Publication Cover
Drying Technology
An International Journal
Volume 42, 2024 - Issue 6
59
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

The impact of changing drum rotation direction on fabric motion and drying performance in clothes dryers

ORCID Icon, &
Pages 1009-1036 | Received 08 Jun 2023, Accepted 28 Mar 2024, Published online: 13 Apr 2024

References

  • Gu, C.; Zhang, X.; Li, B.; Yuan, Z. Study on Heat and Mass Transfer of Flexible Filamentous Particles in a Rotary Dryer. Powder Technol. 2014, 267, 234–239. DOI: 10.1016/j.powtec.2014.06.059.
  • Salavatidezfouli, S.; Hajisharifi, A.; Girfoglio, M.; Stabile, G., & Rozza, G. Applicable Methodologies for the Mass Transfer Phenomenon in Tumble Dryers: A Review. arXiv-Math-Numerical Analysis, 2023, 1–25. DOI: 10.48550/arXiv.2304.03533.
  • Bengtsson, P.; Berghel, J.; Renström, R. Performance Study of a Closed-Type Heat Pump Tumble Dryer Using a Simulation Model and an Experimental Set-up. Dry. Technol. 2014, 32, 891–901. DOI: 10.1080/07373937.2013.875035.
  • Yu, X.; Ding, X. Investigation on Polyester Woven Fabric Damage by Tumble Drying. Dry. Technol. 2023, 41, 2258–2268.
  • Shene, C.; Cuhillos, F.; Perez, R.; Alvarez, P. I. Modelling and Simulation of a Direct Contact Rotary Dryer. Dry. Technol. 1996, 14, 2419–2433. DOI: 10.1080/07373939608917214.
  • Shircliff, M., 2016. Performance Prediction of Drying Process in Residential Clothes Dryer Using Multiphysics Modeling and Simulation. Thesis Projects. Mahurin Honors College Capstone Experience.
  • Crow, R. M.; Gillespie, T. J.; Slater, K. 10-The Drying of Textile Fabrics, Part I: The Relationship between Regain, Dewpoint Temperature, and Air Temperature. J. Text. I 1974a, 65, 75–81. DOI: 10.1080/00405007408630351.
  • Crow, R. M.; Gillespie, T. J.; Slater, K. 11-The Drying of Textile Fabrics, Part II: The Relationship between Air-Moisture Content and Fabric Temperature. J. Text. I 1974b, 65, 82–86. DOI: 10.1080/00405007408630352.
  • Akyol, U.; Kahveci, K.; Cihan, A. Determination of Optimum Operating Conditions and Simulation of Drying in a Textile Drying Process. J. Textile Inst. 2013, 104, 170–177. DOI: 10.1080/00405000.2012.707900.
  • Jones, B. M. Importance of Air Movement in Drying. Text. Res. 1936, 6, 378–380. DOI: 10.1177/004051753600600810.
  • Gatarić, P.; Širok, B.; Hočevar, M.; Novak, L. Modeling of Heat Pump Tumble Dryer Energy Consumption and Drying Time. Dry. Technol. 2019, 37, 1396–1404. DOI: 10.1080/07373937.2018.1502778.
  • Gatarić, P.; Širok, B.; Hočevar, M.; Novak, L. Influence of Load Mass, Drum Speed and Load Composition on Evenness of Drying in a Heat Pump Tumble Dryer. Dry. Technol. 2022, 40, 2175–2187. DOI: 10.1080/07373937.2021.1928688.
  • Plata, S.; Vicente, W.; Salinas-Vazquez, M.; Urbiola, L. Analysis of the Kinetic Parameters of Clothes Drying in an Electric Vented Dryer. Part I: Validation of a Model and Influence of Power. Dry. Technol. 2022, 40, 3631–3647. DOI: 10.1080/07373937.2022.2075379.
  • Plata, S.; Vicente, W.; Salinas-Vazquez, M.; Urbiola, L. Analysis of the Kinetic Parameters of Clothes Drying in an Electric Vented Dryer. Part II: Influence of the Type of Fabric. Dry. Technol. 2023, 41, 1240–1251. DOI: 10.1080/07373937.2022.2137730.
