58
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Promiscuity of Hosting Nitrogen Fixation in Rice: An Overview from the Legume Perspective

&
Pages 281-314 | Published online: 29 Sep 2008

REFERENCES

  • Ahern, C.P. and Staff, LA. 1994. Symbiosis in cycads: the origin and development of Coralloid roots in Macrozamia communis (Cycadaceae ). Am. J. Bot. 81: 1559–1570.
  • Albrecht, C., Guerts, R., and Bisseling, T. 1999. Legume nodulation and mycorrhizae formation: two extremes in host specificity meet. EMBO J. 18: 281–288.
  • Albrecht, C., Guerts, R., Lapeyrie, F., and Bisseling, L. 1998. Endomycorrhizae and rhizobial Nod factors both require sym8 to induce the expression of the early nodulin genes Psenod5 and Psenod12A. Plant J. 15: 605–624.
  • Al-Mallah, M.K., Davey, M.R., and Cocking, E.C. 1989. Formation of Nodular structures on rice seedlings by rhizobia. J. Exp. Bot. 40: 473–478.
  • Al-Mallah, M.K., Davey, M.R., and Cocking, E.C. 1990. Nodulation of oilseed rape (Brassica napus) by rhizobia. J. Exp. Bot. 41: 1567–1572.
  • Ammani, K. and Rao, A.S. 1996. Effect of two arbuscular mycorrhizal fungi Acaulospora spinosa and A. scrobiculata on upland rice varieties. Microbiol. Res. 151: 235–237.
  • Andersson, C.R., Jensen, E.O., Lllewellyn, D.J., Dennis, E.S., and Peacock, W.J. 1996. A new hemoglobin gene from soybean: a role for hemoglobin in all plants. Proc. Natl. Acad. Sci. USA 93: 5682–5687.
  • Andrews, D.L. 1990. Characterization of differentially expressed mRNA sequences in rice (Oryza sativa cv. lernont) and correlation of their expression with total nonstructural carbohydrate content. pp. 8–11, Ph.D thesis, Lexas A and M University, USA.
  • Appleby, C.A., Dennis, E.S., and Peacock, W.J. 1990. A primaeval origin for plant and animal hemoglobins. Aust. Syst. Bot. 3: 81–90.
  • Appleby, C.A. 1984. Leghaemoglobin and Rhizobium respiration. Annu. Rev. Plant Physiol. 35: 443–478.
  • Ardourel, M., Demont, N., Debelle, F.D., Maillet, F., and De Billy F., et al. 1994. Rhizobium meliloti lipo-oligosaccharide nodulation factors: different structural requirements for bacterial entry into target root hair cells and induction of plant symbiotic developmental responses. Plant Cell 6: 1357–1374.
  • Arredondo-Peter, R., Hargrove, M.S., Sarath, G., Moran, J.F., Lohrman, J., Olson, J.S., and Klucas, R.V. 1997. Rice hemoglobins-gene cloning, analysis and O2-binding kinetics of a recombinant protein synthesized in Escherichia coli. Plant Physiol. 115: 1259–1266.
  • Arsenijevic-Maksimovic, I., Broughton, W.J., and Krause, A. 1997. Rhizobia modulate root-hair-specific expression of extensin genes. Mol. Plant-Microbe Interact. 10: 95–101.
  • Asad, S., Fang, Y.W., Wycoff, K.L., and Hirsch, A.M. 1994. Isolation and characterization of cDNA and genomic clones of MsENOD40: Transcripts are detected in meristematic cells of Alfalfa. Protoplasma 183: 10–23.
  • Bakkers, J., Semino, C.E., Stroband, H., Kijne, J.W., Robbins, P.W., and Spaink, H.P. 1997. An important developmental role for oligosaccharides during early embryogenesis of cyprinid fish. Proc. Natl. Acad. Sci. USA 94: 7982–7986.
  • Baldani, J.I., Caruso, L., Baldani, V.L.D., Goi, S.R. and Dobereiner, J. 1997. Recent advances in BNF with non-legume plants. Soil Biol. Biochem. 29: 911–922.
  • Baldani, V.L.D., James, E., Baldani, J.I., and Dobereiner, J. 1992. Localisation of nitrogen fixing bacterium Herbaspirillum seropeclicae with root cells of rice. An. Acad. Bras. Ci. 64: 431.
  • Barbour, W.M., Wang, S.P., and Stacey, G. 1991. Molecular genetics of Bradyrhizobium symbioses. In: Biological Nitrogen Fixation. pp. 645. Stacey, G., Burris, R.H., and Evans, H.J., Eds., Chapman and Hall, New York.
  • Battraw, M.J. and Hall, T.C. 1990. Histochemical analysis of CaMV promoter (///b-glucoronidase gene expression in transgenic rice plants. Plant Mol. Biol. 15: 527–538.
  • Bauer, P., Crespi, M., Szécsi, J., Allison, L.A., and Schultze, M., et al. 1994. Alfalfa ENCJD12 genes are differentially regulated during nodule development by Nod factors and Rhizobium invasion. Plant Physiol. 105: 585–592.
  • Bauer, P., Ratet, P., Gespi, M.D., Schultze, M., and Kondorosi, A. 1996. Nod factors and Cytokinins induce similar cortical cell division, amyloplast deposition and Msenod12A expression patterns in Alfalfa roots. Plant J. 10: 91–105.
  • Bauchrowitz, M.A., Barker, D.G., and Truchet, G. 1996. Lectin genes are expressed throughout root nodule development and during nitrogen-fixation in the Rhizobium-Medicago symbiosis. Plant J. 9: 31–13.
  • Bec-Ferté, MP., Krishnan, H.B., Savagnac, A., Pueppke, S.G., and Promé, J.C. 1996. Rhizobium fi-edii synthesizes an array of lipooligosaccharides, including a novel compound with glucose inserted into the backbone of the molecule. FEBS Lett. 393: 273–279.
  • Bec-Ferté, M.P., Krishnan, H.B., Promé, D., Savagnac, A., Pueppke, S.G., and Promé, J.C. 1994. Structures of nodulation factors from the nitrogen fixing soybean symbiont Rhizobium fredii USDA257. Biochemistry 33: 11782–11788.
  • Becquart-Dekozak, I., Reuths, B.L., Buffard, D., Breda, C., Kim, J.S., Esnault, R., and Kondorosi, A. 1997. Role of the K-antigen subgroup of capsular polysaccharides in the early recognition process between Rhizobium meliloti and Alfalfa leaves Mol. Plant-Microbe Interact. 10: 114–123.
  • Benson, D.R. and Silvester, W.B. 1993. Biology of Frankia strains, actinomycete symbionts of actinorrhizal plants. Microbiol. Rev. 57: 293–319.
  • Bladergroen, M.R. and Spaink, H.P. 1998. Genes and signal molecules involved in Rhizobia-Leguminoseae symbiosis. Curr. Opin. Plant Biol. 1: 353–359.
  • Bloemberg, G.V., Kamst, E., Harteveld, M., van der Drift, K.M.G.M., Haverkamp, J., Thomas-Oates, J.E., Lugtenberg, B.J.J., and Spaink, H.P. 1995. A central domain of Rhizobium NodE protein mediates host specificity by determining the hydrophobicity of fatty acyl moieties of nodulation factors. Mol. Microbiol. 16: 1123–1136.
  • Bockman, O.C. 1997. Fertilizers and biological nitrogen fixation as sources of plant nutrients: perspectives for future agriculture. Plant Soil 194: 81–98.
  • Boddey, R.M., de Oliveira, O.C., Urquiaga, S., Reis, V.M., Olivares, F.L., Baldani, V.L.D., and Dobereiner, J. 1995a. Biological nitrogen fixation associated with sugarcane and rice: contributions and prospects for improvement. Plant Soil 174: 195–209.
  • Boddey, R.M., Reis, V.M., Urquiaga, S., Da Silva, L.G., Reis, F.B., Baldani, J.I., and Dobereiner, J. 1995b. Nitrogen fixation in sugarcane: the role of Acetobacter diazotrophicus. In: Nitrogen Fixation: Fundamentals and Applications. pp. 641–646. Tichonovich, I.A., et al., Eds., Kluwer Academic Publishers, Netherlands.
