1,529
Views
114
CrossRef citations to date
0
Altmetric
Research Article

The Genus Gluconobacter Oxydans: Comprehensive Overview of Biochemistry and Biotechnological Applications

, , , , &
Pages 147-171 | Published online: 10 Oct 2008

REFERENCES

  • Adachi O., Ano Y., Moonmangmee D., Shinagawa E., Toyama H., Theeragool G., Lotong N., Matsushita K. Crystallization and properties of NADPH-dependent L-sorbose reductase from Gluconobacter melanogenus IFO 3294. Biosci. Biotechnol. Biochem. 1999; 63: 2137–2143
  • Adachi O., Ano Y., Toyama H., Matsushita K. High shikimate production from quinate with two enzymatic systems of acetic acid bacteria. Biosci. Biotechnol. Biochem. 2006; 70: 2579–2582
  • Adachi O., Ano Y., Toyama H., Matsushita K. Purification and properties of NADP-dependent shikimate dehydrogenase from Gluconobacter oxydans IFO 3244 and its application to enzymatic shikimate production. Biosci. Biotechnol. Biochem. 2006; 70: 2786–2789
  • Adachi O., Fujii Y., Ano Y., Moonmangmee D., Toyama H., Shinagawa E., Theeragool G., Lotong N., Matsushita K. Membrane-bound sugar alcohol dehydrogenase in acetic acid bacteria catalyzes L-ribulose formation and NAD-dependent ribitol dehydrogenase is independent of the oxidative fermentation. Biosci. Biotechnol. Biochem. 2001; 65: 115–125
  • Adachi O., Fujii Y., Ghaly M. F., Toyama H., Shinagawa E., Matsushita K. Membrane-bound quinoprotein D-arabitol dehydrogenase of Gluconobacter suboxydans IFO 3257: a versatile enzyme for the oxidative fermentation of various ketoses. Bioscience, Biotechnology, and Biochemistry 2001; 65: 2755–2762
  • Adachi O., Matsushita K., Shinagawa E., Ameyama M. Crystallization and characterization of NADP-dependent D-glucose dehydrogenase from Gluconobacter suboxydans. Agr. Biol. Chem. 1980; 44: 301–308
  • Adachi O., Matsushita K., Shinagawa E., Ameyama M. Crystallization and properties of NADP-dependent aldehyde dehydrogenase from Gluconobacter melanogenus. Agr. Biol. Chem. 1980; 44: 155–164
  • Adachi O., Tayama K., Shinagawa E., Matsushita K., Ameyama M. Purification and characterization of membrane-bound aldehyde dehydrogenase from Gluconobacter suboxydans. Agricultural and Biological Chemistry 1980; 44: 503–515
  • Adachi O., Tayama K., Shinagawa E., Matsushita K., Ameyama M. Purification and characterization of particulate alcohol dehydrogenase from Gluconobacter oxydans. Agricultural and Biological Chemistry 1978; 42: 2045–2056
  • Adachi O., Toyama H., Matsushita K. Crystalline NADP-dependent D-mannitol dehydrogenase from Gluconobacter suboxydans. Biosci. Biotechnol. Biochem. 1999; 63: 402–407
  • Adachi O., Toyama H., Theeragool G., Lotong N., Matsushita K. Crystallization and properties of NAD-dependent D-sorbitol dehydrogenase from Gluconobacter suboxydans IFO 3257. Biosci. Biotechnol. Biochem. 1999; 63: 1589–1595
  • Ameyama M., Shinagawa E., Matsushita K., Adachi O. D-Glucose dehydrogenase of Gluconobacter suboxydans - Solubilization, purification and characterization. Agr. Biol. Chem. 1981; 45: 851–861
  • Ameyama M., Shinagawa E., Matsushita K., Adachi O. Solubilization, purification and properties of membrane bound glycerol dehydrogenase from Gluconobacter industrius. Agr. Biol. Chem. 1985; 49: 1001–1010
