Publication Cover
Drying Technology
An International Journal
Volume 42, 2024 - Issue 6
154
Views
0
CrossRef citations to date
0
Altmetric
Review Article

The role of artificial intelligence in drying and biomass valorization in the field of phytoremediation of contaminated soils

, ORCID Icon, & ORCID Icon
Pages 955-966 | Received 05 Nov 2023, Accepted 14 Apr 2024, Published online: 29 Apr 2024

References

  • Kondaveeti, H. K.; Brahma, G. P.; Sahithi, D. V. Deep Learning Applications in Agriculture: The Role of Deep Learning in Smart Agriculture. In Artificial Intelligence and IoT-Based Technologies for Sustainable Farming and Smart Agriculture. IGI Global: USA, 2021; pp. 325–345. DOI: 10.4018/978-1-7998-1722-2.ch020.
  • Zhao, Y.; Zhang, J.; Gouda, M.; Zhang, C.; Lin, L.; Nie, P.; Ye, H.; Huang, W.; Ye, Y.; Zhou, C.; He, Y. Structure Analysis and Non-Invasive Detection of Cadmium-phytochelatin2 Complexes in Plant by Deep Learning Raman Spectrum. J. Hazard. Mater. 2022, 427, 128152. DOI: 10.1016/j.jhazmat.2021.128152.
  • Liakos, K. G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine Learning in Agriculture: A Review. Sensors. 2018, 18, 2674. DOI: 10.3390/s18082674.
  • Singh, P.; Pani, A.; Mujumdar, A. S.; Shirkole, S. S. New Strategies on the Application of Artificial Intelligence in the Field of Phytoremediation. Int. J. Phytoremed. 2023, 25, 505–523. DOI: 10.1080/15226514.2022.2090500.
  • Pallathadka, H.; Mustafa, M.; Sanchez, D. T.; Sajja, G. S.; Gour, S.; Naved, M. Impact of Machine Learning on Management, Healthcare and Agriculture. Mater. Today: Proc. 2023, 80, 2803–2806. DOI: 10.1016/j.matpr.2021.07.042.
  • Kafle, A.; Timilsina, A.; Gautam, A.; Adhikari, K.; Bhattarai, A.; Aryal, N. Phytoremediation: Mechanisms, Plant Selection and Enhancement by Natural and Synthetic Agents. Environ. Adv. 2022, 8, 100203. DOI: 10.1016/j.envadv.2022.100203.
  • Shi, L.; Li, J.; Palansooriya, K. N.; Chen, Y.; Hou, D.; Meers, E.; Tsang, D. C.; Wang, X.; Ok, Y. S. Modeling Phytoremediation of Heavy Metal Contaminated Soils through Machine Learning. J. Hazard. Mater. 2023, 441, 129904. DOI: 10.1016/j.jhazmat.2022.129904.
  • Zhu, X.; Xu, Z.; You, S.; Komárek, M.; Alessi, D. S.; Yuan, X.; Palansooriya, K. N.; Ok, Y. S.; Tsang, D. C. Machine Learning Exploration of the Direct and Indirect Roles of Fe Impregnation on Cr (VI) Removal by Engineered Biochar. Chem. Eng. J. 2022, 428, 131967. DOI: 10.1016/j.cej.2021.131967.
  • Qaiyum, S.; Aziz, I.; Hasan, M. H.; Khan, A. I.; Almalawi, A. Incremental Interval Type-2 Fuzzy Clustering of Data Streams Using Single Pass Method. Sensors. 2020, 20, 3210. DOI: 10.3390/s20113210.
  • Guo, S.; Ao, X.; Ma, X.; Cheng, S.; Men, C.; Harada, H.; Saroj, D. P.; Mang, H. P.; Li, Z.; Zheng, L. Machine-Learning-Aided Application of High-Gravity Technology to Enhance Ammonia Recovery of Fresh Waste Leachate. Water Res. 2023, 235, 119891. DOI: 10.1016/j.watres.2023.119891.
  • Wang, H. S. H.; Yao, Y. Machine Learning for Sustainable Development and Applications of Biomass and Biomass-Derived Carbonaceous Materials in Water and Agricultural Systems: A Review. Resour. Conserv. Recycl. 2023, 190, 106847. DOI: 10.1016/j.resconrec.2022.106847.
  • Rao, S. M.; Rekapalli, M. Identifying the Dominant Mode of Moisture Transport during Drying of Unsaturated Soils. Sci. Rep. 2020, 10, 4322. DOI: 10.1038/s41598-020-61302-w.
  • Chen, J.; Zhang, M.; Xu, B.; Sun, J.; Mujumdar, A. S. Artificial Intelligence Assisted Technologies for Controlling the Drying of Fruits and Vegetables Using Physical Fields: A Review. Trends. Food Sci. Technol. 2020, 105, 251–260. DOI: 10.1016/j.tifs.2020.08.015.