  • Boddey, R.M. and Dobereiner, J. 1984. Nitrogen fixation associated with grasses and cereals. In: Current Developments in Biological Nitrogen Fixation. pp. 277. Subba Rao, N.S., Ed., Oxford and IBN Publications.
  • Boddey, R.M., da Silva, L.G., Reis, V.M., Alves, B.J.R., and Urquiaga, S. 1999. Assessment of bacterial nitrogen fixation in grass species. In: Nitrogen Fixation in Bacteria: Molecular and Cellular Biology. Triplett, E.W., Ed., Horizon Scientific Press, U.K.
  • Bohlool, B.B., Ladha, J.K., Garrity D.P., and George, T. 1992. Biological nitrogen fixation for sustainable agriculture: a perspective. Plant Soil 141: 1–11.
  • Boiler, T. 1995. Chemoperception of microbial signals in plant cells. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46: 189–214.
  • Borg, S., Brandstrup, B., Jensen, T.J., and Poulsen, C. 1997. Identification of new protein species among 33 different small GTP-binding proteins encoded by cDNAs from Lotus japonicus, and expression of corresponding mRNAs in developing root nodules. Plant J. 11: 237–250.
  • Bradbury, S., Peterson, R.L., and Bowley, S.R. 1991. Interactions between three Alfalfa nodulation genotypes and two Glomus species. New Phytol. 119: 115–120.
  • Broughton, W. and Perret, X. 1999. Genealogy of legume-Rhizobium symbiosis. Curr. Opin. Plant Biol. 2: 305–311.
  • Cárdenas, L., Feijó, J.A., Kunkel, J.G., Sánchez, F., Holdaway-Clarke, T., Hepler, P.K., and Quinto, C. 1999. Rhizobium Nod factors induce increases in intracellular free calcium and extracellular calcium influxes in bean root hairs. Plant J. 19: 347–352.
  • Cárdenas, L., Vidali, L., Dominguez, J., Pérez, H., Sánchez, F., Hepler, P.K., and Quinto, C. 1998. Rearrangement of actin microfilaments in plant root hairs responding to Rhizobium etli nodulation signals. Plant Physiol. 116: 871–877.
  • Cárdenas, L., Dominguez, J., Quinto, C., Lopez-Lara, I., Lugtenberg, B., Spaink, H., Rademaker, G., Haverkamp, J., and Thomas-Oates, J. 1995. Isolation, chemical structures and biological activity of the lipo-chitin oligosaccharide nodulation signals from Rhizobium etli. Plant Mol. Biol. 29: 453–464.
  • Carlson, R.W., Sanjuan, J., Bhat, U.R., Glushka, J.J., Spaink, H.P., Wifies, A.H.M., van Brussel, A.A.N., Stokermans, T.J.W., Peteres, N.K., and Stacey, G. 1993. The structures and biological activities of the lipo-oligosaccharide nodulation signals produced by type I, and type II strains of Bradyrhizobium japonicum. J. Biol. Chem. 268: 18372–18381.
  • Carroll, B.J. and Mathews, A. 1990. Nitrate inhibition of nodulation in legumes. In: Molecular Biology of Symbiotic Nitrogen Fixation. pp. 159–180. Gresshoff, P.M., Ed., Boca Raton, FL: CRC Press.
  • Catoira, R., et al. 2000. Four genes of Medicago truncatula controlling components of Nod factor transduction pathway Plant Cell 12: 1647–1666.
  • Charon, C., Johansson, C., Kondorosi, E., Kondorosi, A., and Crespi, M. 1997. enod40 induces dedifferentiation and division of root cortical cells in legumes. Proc. Natl. Acad. Sci. USA 94: 8901–8906.
  • Charon, C., Sousa, C., Crespi, M., and Kondorosi, A. 1999. Alteration of enod40 expression modifies Medicago truncatula root nodule development induced by Sinorhizobium meliloti, Plant Cell 11: 1953–1965.
  • Coba De la Pena, T., Frugier, F., McKhann, H.I., Bauer, P., Brown, S., et al. 1997. A carbonic anhydrase gene is induced in the nodule primordium and its cell-specific expression is controlled by the presence of Rhizobium during development. Plant J. 11: 407–420.
  • Cocking, E.C., Al-Mallah, M.K., Benson, E., and Davey, M.R. 1990. Nodulation of non-legumes by Rhozobia. In: Nitrogen Fixation: Achievements and Objectives. pp. 813–823. Gresshoff, P.M., Roth, L.E., Stacey, G., and Newton, W.E., Eds., Chapman and Hall, New York.
  • Cohn, J.R., Uhm, T., Ramu, S., Nam, Y.-W., Kim, D. J., Penmetsa, R.V., Wood, T.C., Denny, R.L., Young, N.D., Cook, D.R., and Stacey, G. 2001. Differential Regulation of a Family of Apyrase Genes from Medicago truncatula. Plant Physiol 125: 2104–2119.
  • Cook, D., Dreyer, D., Bonnet, D., Howell, M., Nowy, E., and Vanden-Bosch, K. 1995. Transient induction of a peroxidase gene in Medicago truncatula precedes infection by Rhizobium meliloti. Plant Cell 7: 43–55.
  • Coronado, C., Sanchez-Andujar, B., and Palomares, A.J. 1996. Rhizobium extracellular structures in the symbiosis. World J. Microbiol. Biotechnol. 12: 127–136.
  • Crespi, M.D., Jurkevitch, E., Poiret, M., Aubenton-Carafa, Y., Petrovics, G., Kondorosi, E., and Kondorosi, A. 1994. ENOD40, a gene expressed during nodule organogenesis, codes for a non-translatable RNA involved in plant growth. EMBO J. 13(21): 5099–5112.
  • Datta, S.K. 1999. Transgenic cereals: Oryza Sativa (rice). pp. 149–187. In: Molecular Improvement of Cereal Crops. Vasil, I.K., Ed., Kluwar Academic, Netherlands.
  • Datta. S.K., Datta, K., Soltanifar, N., Donn, G., and Potrykus, I. 1992. Herbicide-resistant indica rice plants from IRRI breeding line IR72 after PEG mediated transformation of protoplasts. Plant Mol. Biol. 20: 619–629.
  • Datta, S.K., Peterhans, A., Datta, K., and Potrykus, I. 1990. Genetically engineered fertile indica rice recovered from protoplasts. Biol technology 8: 736–740.
  • Datta, K., Kokolikova-Nicola, Z., Baisakh, N., Oliva, N., and Datta, S.K. 1999. Agrobacterium-mediated engineering for sheath blight resistance of indica rice cultivars from different ecosystems. Theor. Appl. Genet. 100(6): 832–839.
  • Datta, K., Toprrizo, L., Oliva, N., Alam, M.F., Wu, C., Abrigo, E., Vasquez, A., Tu, J., Quimio, C., Alejar, M., Nicola, Z., Khush, G.S., and Datta, S.K. 1996. Production of transgenic rice by protoplast, biolistic, and Agrobacterium systems. In: Proceeding of Fifth International Symposium on Rice Molecular Biology. pp. 159–167. Academia Sinica, Taipei, Taiwan, Yi-Hsien Publishing Co., Ltd.
  • Day, B.R., McAlvin, C.B., Loh, J.T., Denny, R.L., Wood, T.C., Young, N.D., and Stacey, G. 2000. Differential expression of two soybean apyrases, one of which is an early nodulin. Mol. Plant Microbe Interact. 13(10): 1053–1070.
  • Day, D.A., Whitehead, L., Hendriks, J.H.M., and Tyerman, S.D. 1995. Nitrogen and carbon exchange across symbiotic membranes from soybean nodules. In: Nitrogen Fixation: Fundamentals and Applications. Tikhonovich, I.A., Provorov, N.A., Romanov, V.I., and Newton, W.E., Eds., Kluwer Academic Publishers, Netherlands.
  • De Angelis, P.L. and Achyuthan, A.M. 1996. Yeast derived recombinant DG42 protein of Xenopus can synthesise hyaluronan in vitro. J. Biol. Chem. 271: 23657–23660.