  • Arcus A. C., Edson N. L. Polyol dehydrogensases 2. The polyol dehydrogenases of Acetobacter suboxydans Candida utilis. Biochemical Journal 1956; 64: 385–394
  • Arrieta J., Hernandez L., Coego A., Suarez V., Balmori E., Menendez C., PetitGlatron M. F., Chambert R., SelmanHousein G. Molecular characterization of the levansucrase gene from the endophytic sugarcane bacterium Acetobacter diazotrophicus SRT4. Microbiol. UK 1996; 142: 1077–1085
  • Asai T. Acetic acid bacteria: classification and biochemical activities. University of Tokyo Press, Tokyo 1968
  • Asano N. Glycosidase inhibitors: update and perspectives on practical use. Glycobiology 2003; 13: 93R–104R
  • Bae Sangok, Sugano Y., Shoda M. Comparison of bacterial cellulose production in a jar fermentor between Acetobacter xylinum BPR2001 and its mutant, acetan-nonproducing strain EP1. J. Microbiol. Biotechnol. 2005; 15: 247–253
  • Bae S., Sugano Y., Shoda M. Improvement of bacterial cellulose production by addition of agar in a jar fermentor. J. Biosci. Bioeng. 2004; 97: 33–38
  • Batzing B. L., Claus G. W. Fine-structural changes of Acetobacter suboxydans during growth in a defined medium. J. Bacteriol. 1973; 113: 1455–1461
  • Bauer R., Katsikis N., Varga S., Hekmat D. Study of the inhibitory effect of the product dihydroxyacetone on Gluconobacter oxydans in a semi-continuous two-stage repeated-fed-batch process. Bioprocess. Biosyst. Eng. 2005; 5: 37–43
  • Bielecki S., Krystynowicz A., Turkiewicz M., Kalinowska H. Bacterial cellulose. Polysaccharides from Prokaryotes, E. J. Vandamme, S. De Baets, A. Steinbüchel. Wiley-VCH, Weinheim 2002; 37–90
  • Brubaker R. Factors promoting acute and chronic diseases caused by Yersiniae. Clin. Microbiol. Rev. 1991; 43: 309–324
  • Buchholz K., Kasche V., Bornscheuer U. Biocatalysts and Enzyme Technology. Wiley-VCH, Weinheim 2005
  • Butters T. D., Dwek R. A., Platt F. M. Imino sugar inhibitors for treating the lysosomal glycosphingolipidoses. Glycobiology 2005; 15: R43–R52
  • Chao Y., Sugano Y., Shoda M. Bacterial cellulose production under oxygen-enriched air at different fructose concentrations in a 50-liter, internal-loop airlift reactor. Appl. Microbiol. Biotechnol. 2001; 55: 673–679
  • Cheetham P. S. J., Wootton A. N. Bioconversion of D-galactose into D-tagatose. Enzyme Microb. Technol. 1993; 15: 105–108
  • Choi E.-S., Lee E.-H., Rhee S.-K. Purification of a membrane-bound sorbitol dehydrogenase from Gluconobacter suboxydans. FEMS Microbiology Letters 1995; 125: 45–50
  • Claret C., Bories A., Soucaille P. Glycerol inhibition of growth and dihydroxyacetone production by Gluconobacter oxydans. Curr. Microbiol. 1992; 25: 149–155
  • Claret C., Salmon J. M., Romieu C., Bories A. Physiology of Gluconobacter oxydans during dihydroxyacetone production from glycerol. Appl. Microbiol. Biotechnol. 1994; 41: 359–365
  • Claus G. W., Batzing B. L., Baker C. A., Goebel E. M. Intracytoplasmic membrane formation and increased oxidation of glycerol during growth of Gluconobacter oxydans. J. Bacteriol. 1975; 123: 1169–1183