  • Qi, Y.; Huang, B.; Darilek, J. L. Effect of Drying on Heavy Metal Fraction Distribution in Rice Paddy Soil. PLoS One. 2014, 9, e97327. DOI: 10.1371/journal.pone.0097327.
  • Mansour, A. T.; Alprol, A. E.; Abualnaja, K. M.; El-Beltagi, H. S.; Ramadan, K. M.; Ashour, M. Dried Brown Seaweed’s Phytoremediation Potential for Methylene Blue Dye Removal from Aquatic Environments. Polymers. 2022, 14, 1375. DOI: 10.3390/polym14071375.
  • Pani, A.; Shirkole, S. S.; Mujumdar, A. S. Expert Reviews for Assessment of Recent Developments and Future Prospectives of Global Drying R&D. Dry. Technol. 2023, 41, 335–338. DOI: 10.1080/07373937.2023.2164671.
  • Shirkole, S. S.; Pani, A.; Mujumdar, A. S. Role of Expert Reviews for Assessment of Current Developments in Global Drying R&D. Drying Technol. 2022, 40, 227–229. DOI: 10.1080/07373937.2022.2018822.
  • Singh, P.; Pani, A.; Shirkole, S. S. 2022. Phytoremedial Efficacy of Lemongrass under Varying Level of Mine Contaminated Soil, Proceedings of the. 22nd International Drying Symposium on Drying Technology – IDS ’22. DOI: 10.55900/rkdmubqc.
  • Shahoveisi, F.; Riahi Manesh, M.; del Río Mendoza, L. E. Modeling Risk of Sclerotinia sclerotiorum-Induced Disease Development on Canola and Dry Bean Using Machine Learning Algorithms. Sci. Rep. 2022, 12, 864. DOI: 10.1038/s41598-021-04743-1.
  • Mekonnen, Y.; Namuduri, S.; Burton, L.; Sarwat, A.; Bhansali, S. Machine Learning Techniques in Wireless Sensor Network Based Precision Agriculture. J. Electrochem. Soc. 2019, 167, 037522. DOI: 10.1149/2.0222003JES.
  • de Medeiros, A. D.; Pinheiro, D. T.; Xavier, W. A.; da Silva, L. J.; dos Santos Dias, D. C. F. Quality Classification of Jatropha Curcas Seeds Using Radiographic Images and Machine Learning. Ind. Crops Prod. 2020, 146, 112162. DOI: 10.1016/j.indcrop.2020.112162.
  • Martynenko, A.; Misra, N. N. Machine Learning in Drying. Drying Technol. 2020, 38, 596–609. DOI: 10.1080/07373937.2019.1690502.
  • Rosenzweig, C.; Elliott, J.; Deryng, D.; Ruane, A. C.; Müller, C.; Arneth, A.; Boote, K. J.; Folberth, C.; Glotter, M.; Khabarov, N.; et al. Assessing Agricultural Risks of Climate Change in the 21st Century in a Global Gridded Crop Model Inter Comparison. Proc. Natl. Acad. Sci. USA 2014, 111, 3268–3273., DOI: 10.1073/pnas.1222463110.
  • Hussain, J.; Khaliq, T.; Ahmad, A.; Akhtar, J. Performance of Four Crop Model for Simulations of Wheat Phenology, Leaf Growth, Biomass and Yield across Planting Dates. PLoS One. 2018, 13, e0197546. DOI: 10.1371/journal.pone.0197546.
  • Cai, C. J.; Jongejan, J.; Holbrook, J. 2019, March. The Effects of Example-Based Explanations in a Machine Learning Interface. In Proceedings of the 24th International Conference on Intelligent User Interfaces (pp. 258–262). DOI: 10.1145/3301275.3302289.
  • Mupangwa, W.; Chipindu, L.; Nyagumbo, I.; Mkuhlani, S.; Sisito, G. Evaluating Machine Learning Algorithms for Predicting Maize Yield under Conservation Agriculture in Eastern and Southern Africa. SN Appl. Sci. 2020, 2, 1–14. DOI: 10.1007/s42452-020-2711-6.
  • Ellis, J. L.; Jacobs, M.; Dijkstra, J.; van Laar, H.; Cant, J. P.; Tulpan, D.; Ferguson, N. Synergy between Mechanistic Modelling and Data-Driven Models for Modern Animal Production Systems in the Era of Big Data. Animal. 2020, 14, s223–s237. DOI: 10.1017/S1751731120000312.
  • Ang, K. L. M.; Seng, J. K. P. Big Data and Machine Learning with Hyperspectral Information in Agriculture. IEEE Access. 2021, 9, 36699–36718. DOI: 10.1109/ACCESS.2021.3051196.
