Publication Cover
Computers in the Schools
Interdisciplinary Journal of Practice, Theory, and Applied Research
Volume 39, 2022 - Issue 3
371
Views
2
CrossRef citations to date
0
Altmetric
ARTICLE

Students’ Motivation to Learn Mathematics in the Robotics Environment

References

  • Akcaoglu, M., Rosenberg, J. M., Hodges, C. B., & Hilpert, J. C. (2021). An exploration of factors impacting middle school students’ attitudes toward computer programming. Computers in the Schools, 38(1), 19–35. doi:10.1080/07380569.2021.1882209
  • Akpinar, Y., & Aslan, Ü. (2015). Supporting children’s learning of probability through video game programming. Journal of Educational Computing Research, 53(2), 228–259. doi:10.1177/0735633115598492
  • Anwar, S., Bascou, N. A., Menekse, M., & Kardgar, A. (2019). A systematic review of studies on educational robotics. Journal of Pre-College Engineering Education Research (J-PEER), 9(2), 2. doi:10.7771/2157-9288.1223
  • Apter, M. J. (2001). An introduction to reversal theory. In M. J. Apter (Ed.), Motivational styles in everyday life: A guide to reversal theory (pp. 3–35). American Psychological Association. doi:10.1037/10427-001
  • Auerbach, J. E., Concordel, A., Kornatowski, P. M., & Floreano, D. (2019). Inquiry-based learning with robogen: An open-source software and hardware platform for robotics and artificial intelligence. IEEE Transactions on Learning Technologies, 12(3), 356–369. doi:10.1109/TLT.2018.2833111
  • Bandura, A. (1997). Self-efficacy: The exercise of control. Freeman.
  • Batista, S. C. F., & Baptista, C. B. F. (2014). Learning object for linear systems: Scratch in mathematics. International Journal on New Trends in Education and Their Implications, 5(1), 71–81. http://www.ijonte.org/FileUpload/ks63207/File/08a.batista.pdf
  • Bazylev, D., Margun, A., Zimenko, K., Kremlev, A., & Rukujzha, E. (2014). Participation in robotics competition as motivation for learning. Procedia – Social and Behavioral Sciences, 152, 835–840. doi:10.1016/j.sbspro.2014.09.330
  • Bikos, L. H. (2022). ReCentering psych stats: Analysis of variance. GitHub open-source repository. https://lhbikos.github.io/ReCenterPsychStats/index.html
  • Calao, L. A., Moreno-León, J., Correa, H. E., & Robles, G. (2015). Developing mathematical thinking with scratch. In European conference on technology enhanced learning (pp. 17–27). Springer. doi:10.1007/978-3-319-24258-3_2
  • Campbell, P. F. (1987). Measuring distance: Children’s use of number and unit. Final report to the National Institute of Mental Health, University of Maryland.
  • Clements, D. H., & Battista, M. T. (1989). Learning of geometric concepts in a Logo environment. Journal for Research in Mathematics Education, 20(5), 450–467. doi:10.2307/749420
  • Daher, W. (2021). Middle school students’ motivation in solving modelling activities with technology. Eurasia Journal of Mathematics, Science and Technology Education, 17(9), em1999. doi:10.29333/ejmste/11127
  • Daher, W., Alfahel, E., & Anabousy, A. (2021). Moderating the relationship between student’s gender and science motivation. Eurasia Journal of Mathematics, Science and Technology Education, 17(5), em1956. doi:10.29333/ejmste/10829
  • Daher, W., Anabousy, A., & Jabarin, R. (2018). Metacognition, positioning and emotions in mathematical activities. International Journal of Research in Education and Science, 4(1), 292–303. doi:10.21890/ijres.383184
  • Daher, W., Baya’a, N., Jaber, O., & Awawdeh Shahbari, J. (2020). A trajectory for advancing the meta-cognitive solving of mathematics-based programming problems with scratch. Symmetry, 12(10), 1627. doi:10.3390/sym12101627
  • Denzin, N. K. (1978). The research act: A theoretical introduction to sociological methods (2nd ed.). McGraw Hill.