  • Colquhoun I. J., Jay A. J., Eagles J., Morris V. J., Edwards K. J., Griffin A. M., Gasson M. J. Structure and conformation of a novel genetically engineered polysaccharide P2. Carbohydr. Res. 2001; 330: 325–333
  • De Baets S., Vanbaelen A., Joris K., De Wulf P., Vandamme E. J. Cellulose production by Acetonacter xylinum: fermentation optimisation and application potential. Comm. Agric. Appl. Biol. Sci. 1997; 62: 1231–1238
  • De Ley J., Swings J. Genus Gluconobacter. Bergey's Manual of Systematic Bacteriology, N. Krieg, J. Holt. Williams and Wilkins, London 1984; 275–278
  • De Muynck C., Pereira C., Soetaert W., Vandamme E. Dehydrogenation of ribitol with Gluconobacter oxydans: production and stability of L-ribulose. J. Biotechnol. 2006; 125: 408–415
  • De Wulf P., Joris K., Vandamme E. J. Improved cellulose formation by an Acetobacter xylinum mutant limited in (keto)gluconate synthesis. J. Chem. Technol. Biotechnol. 1996; 67: 376–380
  • De Wulf P., Soetaert W., Vandamme E. J. Optimized synthesis of L-sorbose by C-5-dehydrogenation of D-sorbitol with Gluconobacter oxydans. Biotechnol. Bioeng. 2000; 69: 339–343
  • Deppenmeier U., Hoffmeister M., Prust C. Biochemistry and biotechnological applications of Gluconobacter strains. Applied Microbiology and Biotechnology 2002; 60: 233–242
  • Deppenmeier U., Hoffmeister M., Prust C. Biochemistry and biotechnological applications of Gluconobacter strains. Appl. Microbiol. Biotechnol. 2002; 60: 233–242
  • Ehrensberger A. H., Elling R. A., Wilson D. K. Structure-guided engineering of xylitol dehydrogenase cosubstrate specificity. Structure 2006; 14: 567–575
  • Elfari M., Ha S. W., Bremus C., Merfort M., Khodaverdi V., Herrmann U., Sahm H., Gorisch H. A Gluconobacter oxydans mutant converting glucose almost quantitatively to 5-keto-D-gluconic acid. Applied Microbiology and Biotechnology 2005; 66: 668–674
  • Faber K. Biotransformations in Organic Chemistry. Springer-Verlag, Berlin 1997
  • Fukaya M., Okumura H., Masai H., Uozumi T., Beppu T. Development of a host-vector system for Gluconobacter suboxydans. Agr. Biol. Chem. 1985; 49: 2407–2411
  • Gandolfi R., Borrometi A., Romano A., Gago J. V. S., Molinari F. Enantioselective oxidation of (+/-)-2-phenyl-1-propanol to (S)-2-phenyl-1-propionic acid with Acetobacter aceti: influence of medium engineering and immobilization. Tetrahedron: Asymmetry 2002; 13: 2345–2349
  • Gandolfi R., Cavenago K., Gualandris R., Gago J. V. S., Molinari F. Production of 2-phenylacetic acid and phenylacetaldehyde by oxidation of 2-phenylethanol with free immobilized cells of Acetobacter aceti. Process Biochem. 2004; 39: 747–751
  • Garcia C., de Oliveira Neto G., Kubota L., Grandin A. A new amperometric sensor for fructose using a carbon paste electrode modified with silica gel coated with Meldola's blue and fructose-5-dehydrogenase. Journal of Electroanalytical Chemistry 1996; 418: 147–151
  • Greenfield S., Claus G. W. Non-functional tricarboxylic acid cycle and the mechanism of glutamate biosynthesis in Acetobacter suboxydans. Jounal of Bacteriology 1972; 112: 1295–1301
  • Grindley J. F., Payton M. A., Vandepol H., Hardy K. G. Conversion of glucose to 2-keto-L-gulonate, an intermediate in L-ascorbate synthesis, by a recombinant strain of Erwinia citreus. Appl. Environ. Microbiol. 1988; 54: 1770–1775