  • Sharma, A.; Jain, A.; Gupta, P.; Chowdary, V. Machine Learning Applications for Precision Agriculture: A Comprehensive Review. IEEE Access. 2021, 9, 4843–4873. DOI: 10.1109/ACCESS.2020.3048415.
  • Nkemelu, D. K.; Omeiza, D.; Lubalo, N. 2018. Deep Convolutional Neural Network for Plant Seedlings Classification. arXiv preprint arXiv:1811.08404. DOI: 10.48550/arXiv.1811.08404.
  • Uzal, L. C.; Grinblat, G. L.; Namías, R.; Larese, M. G.; Bianchi, J. S.; Morandi, E. N.; Granitto, P. M. Seed-per-Pod Estimation for Plant Breeding Using Deep Learning. Comput. Electron. Agric. 2018, 150, 196–204. DOI: 10.1016/j.compag.2018.04.024.
  • Savary, S.; Ficke, A.; Aubertot, J. N.; Hollier, C. Crop Losses Due to Diseases and Their Implications for Global Food Production Losses and Food Security. Food Sec. 2012, 4, 519–537. DOI: 10.1007/s12571-012-0200-5.
  • Upcraft, T.; Guo, M. Phytoremediation Value Chains and Modeling. In Sustainable Remediation of Contaminated Soil and Groundwater. Materials, Processes, and Assessment, 1st ed.; Hou, D., Ed. Elsevier: Oxford, UK, 2020; pp 325–366. DOI: 10.1016/B978-0-12-817982-6.00013-6.
  • Bagheri, M.; Al-Jabery, K.; Wunsch, D. C.; Burken, J. G. A Deeper Look at Plant Uptake of Environmental Contaminants Using Intelligent Approaches. Sci. Total Environ. 2019, 651, 561–569. DOI: 10.1016/j.scitotenv.2018.09.048.
  • Hattab, N.; Motelica-Heino, M. Application of an Inverse Neural Network Model for the Identification of Optimal Amendment to Reduce Copper Toxicity in Phytoremediated Contaminated Soils. J. Geochem. Explor. 2014, 136, 14–23. DOI: 10.1016/j.gexplo.2013.09.002.
  • Złoch, M.; Kowalkowski, T.; Tyburski, J.; Hrynkiewicz, K. Modeling of Phytoextraction Efficiency of Microbially Stimulated Salix Dasyclados L. in the Soils with Different Speciation of Heavy Metals. Int. J. Phytoremed. 2017, 19, 1150–1164., DOI: 10.1080/15226514.2017.1328396.
  • Titah, H. S.; Halmi, M. I. E. B.; Abdullah, S. R. S.; Hasan, H. A.; Idris, M.; Anuar, N. Statistical Optimization of the Phytoremediation of Arsenic by Ludwigia Octovalvis-in a Pilot Reed Bed Using Response Surface Methodology (RSM) versus an Artificial Neural Network (ANN). Int. J. Phytoremed. 2018, 20, 721–729. DOI: 10.1080/15226514.2017.1413337.
  • Jiang, D.; Zhou, W. H.; Garg, A.; Garg, A. Model Development and Surface Analysis of a Bio-Chemical Process. Chemom Intell Lab Syst. 2016, 157, 133–139. DOI: 10.1016/j.chemolab.2016.07.010.
  • Mota-Merlo, M.; Martos, V. Use of Machine Learning to Establish Limits in the Classification of Hyperaccumulator Plants Growing on Serpentine, Gypsum and Dolomite Soils. Mediterr. Bot. 2021, 42, e67609. DOI: 10.5209/mbot.67609.
  • Zeng, W.; Wan, X.; Lei, M.; Gu, G.; Chen, T. Influencing Factors and Prediction of Arsenic Concentration in Pteris vittata: A Combination of Geodetector and Empirical Models. Environ. Pollut. 2022, 292, 118240. DOI: 10.1016/j.envpol.2021.118240.
  • Hu, B.; Xue, J.; Zhou, Y.; Shao, S.; Fu, Z.; Li, Y.; Chen, S.; Qi, L.; Shi, Z. Modelling Bioaccumulation of Heavy Metals in Soil-Crop Ecosystems and Identifying Its Controlling Factors Using Machine Learning. Environ. Pollut. 2020, 262, 114308. DOI: 10.1016/j.envpol.2020.114308.
  • Chen, P.; Zhang, H. M.; Yao, B. M.; Chen, S. C.; Sun, G. X.; Zhu, Y. G. Bioavailable Arsenic and Amorphous Iron Oxides Provide Reliable Predictions for Arsenic Transfer in Soil-Wheat System. J. Hazard. Mater. 2020, 383, 121160. DOI: 10.1016/j.jhazmat.2019.121160.