  • De Bruijn, F.J., Jing, Y., and Dazzo, F.B. 1995. Potentials and pitfalls of trying to extend symbiotic interactions of nitrogen fixing organisms to presently non-Nodulated plants such as rice. Plant Soil 174: 225–240.
  • De Carvalho Niebel, F., Lescure, N., Cullimore, J.V., and Gamas, P. 1998. The Medicago truncatula MtAnnl gene encoding an annexin is induced by Nod factors and during the symbiotic interaction with Rhizobium meliloti. Mol. Plant-Microbe Interact. 11: 504–513.
  • Dehio, C. and de Bruijn, F.J. 1992. The early nodulin gene sr ENOD2 from Sesbania rostrata is inducible by cytokinin. Plant J. 2: 117–128.
  • Della Penna, D. 1999. Nutritional genomics: manipulating plant micronutrients to improve human health. Science 285: 375–379.
  • Denarie, J., Debelle, F., and Prome, J.C. 1996. Rhizobium lipo chitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis. Annu. Rev. Biochem. 65: 503–535.
  • De Ruijter, N.C.A., Rook, M.B., Bisseling, T., and Emons, A.M.C. 1998. Lipo chito oligosaccharides re-initiate root hair tip growth in Vicia sativa with high calcium and spectin-like antigen at the tip. Plant J. 13: 341–350.
  • De Ruijter, N.C.A., Bisseling, T., and Emons, A.M.C. 1999. Rhizobium Nod factors induce an increase in sub-apical fine bundles of actin filaments in Vicia sativa root hairs within minutes. Mol. Plant-Microbe Interact. 12: 829–832.
  • Dey, M., Torrizo, L., Reddy, P., Ladha, J., Datta, K, and Datta, S. 1999c. Step toward mimicking the genetic mechanism of nodulation in rice. In: abstracts presented during EMBO workshop on post-transcriptional regulation of gene expression in Plants, Switzerland; Rockefeller Meeting on International Program on Rice Biotechnology, Thailand.
  • Dey, M., Torrizo, L.B., Chaudhuri, R.K., Reddy, P.M., Ladha, J.K., Datta, K., and Datta, S.K. 1999b. Transgenic rice harbouring legume ENOD40 gene. Rice Genet. News1. 16: 147–149.
  • Dey, M., Datta, S.K., Torrizo, L.B., Reddy, P.M., Ladha, J.K., Day, B., and Stacey, G. 1999a. Integration into rice of a soyabean apyrase gene proposed to play a central role in nodulation. Rice Genet. Newsl. 16: 145–147.
  • Dey, M., Complainville, A., Charon, C., Torrizo, L., Kondorosi, A., Crespi, M., and Datta, S.K. 2002. Phytohormonal responses of enod40-overexpressing plants in Medicago truncatula and rice. Manuscript submitted.
  • Dobereiner, J., Reis, V.M., Paula, M.A., and Olivaris, F. 1993. Endophytic diazotrophs in sugarcane, cereals and tuber plants. In: New Horizons in Nitrogen Fixation. pp. 671–676. Palacios, R., Mora, J., and Newton, W.E., Eds., Kluwer Academic, Boston.
  • Dobereiner, J., Baldani, V.L.D., and Reis, V.M. 1995. Endophytic occurrence of diazotrophic bacteria in non-leguminous crops. In: Azospirillum VI and Related Microorganisms. pp. 3–14. Fendrick, I.,Del Gallo, M., Vanderleyden, J., and de Zamarocazy, M., Eds., Springer, Berlin.
  • Downie, J.A., Marie, C., Schen, A.K., Firmin, J.L., Wilson, K.E., Davis, A.E., Cubo, T.M., Mavridou, A., Johnston, A.W.B., and Economon, A. 1991. Genetic and biochemical studies on the nodulation genes of Rhizobium leguminosarum bv. viciae. pp. 134. In: Advances in Molecular Genetics of Plant Microbe Interactions, Vol. 1. Henneck, H. and Verma, D.P.S., Eds., Kluwer Academic, Dordrecht.
  • Downie, J.A. and Surin, B.P. 1990. Either of two Nod gene loci can complement the nodulation defect of a Noddeletion mutant of Rhizobium le gun m losarunm by. viciae. Mol Gen. Genet. 222: 81.
  • Doyle, J.F. 1998. Phylogenetic perspectives on nodulation: evolving views of plants and symbiotic bacteria. Trends Plant Sci. 3(12): 473–478.
  • Duc, G., Trouvelot, A., Gianinazzi-Pearson, V., and Gianinazzi, S. 1989. First report of non-mycorrhizal plant mutants (Myc-) obtained in pea (Pisum sativum L.) and faba bean (Vicia faba L.). Plant Sci. 60: 215–222.
  • Egener, T., Hurek, T., and Reinhold-Hurek, B. 1998. Use of green fluorescent protein to detect expression of nif genes of Azoarcus sp. BH72, Kalagrass-associated diazotrph, on rice roots. Mol. Plant-Microbe Interact. 11: 71–75.
  • Ehrhardt, D.W., Atkinson, E.M., and Long, S.R. 1992. Depolarization of Alfalfa root hair membrane potential by Rhizobium melilotii Nod factors. Science 256: 998–1000.
  • Ehrhardt, D.W., Wais, R., and Long, S.R. 1996. Calcium spiking in plant root hairs responding to Rhizobium nodulation signals. Cell 85: 673–681.
  • Eskew, D.L., Eaglesham, A.R.J., and App, A.A. 1981. Heterotrophic 15N fixation and distribution of newly fixed N, in a rice flooded system. Plant Physiol. 68: 48–52.
  • Estabrook, E.M. and Sengupta-Gopalan, C. 1991. Differential expression of Phenylalanine ammonia lyase and chalcone synthase during soybean nodule development. Plant Cell 3: 299–308.
  • Etzler, M.E., Kalsi, G., Ewing, N.N., Roberts, N.J., Day, R.B., and Murphy, J.B. 1999. A Nod factor binding lectin with apyrase activity from legume roots. Proc. Natl. Acad. Sci. USA 96: 5856–5861.
  • Etzler, M.E. 1985. Plant Lectins: molecular and biological aspects. Annu. Rev. Plant Physiol. 36: 209–234.
  • Fang, Y.W. and Hirsch, A.M. 1998. Studying early nodulin gene enod40 expression and induction by nodulation and cytokinin transgenic Alfalfa. Plant Physiol. 116: 53–68.
  • Felle, H.H., Kondorosi, E., Kondorosi, A., and Schultze, M. 1999a. Nod factors modulate the concentration of cytosolic free calcium differently in growing and non-growing root hairs of Medicago sativa L. Planta 209: 207–212.
  • Felle, H.H., Kondorosi, E., Kondorosi, A., and Schultze, M. 1999b. Elevation of the cytosolic free [Ca2+] is indispensable for the transduction of the Nod factor signal in Alfalfa. Plant Physiol. 121:273–280.
  • Felle, H.H., Kondorosi, E., Kondorosi, A., and Schultze, M. 1998. The role of ion fluxes in Nod factor signalling in Meclicago sativa. Plant J. 13: 455–463.
  • Felle, H.H., Kondorosi, E., Kondorosi, A., and Schultze, M. 1996. Rapid alkalinization in Alfalfa root hairs in response to Rhizobial lipo-chito-oligosaccharide signals. Plant J. 10: 295–301.
  • Felle, H.H., Kondorosi, E., Kondorosi, A., and Schultze, M. 1995. Nod signal-induced plasma membrane potential changes in Alfalfa root hairs are differentially sensitive to structural modifications of the lipo-chito-oligosaccharide. Plant J. 7: 939–947.
  • Fischer, H.M., Bruder, T., and Hennecke, H. 1988. Essential and non-essential domains in the Bradyrhizobium japonicum Nif A protein: identification of indispensable cystein residues potentially involved in redox reactivity and/or metal binding. Nucl. Acid. Res. 16: 2207–2224.
  • Fischer, H.M., Fritsche, S., Herzog, B., and Hennecke, H. 1989. Critical spacing between two essential cystein residues in the interdomain linker of Bradyrhizobium japonicum Nif A protein. FEBS Lett. 255: 167–171.