  • Gupta A., Singh V. K., Qazi G. N., Kumar A. Gluconobacter oxydans: Its biotechnological applications. J. Mol. Microbiol. Biotechnol. 2001; 3: 445–456
  • Hancock R. D., Viola R. Biotechnological approaches for L-ascorbic acid production. Trends In Biotechnology 2002; 20: 299–305
  • Heefner D. L., Claus G. W. Change in quantity of lipids and cell-size during intracytoplamsic membrane formation in Gluconobacter oxydans. Jounal of Bacteriology 1976; 125: 1163–1171
  • Hehre E., Hamilton D. The biological synthesis of dextran from dextrins. J. Biol. Chem. 1951; 192: 161–174
  • Hikuma M., Takeda M., Matsuoka H., Karube I. Reagentless enzyme-based sensor using a gas-permeable membrane for determination of alcohols. Analytica Chimica Acta 1995; 306: 209–215
  • Holscher T., Gorisch H. Knockout and overexpression of pyrroloquinoline quinone biosynthetic genes in Gluconobacter oxydans 621H. Journal of Bacteriology 2006; 188: 7668–7676
  • Holscher T., Weinert-Sepalage D., Gorisch H. Identification of membrane-bound quinoprotein inositol dehydrogenase in Gluconobacter oxydans ATCC 621H. Microbiology-Sgm 2007; 153: 499–506
  • Hommel R., Ahnert P. Gluconobacter. Encyclopedia of Food Microbiology, R. Robinson, C. Batt, P. Patel. Academic Press, London 2000; 955–961
  • Hoshino T., Sugisawa T., Fujiwara A. Isolation and characterization of NAD(P)-dependent L-sorbosone dehydrogenase from Gluconobacter melanogenus Uv10. Agr. Biol. Chem. 1991; 55: 665–670
  • Hoshino T., Sugisawa T., Tazoe M., Shinjoh M., Fujiwara A. Metabolic pathway for 2-keto-L-gulonic acid formation in Gluconobacter melanogenus IFO 3293. Agr. Biol. Chem. 1990; 54: 1211–1218
  • Huwig A., Emmel S., Jakel G., Giffhorn F. Enzymatic synthesis of L-tagatose from galactitol with galactitol dehydrogenase from Rhodobacter sphaeroides D. Carbohydr. Res. 1997; 305: 337–339
  • Ishida T., Mitarai M., Sugano Y., Shoda M. Role of water-soluble polysaccharides in bacterial cellulose production. Biotechnol. Bioeng. 2003; 83: 474–478
  • Ishkawa A., Matsuoka M., Tsuchida T., Yoshinaga F. Increase in cellulose production by sulfaguanidine-resistant mutants derived from Acetobacter xylinum subsp sucrofermentans. Biosci. Biotechnol. Biochem. 1995; 59: 2259–2262
  • Jia S. R., Ou H. Y., Chen G. B., Choi D. B., Cho K. A., Okabe M., Cha W. S. Cellulose production from Gluconobacter oxydans TQ-B2. Biotechnol. Bioprocess Eng. 2004; 9: 166–170
  • Joris K., Vandamme E. J. Novel production and application aspects of bacterial cellulose. Microb. Eur. 1993; 1: 27–29
  • Kaplan D. L. Biopolymers from Renewable Resources. Springer-Verlag, Berlin 1998
  • Kersters K., Wood W. A., De Ley J. Polyol dehydrogenases of Gluconobacter oxydans. J. Biol. Chem. 1965; 240: 965–974
  • Kim B.-C., Lee Y.-L., Lee H.-S., Lee D.-W., Choe E.-A., Pyun Y.-R. Cloning, expression and characterization of L-arabinose isomerase from Thermotoga neapolitana: bioconversion of D-galactose to D-tagatose using the enzyme. FEMS Microbiol. Lett. 2002; 212: 121–126