  • Wang, F. M.; Cai, X.; Zhang, C. J.; Shi, W.; Lu, Y. H.; Song, G. W. Assessing the Performance of a Conceptual Tight-Fitting Body Mapping Sportswear (BMS) Kit in a Warm Dry Environment. Fibers Polym. 2016, 17, 151–159. DOI: 10.1007/s12221-016-5375-5.
  • Buck, L. The Mechanism of Frying Textile Fibers and Fabrics. Text. Res. 1936, 6, 373–378. DOI: 10.1177/004051753600600809.
  • Carrier, L. Temperatures of Evaporation of Water into Air. Ref. Mech. Eng. 1925, 47, 327–331.
  • Bassily, A. M.; Colver, G. M. Correlation of the Area-Mass Transfer Coefficient inside the Drum of a Clothes Dryer. Dry. Technol. 2003, 21, 919–944. DOI: 10.1081/DRT-120021692.
  • Yu, X. C.; Cao, W.; Wei, Y. H.; Ding, X. M. Wrinkling Mechanism of Woven Cotton Fabrics during Domestic Tumble Drying. Dry. Technol. 2018, 36, 1098–1106. DOI: 10.1080/07373937.2017.1382504.
  • Mellmann, J. The Transverse Motion of Solids in Rotating Cylinders - Forms of Motion and Transition Behaviour. Powder Technol. 2001, 118, 251–270. DOI: 10.1016/S0032-5910(00)00402-2.
  • Seidenbecher, J.; Herz, F.; Meitzner, C.; Specht, E.; Wirtz, E.; Scherer, V.; Liu, X. Temperature Analysis in Flighted Rotary Drums and the Influence of Operating Parameters. Chem. Eng. Sci. 2021, 229, 115972. DOI: 10.1016/j.ces.2020.115972.
  • Yang, Z.; Fan, X.; Bakalis, S.; Parker, D. J.; Fryer, P. J. Impact of Solids Fraction and Fluid Viscosity on Solids Flow in Rotating Cans. Food Res. Int. 2008, 41, 658–666. DOI: 10.1016/j.foodres.2008.04.008.
  • Tada, É. F. R.; Grajales, L. M.; Lemos, Y. P.; Thoméo, J. C. Mixture and Motion of Sugar Cane Bagasse in a Rotating Drum. Powder Technol. 2017, 317, 301–309. DOI: 10.1016/j.powtec.2017.05.006.
  • Weigler, F.; Scaar, H.; Franke, G.; Mellmann, J. Optimization of Mixed Flow Dryers to Increase Energy Efficiency. Dry. Technol. 2017, 35, 985–993. DOI: 10.1080/07373937.2016.1230627.
  • Yu, X.; Cui, Y.; Ding, X. Investigation on Damage Behaviors of Cotton Fabric in Different Fabric Motion Patterns during Tumble-Drying Process. Dry. Technol. 2023, 41, 1183–1198. DOI: 10.1080/07373937.2022.2129379.
  • Novak, L.; Širok, B.; Hočevar, M.; Gatarić, P. Influence of Load Mass and Drum Speed on Fabric Motion and Performance of a Heat Pump Tumble Dryer. Dry. Technol. 2021, 39, 950–964. DOI: 10.1080/07373937.2020.1734608.
  • Jones, C. R.; Corona, A.; Amador, C.; Fryer, P. J. Dynamics of Fabric and Dryer Sheet Motion in Domestic Clothes Dryers. Dry. Technol. 2022, 40, 2087–2104. DOI: 10.1080/07373937.2021.1918706.
  • Yu, X. C.; Li, Y.; Ding, X. M. Relationship Between Drying Parameters and Drying Performance in Domestic Tumble Dryers. Text. Res. J. 2020, 90, 2674–2689. DOI: 10.1177/0040517520925559.
  • Yu, X. C.; Li, Y.; Ding, X. M. Dynamics of Cotton Textile Motion in a Domestic Tumble Dryer and Its Effect on Drying Performance. Text. Res. J. 2020, 91, 851–873. DOI: 10.1177/0040517520960751.
  • Yu, X. C.; Yao, L. P.; Ning, L.; Zhu, D. D.; Ding, X. M. Impact of Lifters on Velocity and Residence Time Distributions of Fabrics in a Tumble Dryer. Text. Res. J. 2022, 92, 4799–4813. DOI: 10.1177/00405175221103615.