  • Flores, M., Brom, S., Stepkowski, T., Girard, M.L., Davila, G., Romero, D., and Palacois, R. 1993. Gene amplification in Rhizobium: identification and in vivo cloning of discrete amplicable DNA regions (amplicons) from Rhizobium leguminosarum bv. phaseoli. Proc. Natl. Acad. Sci. USA 90: 4932–4936.
  • Folch-Mallol, J.L., Marroqui, S., Sousa, C., Manyani, H., Lopez-Lara, I.M., van der Drift, K.M.G.M., Haverkamp, J., Quinto, C., Gil-Serrano, A., Thomas-Oates, J., Spaink, H.P., and Megias, M. 1996. Characterization of Rhizobium tropici CIAT899 nodulation factors: the role of nodH and nodPQ genes in their sulfation. Mol. Plant-Microbe Interact. 9: 151–163.
  • Frugier, F., Kondorosi, A., and Crespi, M. 1998. Identification of novel putative regulatory genes induced during Alfalfa nodule development with a cold-plaque screening procedure. Mol. Plant-Microbe Interact. 11: 358–366.
  • Fruhling, M., Roussel, H., Gianinazzi-Pearson, V., Puhler, A., and Perlick, A.M. 1997. The Vicia faba leghaemoglobin gene VfLb29 is induced in root nodules and in roots colonized by the arbuscular mycorrhizal fungus Glomas fasciculation. Mol. Plant-Microbe Interact. 10: 124–131.
  • Galibert, F., et al. 2001. The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293: 668–672.
  • Gamas, P., De Billy, F., and Truchet, G. 1998. Symbiosis-specific expression of two Meclicago truncatula nodulin genes, MtN1 and MtN13, encoding products homologous to plant defense proteins. Mol. Plant-Microbe Interact. 11: 393–403.
  • Gamas, P., De Carvalho Niebel, F., Lescure, N., and Cullimore, J.V. 1996. Use of a subtractive hybridization approach to identify new Medic ago truncatula genes induced during root nodule development. Mol. Plant-Microbe Interact. 9: 233–242.
  • Gehring, C.A., Irving, H.R., Kabbara, A.A., Parish, R.W., Boukli, N.M., and Broughton, W.J. 1997. Rapid, plateau-like increases in intracellular free calcium are associated with Nod-factor-induced root-hair deformation. Mol. Plant-Microbe Interact. 10: 791–802.
  • Geurts, R., Heidstra, R., Hadri, A.E., Downie, J.A., Franssen, H., Van Kammen, A., and Bisseling, T. 1997. Sym2 of pea is involved in a nodulation factor-perception mechanism that controls the infection process in the epidermis. Plant Physiol. 115: 351–359.
  • Gianinazzi-Pearson, V. 1996b. Plant cell responses to arbuscular mycorrhizal fungi; getting to the roots of symbiosis. Plant Cell 8: 1899–1913.
  • Gianinazzi-Pearson, V. 1996a. Arbuscular mycorrhizae: getting to the roots of the symbiosis. Plant Cell 8: 1871–1883.
  • Goethals, K., van Den Eeded, G., van Montagu, M., and Holsters, M. 1990. Identification and characterization of a functional nodD gene in Azorhizobium caulinodans ORS571. J. Bacterial. 172: 2658.
  • Goff, S.A., et al. 2002. A draft sequence of the rice genome (Oryza sativa L. ssp.japonica). Science 296: 92–100.
  • Gollotte, A., Gianinazzi-Pearson, V., Giovannetti, M., Sbrana, C., Avio, L., and Gianinazzi, S. 1993. Cellular localization and cytochemical probing of resistance reactions to arbuscular mycorrhizal fungi in a “locus a” mutant of Pisum sativum L. Planta 191: 112–122.
  • Goormachtig, S., Alves-Ferreira, M., Van Montagu, M., Engler, G., and Holsters, M. 1997. Expression of cell cycle genes during Sesbania rostrata stem nodule development. Mol. Plant-Microbe Interact. 10: 316–325.
  • Goto, F., Yoshihara, T., Shigemoto, N., Toki, S., and Takaiwa, F. 1999. Iron fortification of rice seed by the soybean ferritin gene. Nature Biotechnol. 17(3): 282–286.
  • Gressent, F., Drouillard, S., Mantegazza, N., Samain, E., Geremia, R.A., Canut, H., Niebel, A., Driguez, H., Ranjeva, R., Cullimore, J., and Bono, J.J. 1999. Ligand specificity of a high-affinity binding site for lipo-chitooligosaccharidic Nod factors in Medicago cell suspension cultures. Proc. Natl. Acad. Sci. USA 96: 4704^1709.
  • Gresshoff, P.M. 1999. Identification of plant genes involved in plant-microbe interactions. In: Plant-Microbe Interactions (Vol. 4). Stacey, G. and Keen, N.T.P., Eds., 163 APS Press, The American Phytopathological Society, Minnesota, USA.
  • Heard, J. and Dunn, K. 1995. Symbiotic induction of a MADS-box gene during development of Alfalfa root nodules. Proc. Natl. Acad. Sci. USA 92: 5273–5277.
  • Heidstra, R., Nilsen, G., Martinez-Abarca, F., Van Kammen, A., and Bisseling, T. 1997a. Nod factor-induced expression of leghemoglobin study the mechanism of NH4NO3 inhibition on root hair deformation. Mol. Plant-Microbe Interact. 10: 215–220.
  • Heidstra, R. Yang, W.C., Yalcin, Y., Pech, S., Emons, A.M., et al. 1997b. Ethylene provides positional information on cortical cell division but is not involved in Nod factor induced root hair tip growth in Rhizobium-legume interactions. Development 124: 1781–1787.
  • Hiei, Y., Ohta, S., Komari, T., and Kumashiro, T. 1994. Efficient transformation of rice (Oryza sativa, L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6: 271–282.
  • Hirsch, A.M. 1999. Role of lectins (and Rhizobial exopolysaccharides) in legume nodulation. Curr. Opin. Plant Biol. 2(4): 320–326.
  • Hirsch, A.M. and La Rue, T.A. 1997. Is the legume nodule a modified root or stem or an organ sui generis? Crit. Rev. Plant Sci. 16: 361–392.
  • Horvath, B., Heidstra, R., Lados, M., Moerman, M., Spaink, H.P., et al. 1993. Lipo-oligo-saccharides of Rhizobium induce infection-related early nodulin gene expression in pea root hairs. Plant J. 4: 727–733.
  • Hurek, T., Hurek, B.R., Van Montagu, M., and Kellenberger, E. 1994. Root colonization and systemic spreading of Azoarcus sp. strain BH72 in grasses. J. Bacterial. 176: 1913–1923.
  • Ishizuka, J. 1992. Trends in biological nitrogen fixation research and application. Plant Soil 141: 197–209.
  • Isobe, K. and Tsuboki, Y. 1998. The relationship between growth promotion by arbuscular mycorrhizal fungi and root morphology and phosphorus absorption in gramineous and leguminous crops. Jpn. J. Crop. Sci. 67: 347–352.
  • Jacobs, M. and Rubery, P.H. 1988. Naturally occurring auxin transport regulation. Science 241: 346–349.
  • Jacobsen-Lyon, K., Jensen, E.O., Jorgensen, J.E., Marcker, K.A., Peacock, W.J., and Dennis, E.S. 1995. Symbiotic and nonsymbiotic hemoglobin genes of Casuarina glauca. Plant Cell 7: 213–223.
  • James, E.K., Gyaneswhar, P., Barraquio, W.L., Mathan, N, and Ladha, J.K. 2000. Endophytic diazotrophs associated with rice. In: The Quest for Nitrogen Fixation in Rice. pp. 119–140. Ladha, J.K. and Reddy, P.M., Eds., International Rice Research Institute, Philippines.
  • Jing, Y., Li, G., and Shan, X. 1992. Development of nodule like structure on rice roots. In. Nodulation and Nitrogen Fixation in Rice: Potential and Prospects. pp. 123–126. Khush, G. and Bennet, J., Eds., International Rice Research Institute, Philippines.