  • Kitamura I., Perlman D. Conversion of l-sorbose to l-sorbosone by Gluconobacter-melanogenus. Biotechnology and Bioengineering 1975; 17: 349–359
  • Klasen R., Bringermeyer S., Sahm H. Biochemical characterization and sequence analysis of the gluconate-NADP-5-oxidoreductase gene from Gluconobacter oxydans. J. Bacteriol. 1995; 177: 2637–2643
  • Kondo K., Horinouchi S. Characterization of an insertion sequence, IS12528, from Gluconobacter suboxydans. Appl. Environ. Microbiol. 1997; 63: 1139–1142
  • Kondo K., Horinouchi S. Characterization of the genes encoding the three-component membrane-bound alcohol dehydrogenase from Gluconobacter suboxydans and their expression in Acetobacter pasteurianus. Appl. Environ. Microbiol. 1997; 63: 1131–1138
  • Kouda T., Naritomi T., Yano H., Yoshinaga F. Effects of oxygen and carbon dioxide pressures on bacterial cellulose production by Acetobacter in aerated and agitated culture. J. Ferm. Bioeng. 1997; 84: 124–127
  • Kulhánek M. Microbial dehydrogenations of monosaccharides. Advances in Applied Microbiology 1989; 34: 141–182
  • Landis B. H., McLaughlin J. K., Heeren R., Grabner R. W., Wang P. T. Bioconversion of N-butylglucamine to 6-deoxy-6-butylamino sorbose by Gluconobacter oxydans. Org. Process Res. Dev. 2002; 6: 547–552
  • Lapenaite I., Kurtinaitiene B., Razumiene J., Laurinavicius V., Marcinkeviciene L., Bachmatova I., Meskys R., Ramanavicius A. Properties and analytical application of PQQ-dependent glycerol dehydrogenase from Gluconobacter sp 33. Anal. Chim. Acta 2005; 549: 140–150
  • Lee S. A., Choi Y., Jung S. H., Kim S. Effect of initial carbon sources on the electrochemical detection of glucose by Gluconobacter oxydans. Bioelectrochemistry 2002; 57: 173–178
  • Leon R., Prazeres D. M. F., Molinari F., Cabral J. M. S. Microbial stereoselective oxidation of 2-methyl-1,3-propanediol to (R)-beta-hydroxyisobutyric acid in aqueous/organic biphasic systems. Biocatal. Biotransform. 2002; 20: 201–207
  • Levin G. V., Zehner L. R., Saunders J. P., Beadle J. R. Sugar substitutes: their energy values, bulk characteristics and potential health benefits. Am. J. Clin. Nutr. 1995; 62: S1161–S1168
  • Lichtenthaler F. W. The key sugars of biomass: Availability, present non-food applications and potential industrial development lines. Biorefineries, Biobased Industrial Processes and Products, B. Kamm, P. Gruber, M. Kamm. Wiley-VHC, Weinheim 2006; 3–59
  • Lobanov A. V., Borisov I. A., Gordon S. H., Greene R. V., Leathers T. D., Reshetilov A. N. Analysis of ethanol-glucose mixtures by two microbial sensors: application of chemometrics and artificial neural networks for data processing. Biosens. Bioelectron. 2001; 16: 1001–1007
  • Lusta K. A., Reshetilov A. N. Physiological and biochemical features of Gluconobacter oxydans and prospects of their use in biotechnology and biosensor systems (review). Applied Biochemistry and Microbiology 1998; 34: 307–320
  • Macauley S., McNeil B., Harvey L. M. The genus Gluconobacter and its applications in biotechnology. Crit. Rev. Biotechnol. 2001; 21: 1–25
  • MacCormick C. A., Harris J. E., Jay A. J., Ridout M. J., Colquhoun I. J., Morris V. J. Isolation and characterization of a new extracellular polysaccharide from an Acetobacter species. J. Appl. Bacteriol. 1996; 81: 419–424