  • Cao, X.; Zhang, J.; Li, Z. Y.; Shao, L. L.; Zhang, L. Process Simulation and Analysis of a Closed-Loop Heat Pump Clothes Dryer. Appl. Therm. Eng. 2021, 199, 117545. DOI: 10.1016/j.applthermaleng.2021.117545.
  • Ganjehsarabi, H.; Dincer, I.; Gungor, A. Exergoeconomic Analysis of a Heat Pump Tumbler Dryer. Dry. Technol. 2014, 32, 352–360. DOI: 10.1080/07373937.2013.829853.
  • Huelsz, G.; Urbiola-Soto, L.; López-Alquicira, F.; Rechtman, R.; Hernández-Cruz, G. Total Energy Balance Method for Venting Electric Clothes Dryers. Dry. Technol. 2013, 31, 576–586. DOI: 10.1080/07373937.2012.746977.
  • Zohrabi, S.; Seiiedlou, S. S.; Aghbashlo, M.; Scaar, H.; Mellmann, J. Enhancing the Exergetic Performance of a Pilot-Scale Convective Dryer by Exhaust Air Recirculation. Dry. Technol. 2019, 38, 518–533. DOI: 10.1080/07373937.2019.1587617.
  • Baker, C. G. J. Energy Efficient Dryer Operation—An Update on Developments. Dry. Technol 2005, 23, 2071–2087. DOI: 10.1080/07373930500210556.
  • AATCC 124. Smoothness Appearance of Fabrics after Repeated Home Laundering, 2018
  • IEC 61121. Tumble Dryers for Household Use – Methods for Measuring the Performance, 2012.
  • GB/T 8629. Textiles-Domestic Washing and Drying Procedures for Textile Testing, 2001.
  • IEC 60456. Clothes Washing Machines for Household Use – Methods for Measuring the Performance, 2010.
  • Stawreberg, L.; Nilsson, L. Potential Energy Savings Made by Using a Specific Control Strategy When Tumble Drying Small Loads. Appl. Energ. 2013, 102, 484–491. DOI: 10.1016/j.apenergy.2012.07.045.
  • Mukundan, R.; Ramakrishnan, K. R. Moment Functions in Image Analysis-Theory and Applications. World Scientific: Singapore, 1998.
  • Kaehler, A.; Bradski, G. Learning OpenCV 3: Computer Vision in C++ with the OpenCV Library. O’Reilly Media, Inc.: California, 2016.
  • Pärt-Enander, E.; Sjöberg, A.; Melin, B.; Isaksson, P. H. The MATLAB Handbook; Addison-Wesley: Boston, MA, 1996.
  • Yu, X. C.; Cao, W.; Ding, X. M. The Effects of Fabric’s Mechanical Properties on Its Motion and Drying Performance in a Domestic Tumble Dryer. Dry. Technol. 2021, 39, 528–547. DOI: 10.1080/07373937.2020.1711523.
  • Mac Namara, C.; Gabriele, A.; Amador, C.; Bakalis, S. Dynamics of Textile Motion in a Front-Loading Domestic Washing Machine. Chem. Eng. Sci. 2012, 75, 14–27. DOI: 10.1016/j.ces.2012.03.009.
  • Bakalis, S.; Fryer, P.; Parker, D. Measuring Velocity Distributions of Viscous Fluids Using Positron Emission Particle Tracking (PEPT). AIChE J. 2004, 50, 1606–1613. DOI: 10.1002/aic.10153.
  • Govender, I.; Richter, M. C.; Mainza, A. N.; De Klerk, D. N. A Positron Emission Particle Tracking Investigation of the Scaling Law Governing Free Surface Flows in Tumbling Mills. AIChE J. 2017, 63, 903–913. DOI: 10.1002/aic.15453.
  • Yu, X. C.; Ding, X. M. The Transverse Motion of Fabrics in Domestic Tumble Dryers under Different Drying Conditions. Dry. Technol. 2019, 39, 35–51. DOI: 10.1080/07373937.2019.1693398.
  • Bassily, A. M. Modeling and Optimization of Heating and Drying Processes in a Clothes Dryer., Ph.D. Thesis, Iowa State University, 2000. 29–32.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.