  • Journet, E.P., Pichon, M., Dedieu, A., de Billy, F., Truchet, G., and Barker, D.G. 1994. Rhizobium meliloti Nod factors elicit cell-specific transcription of the ENOD12 gene in transgenic Alfalfa. Plant J. 6: 241–249.
  • Journet, E.P., Pichon, M., Dedieu, A., De Billy, F., Truchet, G., and Barker, D.G. 1994. Rhizobium meliloti Nod factors elicit cell-specific transcription of the enod12 gene in transgenic Alfalfa. Plant J. 6: 241–249.
  • Kamst, E., Pilling, J., Raamsdonk, L.H., Lugtenberg, B.J., and Spaink, H.P. 1997. Rhizobium nodulation protein NodC is an important determinant of chitin oligosaccharide chain length in Nod factor biosynthesis. J. Bacterial. 179: 2103–2108.
  • Kamst, E., Lugtenberg, B.J., and Spaink, H.P. 1996. Chitin-oligosaccharide synthesis by the Rhizobium noclC protein. In: Chitin Enzymology II. pp. 329–338. Muzzarelli, R.A.A. and Grottammare, Eds., Italy Atec Edizioni.
  • Kannenberg, E.L., Reuhs, B.L., Forsberg, L.S., and Carlson, R.W. 1998. Lipopolysaccharides and K-antigens: their structures, biosynthesis and functions. In: The Rhizobiaceae. pp. 119–154. Spaink, H.P., Kondorosi, A., and Hooykaas, P.J.J., Eds., Kluwer Academic, Dordrecht, Netherlands.
  • Khush, G.S. 1997. Origin, dispersal, cultivation and variation of rice. Plant Mol. Biol. 35: 25–34.
  • Klassen, S.P., Bugbee, B., and Campbell, W.F. 1999. Ethylene sensitivity of crop plants: implications. ASGSB Annual meeting abstract #53; Crop Physiology Lab, Utah State Univ., Logan.
  • Kondorosi, E., Trinh, H., Roudier, F., Foucher, F., Vaubert, D., Cebolla, A., Lodeiro, A., Feher, Z., Kelemen, Z.S., Gyorgyey, J., Mergaert, P., Kereszt, A., Dudits, D., Hirt, H., and Kondorosi, A. 1998. Nod factor-induced cell cycle activation in root cortical cells. In: Biological Nitrogen Fixation for the 21st Century. pp. 189–192. Elmerich, C., Kondorosi, A., and Newton, W.E., Eds., Kluwer Academic Publishers, Dordrecht, The Netherlands.
  • Kondorosi, E., Banfalvi, Z., and Kondorosi, A. 1984. Physical and genetic analysis of a symbiotic region of Rhizobium meliloti; identification of nodulation genes. Mol. Gen. Genet. 193: 445.
  • Kouchi, H., Takane, K., So, R., Reddy, P.M., and Ladha, J.K. 2000. Characterisation of Rice ENOD40: Do ENOD40S accomplish analogous functions in legumes and nonlegumes? In: The Quest for Nitrogen Fixation in Rice. pp. 263–272. Ladha, J.K. and Reddy, P.M., Eds., International Rice Research Institute, Philippines.
  • Kouchi, H., Takane, K., So, R.B., Ladha, J.K., and Reddy, P.M. 1999. Rice ENOD40: Isolation and expression analysis in rice and transgenic soybean root nodules. Plant J. 18: 121–129.
  • Krause, A., Sigrist, C.J.A., Dehning, I., Sommer, H., and Broughton, W.J. 1994. Accumulation of transcripts encoding a lipid transfer-like protein during deformation of nodulation-competent Vigna trunculata root hairs. Mol. Plant-Microbe Interact. 7: 411–418.
  • Ku, M.S.B., Agarie, S., Nomura, M., Fukayama, H., Tsuchida, H., Ono, K., Hirose, S., Toki, S., Miyao, M., and Matsuoka, M. 1999. High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nature Biotechnol. 17: 76–80.
  • Kurkdjian, A. 1995. Role of the differentiation of root epidermal cells in Nod factor (from Rhizobium meliloti)-induced root hair depolarization of Medicago sativa. Plant Physiol. 107: 783–790.
  • Küster, H., Schröder, G., Früling, M., Pich, U., Rieping, M., et al. 1995. The Nodule-specific Vfenodgrp3 gene encoding a Glycine-rich early nodulin is located on chromosome. I. of Vicia faba, L., and is predominantly expressed in the interzone II-III of root nodules. Plant Mol. Biol. 28: 405–421.
  • Ladha, J.K. and Reddy, P.M. 2000. Steps toward nitrogen fixation in rice. In: The Quest for Nitrogen Fixation in Rice. pp. 33–46. Ladha, J.K. and Reddy, P.M., Eds., International Rice Research Institute, Philippines.
  • La Rue, T.A. and Weeden, N.F. 1994. The symbiosis genes of the host. In: Proceedings of the First European Nitrogen Fixation Conference. pp. 147–151. Kiss, G.B. and Endre, G., Eds., Officiana Press, Szeged, Hungary.
  • Lee, K.H. and La Rue, T.A. 1992. Exogenous ethylene inhibits nodulation of Pi sum sativum L. cv. sparkle. Plant Physiol. 100: 1759–1763.
  • Lerouge, P., Roche, P., Faucher, C., Maillet, F., Truchet, G., Prome, J.-C., and Denarie, J. 1990. Symbiotic host-specificity of Rhizobium meliloti is determined by a sulfated and acylated glucosamine oligosaccharide signal. Nature 344: 781–784.
  • Ligero, F., Caba, J.M., Lluch, C., and Olivares, J. 1991. Nitrate inhibition of nodulation can be overcome by the ethylene inhibitor aminoethoxyvinylglycine. Plant Physiol. 97: 1221–1225.
  • Li, G., Jing, Y., Shan, X., Vang, H., and Guan, C. 1991. Identification of rice nodules that contain Rhizobium bacteria. Chin. J. Bot. 3: 8–17.
  • Libbenga, K.R., Van Iren, F., Bogers, R.J., and Schraag-Lamers, M.F. 1973. The role of hormones and gradients in the initiation of cortex proliferation and nodule formation in Pi sum sativum, L. Planta 114: 29–39.
  • Long, S.R. 1996. Rhizobium symbiosis: Nod factors in perspective. Plant Cell 8: 1885–1898.
  • Lopez-Lara, I.M., Van den berg, J.D.J., Thomas-Oates, J.E., Glushka, J., Lugtenberg, B .J .J., and Spaink, H.P. 1995. Structural identification of the lipochitin oligosaccharide nodulation signals of Rhizobium loti. Mol. Microbiol. 15: 627–638.
  • Madhuri, G. and Reddy, A.R. 1999. Plant biotechnology of flavonoids. Plant Biotechnol. 16(3): 179–199.
  • Maillet, F., Debelle, F., and Denarie, J. 1990. Role of the nodD and syrM genes in the activation of the regulatory gene nodD3, and of common and host specific Nod genes of Rhizobium meliloti. Mol. Microbiol. 4: 1975.
  • Martinez, E. Romero, D., and Palacois, R. 1990. The Rhizobium genome. Crit. Rev. Plant Sci., 9: 59.
  • Martinez-Abarca, F., Herrera-Cervera, J.A., Bueno, P., Sanjuan, J., Bisseling, T., and Olivaris, J. 1998. Involvement of Salicyclic acid in the establishment of the Rhizobium meliloti-Alfalfa symbiosis. Mol. Plant-Microbe Interact. 11:153–155.
  • Mathesius, U., Schlaman, H.P.M., Spaink, H.P., Sautter, C., Rolfe, B.G., and Djordjenic, M.A. 1998. Auxin transport inhibition precedes root nodule formation in white clover roots and is regulated by flavonoids and derivatives of chitin oligosaccharides, Plant J. 14: 23–24.
  • Mathesius, U., Charon, C., Rolfe, B.G., Kondorosi, A., and Crespi, M. 2000. Temporal and spatial order of events during the induction of cortical cell division in white clover by Rhizobium leguminosarum bv. trifolii inoculation or cytokinin addition. Mol. Plant-Microbe Interact. 13(6): 617–628.