  • Liu, Q. X.; Yan, X. L.; Liao, X. Y.; Lin, L. Y.; Yang, J. Effects of Soil Moisture on Phytoremediation of as-Containinated Soils Using as-Hyperaccumulator Pteris vittata L. Huan Jing ke Xue = Huanjing Kexue 2015, 36, 3056–3061.
  • Pouresmaieli, M.; Ataei, M.; Forouzandeh, P.; Azizollahi, P.; Mahmoudifard, M. Recent Progress on Sustainable Phytoremediation of Heavy Metals from Soil. J. Environ. Chem. Eng. 2022, 10, 108482. DOI: 10.1016/j.jece.2022.108482.
  • Khan, Z. S.; Rizwan, M.; Hafeez, M.; Ali, S.; Adrees, M.; Qayyum, M. F.; Khalid, S.; Ur Rehman, M. Z.; Sarwar, M. A. Effects of Silicon Nanoparticles on Growth and Physiology of Wheat in Cadmium Contaminated Soil under Different Soil Moisture Levels. Environ. Sci. Pollut. Res. Int. 2020, 27, 4958–4968. DOI: 10.1007/s11356-019-06673-y.
  • Abou-Shanab, R. A.; Ghanem, K.; Ghanem, N.; Al-Kolaibe, A. The Role of Bacteria on Heavy-Metal Extraction and Uptake by Plants Growing on Multi-Metal-Contaminated Soils. World J. Microbiol. Biotechnol. 2008, 24, 253–262. DOI: 10.1007/s11274-007-9464-x.
  • Ma, Y.; Rajkumar, M.; Zhang, C.; Freitas, H. Inoculation of Brassica Oxyrrhina with Plant Growth Promoting Bacteria for the Improvement of Heavy Metal Phytoremediation under Drought Conditions. J. Hazard. Mater. 2016, 320, 36–44. DOI: 10.1016/j.jhazmat.2016.08.009.
  • Khan, A. H. A.; Kiyani, A.; Santiago-Herrera, M.; Ibáñez, J.; Yousaf, S.; Iqbal, M.; Martel-Martín, S.; Barros, R. Sustainability of Phytoremediation: Post-Harvest Stratagems and Economic Opportunities for the Produced Metals Contaminated Biomass. J. Environ. Manage. 2023, 326, 116700. DOI: 10.1016/j.jenvman.2022.116700.
  • Song, U.; Kim, D. W.; Waldman, B.; Lee, E. J. From Phytoaccumulation to Post-Harvest Use of Water Fern for Landfill Management. J. Environ. Manage. 2016, 182, 13–20. DOI: 10.1016/j.jenvman.2016.07.052.
  • Todde, G.; Carboni, G.; Marras, S.; Caria, M.; Sirca, C. Industrial Hemp (Cannabis Sativa L.) for Phytoremediation: Energy and Environmental Life Cycle Assessment of Using Contaminated Biomass as an Energy Resource. Sustainable Energy Technol. Assess. 2022, 52, 102081. DOI: 10.1016/j.seta.2022.102081.
  • Edgar, V. N.; Fabián, F. L.; Mario, P. C. J.; Ileana, V. R. Coupling Plant Biomass Derived from Phytoremediation of Potential Toxic-Metal-Polluted Soils to Bioenergy Production and High-Value by-Products – a Review. Appl. Scie. 2021, 11, 2982. DOI: 10.3390/app11072982.
  • Wang, J.; Delavar, M. A. Techno-Economic Analysis of Phytoremediation: A Strategic Rethinking. Sci. Total Environ. 2023, 902, 165949. DOI: 10.1016/j.scitotenv.2023.165949.
  • Pani, A.; Shirkole, S. S.; Mujumdar, A. S. Importance of Renewable Energy in the Fight against Global Climate Change. Drying Technol. 2022, 40, 2581–2582. DOI: 10.1080/07373937.2022.2119324.
  • Ullah, S.; Liu, Q.; Wang, S.; Jan, A. U.; Sharif, H. M. A.; Ditta, A.; Wang, G.; Cheng, H. Sources, Impacts, Factors Affecting Cr Uptake in Plants, and Mechanisms behind Phytoremediation of Cr-Contaminated Soils. Sci. Total Environ. 2023, 899, 165726. DOI: 10.1016/j.scitotenv.2023.165726.
  • Wang, L.; Hou, D.; Shen, Z.; Zhu, J.; Jia, X.; Ok, Y. S.; Tack, F. M.; Rinklebe, J. Field Trials of Phytomining and Phytoremediation: A Critical Review of Influencing Factors and Effects of Additives. Crit. Rev. Environ. Sci. Technol. 2020, 50, 2724–2774. DOI: 10.1080/10643389.2019.1705724.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.