  • Eccles, J. S., & Wigfield, A. (1995). In the mind of the actor: The structure of adolescents’ achievement task values and expectancy-related beliefs. Personality and Social Psychology Bulletin, 21(3), 215–225. doi:10.1177/0146167295213003
  • Eguchi, A., & Uribe, L. (2012). Is educational robotics for everyone? A case study of a 4th grade educational robotics unit. In Society for information technology & teacher education international conference (pp. 4126–4132). Association for the Advancement of Computing in Education (AACE).
  • Elliot, A. J. (1999). Approach and avoidance motivation and achievement goals. Educational Psychologist, 34(3), 169–189. doi:10.1207/s15326985ep3403_3
  • Fitter, N. T., Raghunath, N., Cha, E., Sanchez, C. A., Takayama, L., & Matarić, M. J. (2020). Are we there yet? Comparing remote learning technologies in the university classroom. IEEE Robotics and Automation Letters, 5(2), 2706–2713. doi:10.1109/LRA.2020.2970939
  • Forsström, S. E., & Kaufmann, O. T. (2018). A literature review exploring the use of programming in mathematics education. International Journal of Learning, Teaching and Educational Research, 17(12), 18–32. doi:10.26803/ijlter.17.12.2
  • Hamada, R. M. (1987). The relationship between learning Logo and proficiency in mathematics. Dissertation Abstracts International, 47, 2510-A.
  • Harackiewicz, J. M., Smith, J. L., & Priniski, S. J. (2016). Interest matters: The importance of promoting interest in education. Policy Insights from the Behavioral and Brain Sciences, 3(2), 220–227. doi:10.1177/2372732216655542
  • Hennink, M. M., Kaiser, B. N., & Marconi, V. C. (2017). Code saturation versus meaning saturation: how many interviews are enough?. Qualitative health research, 27(4), 591–608. doi:10.1177/1049732316665344
  • Hussain, S., Lindh, J., & Shukur, G. (2006). The effect of LEGO training on pupils’ school performance in mathematics, problem solving ability and attitude: Swedish data. Journal of Educational Technology & Society, 9(3), 182–194. doi:10.2307/jeductechsoci.9.3.182
  • Hung, D. (2002). Situated cognition and problem-based learning: Implications for learning and instruction with technology. Journal of Interactive Learning Research, 13(4), 393–414. https://www.learntechlib.org/primary/p/9176/
  • Johnson-Gentile, K., Clements, D. H., & Battista, M. T. (1994). Effects of computer and noncomputer environments on students’ conceptualizations of geometric motions. Journal of Educational Computing Research, 11(2), 121–140. doi:10.2190/49EE-8PXL-YY8C-A923
  • Jung, S. E., & Won, E. S. (2018). Systematic review of research trends in robotics education for young children. Sustainability, 10(4), 905. doi:10.3390/su10040905
  • Kaloti-Hallak, F., Armoni, M., & Ben-Ari, M. (2015). Students’ attitudes and motivation during robotics activities [Paper presentation]. In Proceedings of the Workshop in Primary and Secondary Computing Education, November. (pp. 102–110).
  • Kaplan, A., & Maehr, M. L. (2007). The contribution and prospects of goal orientation theory. Educational Psychology Review, 19(2), 141–187. doi:10.1007/s10648-006-9012-5
  • Kazakoff, E., & Bers, M. (2012). Programming in a robotics context in the kindergarten classroom: The impact on sequencing skills. Journal of Educational Multimedia and Hypermedia, 21(4), 371–391. https://www.learntechlib.org/primary/p/39512/
  • Klassner, F., & Anderson, S. D. (2003). Lego mindStorms: Not just for K-12 anymore. IEEE Robotics & Automation Magazine, 10(2), 12–18. doi:10.1109/MRA.2003.1213611
  • Michelsen, C., & Sriraman, B. (2009). Does interdisciplinary instruction raise students’ interest in mathematics and the subjects of the natural sciences? ZDM, 41(1–2), 231–244. doi:10.1007/s11858-008-0161-5
  • Ntourou, V., Kalogiannakis, M., & Psycharis, S. (2021). A study of the impact of arduino and visual programming in self-efficacy, motivation, computational thinking and 5th grade students’ perceptions on electricity. Eurasia Journal of Mathematics, Science and Technology Education, 17(5), em1960. doi:10.29333/ejmste/10842
  • Olive, J. (1991). Logo programming and geometric understanding: An in-depth study. Journal for Research in Mathematics Education, 22(2), 90–111. https://www.jstor.org/stable/749587 doi:10.2307/749587
  • Pantziara, M., & Philippou, G. (2011). fear of failure in mathematics. what are the sources? In M. Pytlak, T. Rowland & E. Swoboda (eds). Proceedings of the seventh congress of the European Society for Research in mathematics education (pp. 1269–1278). The European Society for Research in Mathematics.