  • Mathesius, U., Schlaman, H.P.M., Meijer, D., Lugtenberg, B.J.J., Spaink, H.P., Weinman, J.J., Roddam, L.F., Sautter, C., Rolfe, B.G., and Djordjevic, M.A. 1997. New tools for investigating nodule initiation and ontogeny: spot inoculation and micro targeting of transgenic white clover roots shows auxin involvement and suggests a role for flavonoids. In: Advances in Molecular Genetics of Plant-Microbe Interactions. Vol. 4. pp. 353–358. Stacey, G., Mullin, B., and Gresshoff, P.M., Eds., Kluwer Academic Publishers, Dordrecht, Netherlands.
  • McKhann, H.I., Frugier, F., Petrovics, G., Coba De la Pena, T., Jurkevitch, E., et al. 1997. Cloning of a WD-repeat-containing gene from Alfalfa (Medicago sativa): a role in hormone-mediated cell division? Plant Mol. Biol. 34: 771–780.
  • Men, A.E., Meksem, K., Kassem, A., Lohar, D., Stiller, J., Lightfoot, D., and Gresshoff, P.M. 2001. A bacterial artificial chromosome library of Lotus japonicus constructed in an Agrobacterium tumefaciens-transformable vector. Mol. Plant Microbe Interact. 14(3): 422–425.
  • Mergaert, P., Van Montagu, M., Prome, J.C., and Holsters, M. 1993. Three unusual modifications, a d-arabinosyl, an N-methyl, and a carbamoyl group, are present on the Nod factors of Azorhizobium caulinodans ORS571. Proc. Natl. Acad. Sci. USA 90: 1551–1555.
  • Miller, D.D., de Ruijter, N.C.A., Bisseling, T., and Emons, A.M.C. 1999. The role of actin in root hair morphogenesis: Studies with lipochito-oligosaccharide as a growth stimulator and cytochalasin as an actin perturbing drug. Plant J. 17: 141–154.
  • Munoz, J.A., Palomares, A.J., and Ratet, P. 1996. Plant genes induced in the Rhizobium-legume symbiosis. World J. Microbiol. Biotechnol. 12: 189–202.
  • Mylona, P., Pawlowski, K, and Bisseling, T. 1995. Symbiotic nitrogen fixation. Plant Cell 7: 869–885.
  • Newsham, K., Filter, A.H., and Watterson, A.R., 1995. Arbuscular Mycorrhiza protect an annual grass from root pathogenic fungi in the field. J. Ecol. 83: 991–1000.
  • Niehaus, K., Kapp, D., and Puhler, A. 1993. Plant defense and delayed infection of Alfalfa pseudonodules induced by an exopolysaccharide (EPS-I)-deficient Rhizobium meliloti mutant. Planta 190: 415^125.
  • Oke, V. and Long, S.R. 1999. Bacterial formation in the Rhizobium-legume symbiosis. Curr. Opinion in Microbiol. 2: 641–646.
  • Peng, H.M., Dreyer, D.A., Vandenbosch, K.A., and Cook, D. 1996. Gene structure and differential regulation of the Rhizobium-induced peroxidase gene ripl. Plant Physiol. 112: 1437–1446.
  • Perotto, S., Brewin, N.J., and Kannenberg, E.L. 1994. Cytological evidence for a host defence response that reduces cell and tissue invasion in pea nodules by lipopolysaccharide-defective mutants of Rhizobium leguminosarum strain 3841. Mol. Plant-Microbe Interact. 7: 99–112.
  • Peterhans, A., Datta, S.K., Datta, K., Goodall, G.J., Potrykus, I., and Paszkowski, J. 1990. Recognition efficiency of dicotyledoneae-specific promoter and RNA processing signals in rice. Mol. Gen. Genet. 222: 361–368.
  • Peters, N.K. and Verma, D.P.S. 1990. Phenolic compounds as regulators of gene expression in plantmicrobe interactions. Mol. Plant-Microbe Interact. 3: 4–8.
  • Peumans, W.J. and Van Damne, E.J.M., 1995. Lectins as plant defense protein. Plant Physiol. 109: 347–352.
  • Philip-Hollingsworth, S., Orgambide, G.G., Bradford, J .J., Smith, D.K., Hollingsworth, R.I., and Dazzo, F.B. 1995. Mutation or increased copy number of noclE has no effect on the spectrum of chitolipooligosaccharide Nod factors made by Rhizobium leguminosarum bv. trifolli. J. Biol. Chem. 270: 20968–20977.
  • Phillips, D.D., Dakora, F.D., Sande, E., Joseph, C.M., and Zon, J. 1994. Synthesis, release and transmission of Alfalfa signals to Rhizobial symbionts. Plant Soil 161: 69–80.
  • Pingret, J.L., Journet, E.P., and Barker, D.G. 1998. Rhizobium Nod factor signaling. Evidence for a G protein-mediated transduction mechanism. Plant Cell 10: 659–672.
  • Poupot, R., Martinez-Romero, E.m and Promé, J.C. 1993. Nodulation factors from Rhizobium tropici are sulfated or nonsulfated chitopentasaccharides containing an N-methyl-N-acylglucosamine terminus. Biochemistry 32: 10430–10435.
  • Prayinato, J., Stefaniak, J., Mclver, J.J., Weinman, J.J., Dazzo, F.B., Ladha, J.K., Barraquio, W., Yanni, Y.G., and Rolfe, B.G. 1999. Interactions of rice seedlings with bacteria isolated from rice roots. Aust. J. Plant Physiol. 26: 521–535.
  • Price, N.P.J., Relic, B., Talmont, F., Lewin, A., Prome, D., Pueppke, S.G., Maillet, F., Denarie, J., Prome, J.C., and Broughton, W.J. 1992. Broad host range Rhizobium species strain NGR234 secretes a family of carbamoylated, and fucosylated, nodulation signals that are O-acetylated or sulfated. Mol. Microbiol. 6: 3575–3584.
  • Reddy, P.M., Aggarwal, R.K., Ramos, M.C., Ladha, J.K., Brar, D.S., and Kouchi, H. 1999. Widespread occurrence of the homologs of the early nodulin (ENOD) genes in Oryza species and related grasses. Biochem. Biophys. Res. Commun. 258: 148–154.
  • Reddy, P.M., Kouchi, H., and Ladha, J.K. 1998a. Isolation, analysis and expression of homologs of the soybean early nodulin gene Gmenod93 (GmN93) from rice. Biochem. Biophys. Acta 1443: 386–392.
  • Reddy, P.M., Ladha, J.K., Ramos, M.C., Maillet, F., Hernandez, R.J., Torrizo, L.B., Oliva, N.P., Datta, S.K., and Datta, K. 1998b. Rhizobial lipochitooligosaccharide nodulation factors activate expression of the legume early nodulin gene enod12 in rice. Plant J. 14: 693–702.
  • Reddy, P.M., Ladha, J.K., So, R., Hernandez, R.J., Ramos, M.C., Angeles, O.R., Dazzo, F.B., and de Bruijn, F.J. 1997. Rhizobial communication with rice roots: induction of phenotypic changes, mode of invasion and extent of colonization. Plant Soil 194: 81–98.
  • Reinhold-Hurek, B. and Hurek, T. 1998a. Interactions of graminaceous plants with Azorarcus spp., and other diazotrophs: identification, localization, and perspectives to study their function. Crit. Rev. Plant Sci. 17: 29–54.
  • Reinhold-Hurek, B. and Hurek, T. 1998b. Life in grasses: diazotrophic endophytes. Trends Microbiol. 6: 139–144.
  • Roche, P., Debelle, F., Maillet, F., Lerouge, P., Faucher, C., Truchet, G., Denarie, J., and Prome, J.C. 1991. Molecular basis of symbiotic host specificity in Rhizobium meliloti: nodH and nodPQ genes encode the sulfation of lipooligosaccharide signals. Cell 67: 1131–1143.
