Publication Cover
Drying Technology
An International Journal
Volume 42, 2024 - Issue 6
33
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Ultrasonic dehydration of materials without liquid-vapor transition

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 967-979 | Received 23 Aug 2023, Accepted 06 Mar 2024, Published online: 03 Apr 2024

References

  • Zhilin, A. A.; Fedorov, A. V. Acousto-Convective Drying of Pine Nuts. J. Eng. Phys. Thermophy. 2014, 87, 908–916. DOI: 10.1007/s10891-014-1088-z.
  • Başlar, M.; Toker, Ö. S.; Karasu, S.; Tekin, Z. H.; Yildirim, H. B. Ultrasonic Applications for Food Dehydration. In Handbook of Ultrasonics and Sonochemistry, Springer: Singapore, 2016; pp 1247–1270. DOI: 10.1007/978-981-287-470-2_64-1.
  • Andrés, R. R.; Riera, E.; Gallego-Juárez, J. A.; Mulet, A.; García-Pérez, J. V.; Cárcel, J. A. Airborne Power Ultrasound for Drying Process Intensification at Low Temperatures: Use of a Stepped-Grooved Plate Transducer. Dry. Technol. 2021, 39, 245–258. DOI: 10.1080/07373937.2019.1677704.
  • Rozenberg, L. Physical Principles of Ultrasonic Technology. Springer Science & Business Media: New York, 2013
  • Boucher, R. M. G. Ultrasonics Boosts Heatless Drying. Chem. Eng. 1959, 66, 23–151.
  • Greguss, P. The Mechanism and Possible Applications of Drying by Ultrasonic Irradiation. Ultrasonics. 1963, 1, 83–86. DOI: 10.1016/0041-624X(63)90059-3.
  • Liu, Y.; Sun, Y.; Yu, H.; Yin, Y.; Li, X.; Duan, X. Hot Air Drying of Purple-Fleshed Sweet Potato with Contact Ultrasound Assistance. Dry. Technol. 2017, 35, 564–576. DOI: 10.1080/07373937.2016.1193867.
  • Gallego-Juarez, J. A. High-Power Ultrasonic Processing: Recent Developments and Prospective Advances. Phys. Procedia. 2010, 3, 35–47. DOI: 10.1016/j.phpro.2010.01.006.
  • Peng, C.; Ravi, S.; Patel, V. K.; Momen, A. M.; Moghaddam, S. Physics of Direct-Contact Ultrasonic Cloth Drying Process. Energy. 2017, 125, 498–508. DOI: 10.1016/j.energy.2017.02.138.
  • Gallego-Juárez, J. A.; Riera, E.; de la Fuente Blanco, S.; Rodríguez-Corral, G.; Acosta-Aparicio, V. M.; Blanco, A. Application of High-Power Ultrasound for Dehydration of Vegetable: Processes and Devices. Dry. Technol. 2007, 25, 1893–1901. DOI: 10.1080/07373930701677371.
  • Sun, G. Y.; Chen, M. Q.; Huang, Y. W. Evaluation on the Air-Borne Ultrasound-Assisted Hot Air Convection Thin-Layer Drying Performance of Municipal Sewage Sludge. Ultrason. Sonochem. 2017, 34, 588–599. DOI: 10.1016/j.ultsonch.2016.06.036.
  • Cárcel, J. A.; García-Pérez, J. V.; Riera, E.; Mulet, A. Influence of High-Intensity Ultrasound on Drying Kinetics of Persimmon. Dry. Technol. 2007, 25, 185–193. DOI: 10.1080/07373930601161070.
  • Dibagar, N.; Chayjan, R. A.; Figiel, A.; Ghasemi, A. A Modeling Strategy for Hot Drying of Rough Rice Assisted by Ultrasonic Wave. Food Bioprod. Process. 2022, 132, 114–129. DOI: 10.1016/j.fbp.2022.01.004.
  • García-Pérez, J. V.; Ozuna, C.; Ortuño, C.; Cárcel, J. A.; Mulet, A. Modeling Ultrasonically Assisted Convective Drying of Eggplant. Dry. Technol. 2011, 29, 1499–1509. DOI: 10.1080/07373937.2011.576321.
  • Da-Mota, V. M.; Palau, E. Acoustic Drying of Onion. Dry. Technol. 1999, 17, 855–867. DOI: 10.1080/07373939908917574.
  • Fairbanks, H. Drying Powdered Coal with the Aid of Ultrasound. Powder Technol. 1984, 40, 257–264. DOI: 10.1016/0032-5910(84)85071-8.