  • Pantziara, M., & Philippou, G. N. (2015). Students’ motivation in the mathematics classroom. Revealing causes and consequences. International Journal of Science and Mathematics Education, 13(S2), 385–411. doi:10.1007/s10763-013-9502-0
  • Patton, M. Q. (2002). Qualitative research and evaluation methods (3rd ed.). Sage.
  • Pintrich, P. R. (2003). A motivational science perspective on the role of student motivation in learning and teaching contexts. Journal of Educational Psychology, 95(4), 667–686. doi:10.1037/0022-0663.95.4.667
  • Price, C. B., & Price-Mohr, R. M. (2018). An evaluation of primary school children coding using a text-based language (Java). Computers in the Schools, 35(4), 284–301. doi:10.1080/07380569.2018.1531613
  • Ryan, R. M., & Deci, E. L. (2000). Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. American Psychologist, 55(1), 68–78. doi:10.1037/0003-066X.55.1.68
  • Savard, A., & Highfield, K. (2015). Teachers’ talk about Robotics: Where is the mathematics? In M. Marshman, V. Geiger, & A. Bennison (Eds.), Mathematics education in the margins, Proceedings of the 38th annual conference of the Mathematics Education Research Group of Australasia (pp. 540–546). MERGA.
  • Seifert, T. L. (1997). Academic goals and emotions: results of a structural equation model and cluster analysis. British Journal of Educational Psychology, 67(3), 323–338. doi:10.1111/j.2044-8279.1997.tb01247.x
  • Seifert, T. (2004). Understanding student motivation. Educational Research, 46(2), 137–149. doi:10.1080/0013188042000222421
  • Shahbari, J. A., Daher, W., Baya’a, N., & Jaber, O. (2020). Prospective teachers’ development of meta-cognitive functions in solving mathematical-based programming problems with scratch. Symmetry, 12(9), 1569. doi:10.3390/sym12091569
  • Silk, E. M., & Schunn, C. D. (2008). Using robotics to teach mathematics: Analysis of a curriculum designed and implemented. In American Society for Engineering Education Annual Conference, June.
  • Urlings, C. C., Coppens, K. M., & Borghans, L. (2019). Measurement of executive functioning using a playful robot in kindergarten. Computers in the Schools, 36(4), 255–273. doi:10.1080/07380569.2019.1677436
  • Vidaković, J., Jerbić, B., Šekoranja, B., Švaco, M., & Šuligoj, F. (2020). Accelerating robot trajectory learning for stochastic tasks. IEEE Access., 8, 71993–72006. doi:10.1109/ACCESS.2020.2986999
  • Waege, K. (2010). Students’ motivation for learning mathematics in terms of needs and goals. In CERME6 (pp. 84–93.
  • Watt, M. (1982). What is logo? Creative Computing, 8(10), 112–129.
  • Weiner, B. (1986). An attributional theoiy of motivation. Springer-Verlag.
  • Williams, D. C., Ma, Y., Prejean, L., Ford, M. J., & Lai, G. (2007). Acquisition of physics content knowledge and scientific inquiry skills in a robotics summer camp. Journal of Research on Technology in Education, 40(2), 201–216. doi:10.1080/15391523.2007.10782505
  • Witherspoon, E. B., Schunn, C. D., Higashi, R. M., & Baehr, E. C. (2016). Gender, interest, and prior experience shape opportunities to learn programming in robotics competitions. International Journal of STEM Education, 3(1), 1–12. doi:10.1186/s40594-016-0052-1
  • Wyffels, F., Hermans, M., & Schrauwen, B. (2010). Building robots as a tool to motivate students into an engineering education. At&P Journal Plus, 2(2), 113–116. https://lib.ugent.be/catalog/pug01:1077136
  • Zhu, Y., & Leung, F. K. (2011). Motivation and achievement: Is there an East Asian model? International Journal of Science and Mathematics Education, 9(5), 1189–1212. doi:10.1007/s10763-010-9255-y

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.