  • Romero, D., Martinez-Salazar, J., Palacois, R., Rodriquez, C., and Valencin-Morales, E. 1999. The dynamic genome of Rhizobium. In: Highlights of Nitrogen Fixation Research. Martinez and Hernandez, Eds., Kluwer Academic, The Netherlands/Plenum Press, New York.
  • Romero, D. and Palacois, R. 1997. Gene amplification and genomic plasticity in prokaryotes. Annu. Rev. Genet. 31: 91–111.
  • Rostas, Kondorosi, E., Horvath, B., Simonsits, A., and Kondorosi, A. 1986. Conservation of extended promoter regions of nodulation genes in Rhizobium. Proc. Natl. Acad. Sci. USA 83: 1757.
  • Sagan, M., Morandi, D., Tarenghi, E., and Duc, G. 1995. Selection of nodulation and mycorrhizal mutants in the model plant Medicago truncatula (Gaertn) after X-ray mutagenesis. Plant Sci. 111: 63–71.
  • Sagan, M., de Larambergue, H., and Morandi, D. 1998. Genetic analysis of symbiosis mutants in Medicago truncatula. In: Biological Nitrogen Fixation for the 21st Century. pp. 317–318. Elmerich, C., Kondorosi, A., and Newton, W.E., Eds., Kluwer Academic, Dordrecht, The Netherlands.
  • Sandhu, G.R., Aslam, Z., Salim, M., Sattar, A., Quereshi, R.H., Ahmed, N., and Jones, R.G.W. 1981. The effect of salinity on the yield and composition of Diplachne fusca (Kallar grass). Plant Cell Environ. 4: 177–181.
  • Sanjuan, J., Carlson, R.W., Spaink, H.P., Bhat, U.R., Barbour, W.M., Glushka, J., and Stacey, G., 1992. A 2-O-methyl fucose moiety is present in the lipo-oligosaccharide nodulation signal of Bradyrhizobium japonicum. Proc. Natl. Acad. Sci. USA 89: 8789–8793.
  • Savoure, A., Magyar, Z., Pierre, M., Brown, S., Schultze, M., Dudits, D., Kondorosi, A., and Kondorosi, E. 1994. Activation of the cell cycle machinery and the isoflavonoid biosynthesis pathway by native Rhizobium meliloti Nod signal molecules in Medicago microcallus suspensions. EMBO J. 13: 1093–1102.
  • Savoure, A., Sallaud, C., Eltwek, J., Zuanazzi, J., Ratet, P., Schultze, M., Kondorosi, A., Esnault, R., and Kondorosi, E. 1997. Distinct response of Medicago suspension cultures and roots to Nod factors and chitin oligomers in the elicitation of defense related responses. Plant J. 11: 277–287.
  • Schauser, L., Roussis, A., and Stougaard, J. 1999. A plant regulator controlling development of symbiotic root nodules. Nature 402: 191–195.
  • Schell, J., Bisseling, T., Dulz, M., Franssen, H., Fritze, K., John M., Leinow, T., Lebnick, A., Miklashevichs, E., Pawlowski, K., Rohrig, H., Van de Sande, K., Schmidt, J., Steinbib, H., and Stoll, M. 1999. Reevaluation of phytohormone-independent division of tobacco protoplast-derived cells. Plant J. 17(5): 461^166.
  • Schlaman, H.R.M., Gisel, A.A., Quaedvlieg, N.E.M., Bloemberg, G.V., Lugtenberg, B.J.J., Kijne, J.W., Potrykus, I., Spaink, H.P., and Saulter, C. 1997. Chitin oligosaccharides can induce cortical cell division in roots of Vicia sativa when delivered by biolistic microtargeting. Development 124: 4887–4895.
  • Schmidt, P.E., Broughton, W.J., and Werner, D. 1994. Nod factors of Bradyrhizobium japonicum and Rhizobium sp. NGR 234 induce flavonoid accumulation in soybean root exudate. Mol. Plant-Microbe Interact. 7: 384–390.
  • Schröder, G., Frühling, M., Pühler, A., and Perlick, A.M. 1997. The temporal and spatial transcription pattern in root nodules of Vicia faba nodulin genes encoding Glycine-rich proteins. Plant Mol. Biol. 33: 113–123.
  • Schultze, M. and Kondorosi, A. 1998. Regulation of symbiotic root nodule development. Annu. Rev. Genet. 32: 33–57.
  • Schultze, M. and Kondorosi, A. 1996. The role of lipchitooligosaccharides in root nodule organogenesis and plant cell growth. Curr. Opin. Genet. Dev. 6: 631–638.
  • Schultze, M., Quiclet-sire, B., Kondorosi, E., Virelizier, H., Glushka, J.N., Endre, G., Gero, S.D., and Kondorosi, A. 1992. Rhizobium meliloti produces a family of sulfated lipo-oligosaccharides exhibiting different degree of plant host specificityarticle-title. Proc. Natl. Acad. Sci. USA 89: 192–196.
  • Schultze, M., Kondorosi, E., Ratet, P., Buire, M., and Kondorosi, A. 1994. Cell and molecular biology of Rhizobium-plant interactions. Int. Rev. Cytol. 156: 1–75.
  • Semino, C.E., Specht, C.A., Raimondi, A., and Robbins, P.W. 1996. Homologs of the Xenopus developmental gene DG42 are present in Zebrafish and mouse and are involved in the synthesis of Nodlike chitin oligosaccharides during early embryogenesis. Proc. Natl. Acad. Sci. USA 93: 4548–4553.
  • Semino, C.E. and Robbins, P.W. 1995. Synthesis of Nod like chitin oligosaccharides by the Xenopus developmental protein DG42. Proc. Natl. Acad. Sci. USA 92: 3498–3501.
  • Sevilla, M., Burris, R.H., Gunapala, N., and Kennedy, C. 2001. Comparison of benefit to sugarcane plant growth and 15N2 incorporation following inoculation of sterile plants with Acetobacter diazotrophicus wild-type and Nif− mutant strains. Mol. Plant Microbe Interact. 14(3): 358–366.
  • Shearman, C.A., Rossen L., Johnston, A.W.B., and Downie, J.A. 1986. The Rhizobium gene nodF encoded a protein similar to acyl carrier protein and is regulated by nodD plus a factor in pea root exudate. EMBO J. 5: 647–652.
  • Shirtliffe, S.J. and Vessey, J.K. 1996. A nodulation (Nod+/Fix-) mutant of Phaseolus vulgaris L. has nodule-like structures lacking peripheral vascular bundles (Pvb-) and is resistant to mycorrhizal infection (Myc-). Plant Sci. 118: 209–220.
  • Smit, G., De Koster, C.C., Schripsema, J., Spaink, H.P., Van Brussel, A.A., and Kijne, J.W. 1995. Uridine, a cell division factor in pea roots. Plant Mol. Biol. 29: 869–873.
  • Somerville, C and Somerville, S. 1999. Functional genomics. Science 285: 380–383.
  • Spaink, H.P. 1996. Regulations of plant morphogenesis by lipo-chitin oligosaccharides. Crit. Rev. Plant Sci. 15: 559–582.
  • Spaink, H.P., Sheeley, D.M., Van Brussel, A.A.N., Glushka, J., York, W.S., Tak, T., Geiger, O., Kennedy, E.P., Reinhold, V.N., and Lugtenberg, B.J.J. 1991. A novel highly unsaturated fatty acid moiety of lipo-oligosaccharide signals determines host specificity of Rhizobium. Nature 354: 125–130.
  • Spaink, H.P., Bloemberg, G.V., van Brussel, A.A.N., Lugtenberg, B.J.J., van der Drift, K.M.G.M., Haverkamp. J., and Thomas-Oates, J.E. 1995. Host specificity of Rhizobium leguminosarum is determined by the hydrophobicity of highly unsaturated fatty acyl moeties of the nodulation factors. Mol. Plant-Microbe Interact. 8: 155–164.
  • Stacey, G. and Shibuya, N. 1997. Chitin recognition in rice and legumes. Plant Soil 194: 161–169.
  • Staehelin, C., Schultze, M., Kondorosi, E., Kondorosi, A. 1995. Lipochito oligosaccharide nodulation signals from Rhizobium meliloti induce their rapid degradation by the host plant Alfalfa. Plant Physiol. 108: 1607–1614.