  • Kroehnke, J.; Szadzińska, J.; Stasiak, M.; Radziejewska-Kubzdela, E.; Biegańska-Marecik, R.; Musielak, G. Ultrasound-and Microwave-Assisted Convective Drying of Carrots–Process Kinetics and Product’s Quality Analysis. Ultrason. Sonochem. 2018, 48, 249–258. DOI: 10.1016/j.ultsonch.2018.05.040.
  • Kowalski, S. J.; Mierzwa, D. US-Assisted Convective Drying of Biological Materials. Dry. Technol. 2015, 33, 1601–1613. DOI: 10.1080/07373937.2015.1026985.
  • Nowacka, M.; Wedzik, M. Effect of Ultrasound Treatment on Microstructure, Colour and Carotenoid Content in Fresh and Dried Carrot Tissue. Appl. Acoust. 2016, 103, 163–171. DOI: 10.1016/j.apacoust.2015.06.011.
  • Yetenayet, B.; Hosahalli, R. Going beyond Conventional Osmotic Dehydration for Quality Advantage and Energy Savings. J. Food Sci. Technol. 2010, 1, 1–15.
  • Kowalski, S.; Mierzwa, D.; Stasiak, M. Ultrasound-Assisted Convective Drying of Apples at Different Process Conditions. Dry. Technol. 2017, 35, 939–947. DOI: 10.1080/07373937.2016.1239631.
  • Kroehnke, J.; Szadzińska, J.; Radziejewska-Kubzdela, E.; Biegańska-Marecik, R.; Musielak, G.; Mierzwa, D. Osmotic Dehydration and Convective Drying of Kiwifruit (Actinidiadeliciosa) – The Influence of Ultrasound on Process Kinetics and Product Quality. Ultrason. Sonochem. 2021, 71, 105377. DOI: 10.1016/j.ultsonch.2020.105377.
  • Ensminger, D.; Battelle. Acoustic and Electroacoustic Methods of Dewatering and Drying, Dry. Technol. Int. J. 1988, 6, 473–499. DOI: 10.1080/07373938808916394.
  • Fernandes, F. A.; Rodrigues, S. Ultrasound as Pre-Treatment for Drying of Fruits: Dehydration of Banana. J. Food Eng. 2007, 82, 261–267. DOI: 10.1016/j.jfoodeng.2007.02.032.
  • Liu, Y.; Sun, C.; Lei, Y.; Yu, H.; Xi, H.; Duan, X. Contact Ultrasound Strengthened Far-Infrared Radiation Drying on Pear Slices: Effects on Drying Characteristics, Microstructure, and Quality Attributes. Dry. Technol. 2019, 37, 745–758. DOI: 10.1080/07373937.2018.1458317.
  • Khmelev, V. N.; Shalunov, A. V.; Golyx, R. N.; Terentiev, S. A.; Nesterov, V. A. Theoretical Substantiation of the Mechanism of Ultrasonic Dehydration of Materials without a Phase Transition of Liquid into Vapor. Theor. Found. Chem. Eng. 2023, 57, 56–66. DOI: 10.1134/S0040579523010062.
  • Rozenberg, L. High Intensity Ultrasonic Fields, Plenum Press: New York, 1971.
  • Krasil’nikov, V. A.; Krylov, V. V. Introduction of Physical Acoustics, Nauka: Moscow, 1983; pp 400.
  • Khmelev, V. N.; Shalunov, A. V.; Nesterov, V. A.; Terentyev, S. A.; Tertishnikov, P. P.; Bochenkov, A. S. Combined Acoustic-Convective Drying of Plant Products. J. Phys: Conf. Ser. 2020, 1679, 052052. DOI: 10.1088/1742-6596/1679/5/052052.
  • Khmelev, V. N.; Shalunov, A. V.; Dorovskikh, R. S.; Golykh, R. N.; Nesterov, V. A. 2016 The Measurements of Acoustic Power Introduced into Gas Medium by the Ultrasonic Apparatuses with the Disk-Type Radiators. In 2016 17th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM), pp. 251–256. DOI: 10.1109/EDM.2016.7538735.
  • Khmelev, V. N.; Shalunov, A. V.; Golykh, R. N.; Nesterov, V. A.; Dorovskikh, R. S.; Shalunova, A. V. Providing the Efficiency and Dispersion Characteristics of Aerosols in Ultrasonic Atomization. J. Eng. Phys. Thermophy. 2017, 90, 831–844. DOI: 10.1007/s10891-017-1632-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.