  • Manzoni M., Rollini M., Bergomi S. Biotransformation of D-galactitol to tagatose by acetic acid bacteria. Process Biochem. 2001; 36: 971–977
  • Masaoka S., Ohe T., Sakota N. Production of cellulose from glucose by Acetobacter xylinum. J. Ferm. Bioeng. 1993; 75: 18–22
  • Matsushita K., Fujii Y., Ano Y., Toyama H., Shinjoh M., Tomiyama N., Miyazaki T., Sugisawa T., Hoshino T., Adachi O. 5-Keto-D-gluconate production is catalyzed by a quinoprotein glycerol dehydrogenase, major polyol dehydrogenase, in Gluconobacter species. Applied and Environmental Microbiology 2003; 69: 1959–1966
  • Matsushita K., Nagatani Y., Shinagawa E., Adachi O., Ameyama M. Effect of extracellular pH on the respiratory-chain and energetics of Gluconobacter suboxydans. Agr. Biol. Chem. 1989; 53: 2895–2902
  • Matsushita K., Shinagawa E., Adachi O., Ameyama M. Purification, characterization and reconstitution of cytochrome O-type oxidase from Gluconobacter suboxydans. Biochim. Biophys. Acta 1987; 894: 304–312
  • Matsushita K., Toyama H., Adachi O. Respiratory chains and bioenergetics of acetic acid bacteria. Advances in Microbial Physiology. 1994; Vol 36: 247–301
  • McNeil B., Harvey L. Energy well spent on a prokaryotic genome. Nat. Biotechnol. 2005; 23: 186–187
  • Merfort M., Herrmann U., Bringer-Meyer S., Sahm H. High-yield 5-keto-D-gluconic acid formation is mediated by soluble and membrane-bound gluconate-5-dehydrogenases of Gluconobacter oxydans. Appl. Microbiol. Biotechnol. 2006; 73: 443–451
  • Minakami H., Entani E., Tayama K., Fujiyama S., Masai H. Extracellular polysaccharides produced by acetic acid bacteria. 1. Isolation and characterization of a new polysaccharide producing Acetobacter sp. Agr. Biol. Chem. 1984; 48: 2405–2414
  • Monsan P., Bozonnet S., Albenne C., Joucla G., Willemot R. M., Remaud-Simeon M. Homopolysaccharides from lactic acid bacteria. International Dairy Journal 2001; 11: 675–685
  • Mountzouris K. C., Gilmour S. G., Jay A. J., Rastall R. A. A study of dextran production from maltodextrin by cell suspensions of Gluconobacter oxydans NCIB 4943. J. Appl. Microbiol. 1999; 87: 546–556
  • Muniruzzaman S., Tokunaga H., Izumori K. Isolation of Enterobacter agglomerans strain 221e from soil, a potent D-tagatose producer from galactitol. J. Ferm. Bioeng. 1994; 78: 145–148
  • Naessens A., Vercauteren R., Vandamme E. J. Three-factor response surface optimization of the production of intracellular dextran dextrinase by Gluconobacter oxydans. Process Biochem. 2004; 39: 1299–1304
  • Naessens M., Cerdobbel A., Soetaert W., Vandamme E. Dextran dextrinase and dextran of Gluconobacter oxydans. J. Ind. Microbiol. Biotechnol. 2005; 32: 323–334
  • Naessens M., Vandamme E. Transglucosylation and hydrolysis activity of Gluconobacter oxydans dextran dextrinase with several donor and acceptor substrates. Biorelated Polymers: Sustainable Polymer Science and Technology, E. Chiellini, H. Gil, G. Braunegg, J. Buchert, P. Gatenholm, M. van der Zee. Kluwer/Plenum, London 2001; 195–203
  • Oh H. J., Kim H. J., Oh D. K. Increase in D-tagatose production rate by site-directed mutagenesis of L-arabinose isomerase from Geobacillus thermodenitrificans. Biotechnol. Lett. 2006; 28: 145–149