  • Streeter, J.G. 1995. Integration of plant and bacterial metabolism in nitrogen fixing systems. In: Nitrogen Fixation: Fundamentals and Applications. pp. 67–76. Tikhonovich, I.A., Provorov, N.A., Romanov, V.l., and Newton, W.E., Eds., Kluwer Academic, Netherlands.
  • Streeter, J.C. 1991. Transport and metabolism of carbon and nitrogen in legume nodules. Adv. Bot. Res. 18: 129–187.
  • Subba Rao, N.S. 1995. The Rhizosphere. In. Soil Microorganisms and Plant Growth. 3rd ed., pp. 51–83. Science Publishers Inc., USA.
  • Swensen, S.M. and Mullin B.C. 1997. The impact of molecular systematics on hypothesis for the evolution of root nodule symbiosis and implications for expanding symbiosis to new host plant genera. Plant Soil 194: 185–192.
  • Swensen, S.M. 1996. The evolution of actinorrhizal symbiosis: evidence for multiple origins of the symbiotic association. Annu. J. Bot. 83: 1503–1521.
  • Szczyglowski, K. Shaw, R.S., Wopereis, J., Copeland, S., Hamburger, D., Kasiborski, B., Dazzo, F.B., and de Bruijn, F.J. 1998. Nodule organogenesis and symbiotic mutants of the model legume Lotus japonicus. Mol. Plant-Microbe Interact. 11:684–697.
  • Takane, K., Tajima, S., and Kouchi, H. 1997. Two distinct uricase II (Nodulin 35) genes are differentially expressed in soybean plants. Mol. Plant-Microbe Interact. 10: 735–741.
  • Timmers, A.C., Auriac, M.C., and Truchet, G. 1999. Refined analysis of early symbiotic steps of the Rhizobium-Medicago interaction in relationship with microtubular cytoskeleton rearrangements. Development 12: 3617–3628.
  • Trevaskis, B., Watts, R.A., Andersson, C.R., Llewellyn, D.J., Hargrove, M.S., Olson, J.S., Dennis, E.S. and Peacock, W.J. 1997. Two hemoglobin genes in Arabidopsis thaliana: the evolutionary origins of leghemoglobins. Proc. Natl. Acad. Sci. USA 94: 12230–12234.
  • Trinick, M.J. 1979. Structure of nitrogen fixing nodules formed by Rhizobium on roots of Parasponia andersonni Planch. Can. J. Microbiol. 25: 565–578.
  • Tu, J., Datta, K. Zhang, Q., and Datta, S.K. 2000. Field performance of transgenic elite commercial hybrid rice expressing Bacillus thuringiensis deltaendotoxin. Nature Biotech. 18: 1101–1104.
  • Van Brussel, A.A.N., Bakhuizen, R., Van Spronsen, P.C., Spaink, H.P., Tak, T., Lugtenberg, B.J.J., and Kijne, J.W. 1992. Induction of preinfection thread structures in the leguminous host plant by mitogenic lipooligosaccharides of Rhizobium. Science 257: 70–72.
  • Vance, C.P. and Heichel, G.H. 1991. Carbon in N2 fixation: limitation or exquisite adaptation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 373–392.
  • Van de Sande, K., Pawlowski, K., Czaja, L., Weineke, U, Schell, J., Schmidt, J., Walden, R., Matvienko, M., Wellink, J., Van Kamman, A.B., Franseen, H., and Bisseling, T. 1996. Modifications of phytohormone response by a peptide encoded by ENOD40 of legumes and a non-legume. Science 273: 370–373.
  • Van Kammen, A. 1984. Suggested nomenclature for plant genes involved in nodulation and symbiosis: Plant Mol. Biol. Rep. 2: 43–45.
  • Van Rhijn, P., Fang, Y., Galili, S., Shaul, O., Atzmon, N., Wininger, S., Eshed, Y., Lum, M., Li, Y., To, V., Fujishige, N., Kapulnik, Y., and Hirsch, A.M. 1997. Expression of early nodulin genes in Alfalfa mycorrhizae indicates that signal transduction pathways used in forming arbuscular mycorrhizae and Rhizobium induced nodules may be conserved. Proc. Natl. Acad. Sci. USA 94: 5467–5472.
  • Van Spronsen, P.C., Van Brussel, A.A.N., and Kijne, J.W. 1995. Nod factors produced by Rhizobium leguminosarum biovar viciae enduce ethylene-related changes in root cortical cells of Vicia sativa ssp. nigra. Eur. J. Cell Biol. 68: 463–469.
  • Van Workum, W.A.T. and Kijne, J.W. 1998. Biosynthesis of Rhizobial exopolysaccharides and their role in the root nodule of leguminous plants. In: Recent Advances in Phytochemistry, Vol. 32, Verpoorte, R., Downum, K., Romeo, J., Eds., Plenum Press, New York.
  • Vasil, I.K. 1994. Molecular improvement of cereals. Plant Mol. Biol. 25: 925–937.
  • Vernoud, V., Journet, E.P., and Barker, D. 1999. MtENOD20, a Nod-factor-inducible molecular marker for root cortical cell activation. Mol. Plant-Microbe Interact. 12: 604–614.
  • Vijn, I., Martinez-Abarca, F., Yang, W.C., Das Neves, L., Van Brussel, A., et al. 1995. Early nodulin gene expression during Nod factor-induced processes in Vicia sativa. Plant J. 8: 111–119.
  • Wagner, G.M. 1997. Azolla: a review of its biology and utilization. Bot. Rev. 63: 1–26.
  • Walbot, V. 1999. Genes, genomes, genomics: what can plant biologists expect from the 1998 national science foundation plant genome research program? Plant Physiol. 119: 1151–1155.
  • Wegel, E., Schauser, L., Sandal, N. Stougaard, J., and Parniske, M. 1998. Mycorrhiza mutants of Lotus japonicus define genetically independent steps during symbiotic infection. Mol. Plant-Microbe Interact. 11: 933–936.
  • Yang, W.C., De Blank, C., Meskiene, I., Hirt, H., Bakker, J., et al. 1994. Rhizobium Nod factors reactivate the cell cycle during infection and nodule primordium formation, but the cycle is only completed in primordium formation. Plant Cell 6: 1415–1426.
  • Yang, W.C., Canter Cremers, H.C.J., Hogendijk, P., Katinakis, P., Wijffelman, C.A., et al. 1992. Insitu localization of chalcone synthase mRNA in pea root nodule development. Plant J. 2: 143–151.
  • Yanni, Y.G., Rizk, R.Y., Corich, V., Quartini, A., Ninke, K., Philip-Hollingsworth, S., Organbide, G., de Bruijn, F., Stolzfus, J., Buckley, D., Schmidt, T.M., Mateos, P.F., Ladha, J.K., and Dazzo, F.B. 1996. Natural endophytic association between Rhizobium leguminosarum biovar trifolii and rice roots and assessment of its potential to promote rice growth. Paper presented in 7th International Symposium on Nitrogen Fixation with Non-Legumes, Faisalabad, Pakistan.
  • Ye, X., Al-Babili, S., Klöti, A., Zhang, J., Lucca, P., Beyer, P., and Potrykus, l. 2000. Engineering the provitamin A (///b-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287: 303–305.
  • Yoshida, T. and Yoneyama, T. 1980. Atmospheric nitrogen fixation in the flooded rice Rhizosphere as determined by 15N isotope technique. Soil Sci. Plant Nutr. 26: 551–559.
  • You, C.B. and Song, W. 1994. Establishment of an effective nitrogen-fixing association between rice (Oryza sativa, L.) and diazotroph Alcaligenes sp. In: Biological Nitrogen Fixation-Novel Associations with Non-Legume Crops. pp. 7–27. Yanfu, N., Kennedy, I.R., and Tingwei, Eds., Qingdao Ocean Univ. Press, Qindao, China.
  • Young, J.P.W. and Johnston, A.W.B. 1989. The evolution of specificity in legume'-Rhizobium symbiosis. Trend Ecol. Evol. 4: 331.
  • Yu, J., et al. 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296: 92–100.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.