationships in Foods; Springer: Berlin, Germany, 1991; pp. 365–390.
  • Saravacos, G.; Karathanos, V.; Marousis, S. Diffusion of Water in Starch Materials. In Developments in Food Science; Elsevier: Amsterdam, Netherlands, 1992; Vol. 29, pp. 329–340.
  • Mahomud, M. S.; Ali, M. K.; Rahman, M. M.; Rahman, M. H.; Sharmin, T.; Rahman, M. J. Effect of Honey and Sugar Solution on the Shelf Life and Quality of Dried Banana (Musa Paradisiaca) Slices. Am. J. Food Sci. Technol. 2015, 3(3), 60–66. DOI: 10.12691/ajfst-3-3-2.
  • Chin, S. K.; Law, C. L. Product Quality and Drying Characteristics of Intermittent Heat Pump Drying of Ganoderma Tsugae Murrill. Dry. Technol. 2010, 28, 1457–1465. DOI: 10.1080/07373937.2010.482707.
  • Yang, Z.; Zhu, E.; Zhu, Z.; Wang, J.; Li, S. A Comparative Study on Intermittent Heat Pump Drying Process of Chinese Cabbage (Brassica Campestris L. ssp) Seeds. Food Bioprod. Process. 2013, 91, 381–388. DOI: 10.1016/j.fbp.2013.02.006.
  • Pan, Y.; Zhao, L.; Hu, W. The Effect of Tempering-Intermittent Drying on Quality and Energy of Plant Materials. Dry. Technol. 1998, 17, 1795–1812. DOI: 10.1080/07373939908917653.
  • Kumar, C.; Karim, M.; Joardder, M. U. Intermittent Drying of Food Products: A Critical Review. J. Food Eng. 2014, 121, 48–57. DOI: 10.1016/j.jfoodeng.2013.08.014.
  • Gulati, T.; Datta, A. K. Mechanistic Understanding of Case-Hardening and Texture Development during Drying of Food Materials. J. Food Eng. 2015, 166, 119–138. DOI: 10.1016/j.jfoodeng.2015.05.031.
  • Cnossen, A.; Siebenmorgen, T. The Glass Transition Temperature Concept in Rice Drying and Tempering: Effect on Milling Quality. Trans. ASAE 2000, 43, 1661. DOI: 10.13031/2013.3066.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.