  • Ohrem H. L., Merck E. Inhibitory effects of glycerol on Gluconobacter oxydans. Biotechnol. Lett. 1996; 18: 245–250
  • Ohrem H. L., Voss H. Process model of the oxidation of glycerol with Gluconobacter oxydans. Process Biochem. 1996; 31: 295–301
  • Oikawa T., Morino T., Ameyama M. Production of cellulose from D-arabitol by Acetobacter xylinum Ku-1. Biosci. Biotechnol. Biochem. 1995; 59: 1564–1565
  • Oikawa T., Nakai J., Tsukagawa Y., Soda K. A novel type of D-mannitol dehydrogenase from Acetobacter xylinum: occurrence, purification and basic properties. Biosci. Biotechnol. Biochem. 1997; 61: 1778–1782
  • Okazaki H., Kanzaki T., Sasayama K., Taketa Y. Evaluation of the pathway of sorbitol metabolism in Gluconobacter melanogenus. Agr. Biol. Chem. 1969; 33: 207–211
  • Olijve W., Kok J. J. Analysis of growth of Gluconobacter oxydans in glucose containing media. Arch. Microbiol. 1979; 121: 283–290
  • Park Y. M., Choi E. S., Rhee S. K. Effect of toluene-permeabilization on oxidation of D-sorbitol to L-sorbose by Gluconobacter suboxydans cells immobilized in calcium alginate. Biotechnol. Lett. 1994; 16: 345–348
  • Parmentier S. Enzymatic Regeneration of Coenzymes in Dough Systems. PhD Thesis, Ghent University, Ghent 2005
  • Parmentier S., Beauprez J., Arnaut F., Soetaert W., Vandamme E. Gluconobacter oxydans NAD-dependent, D-fructose reducing, polyol dehydrogenases activity: screening, medium optimisation and application for enzymatic polyol production. Biotechnol. Lett. 2005; 27: 305–311
  • Pronk J. T., Levering P. R., Olijve W., Vandijken J. P. Role of NADP-dependent and quinoprotein glucose dehydrogenases in gluconic acid production by Gluconobacter oxydans. Enzyme Microb. Technol. 1989; 11: 160–164
  • Prust C., Hoffmeister M., Liesegang H., Wiezer A., Fricke W. F., Ehrenreich A., Gottschalk G., Deppenmeier U. Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nat. Biotechnol. 2005; 23: 195–200
  • Reichstein T. L-Adonose (l-Erythro-2-keto-pentose). Helv. Chim. Acta 1934; 17: 996–1002
  • Reshetilov A. N. Models of biosensors based on principles of potentiometric and amperometric transducers: Use in medicine, biotechnology, and environmental monitoring (Review). Applied Biochemistry And Microbiology 1996; 32: 72–85
  • Reshetilov A. N., Donova M. V., Dovbnya D. V., Il'yasov P. V., Boronin A. M., Leasers T., Green R. Membrane-bound dehydrogenases of Gluconobacter oxydans: sensors for measuring sugars, alcohols, and polyoles. Bull. Exp. Biol. Med. 1998; 126: 702–704
  • Reshetilov A. N., Iliasov P. V., Donova M. V., Dovbnya D. V., Boronin A. M., Leathers T. D., Greene R. V. Evaluation of a Gluconobacter oxydans whole cell biosensor for amperometric detection of xylose. Biosens. Bioelectron. 1997; 12: 241–247
  • Reshetilov A. N., Lobanov A. V., Morozova N. O., Gordon S. H., Greene R. V., Leathers T. D. Detection of ethanol in a two-component glucose/ethanol mixture using a nonselective microbial sensor and a glucose enzyme electrode. Biosens. Bioelectron. 1998; 13: 787–793
  • Rhee S. K., Song K. B., Kim C. H., Park B. S., Yang E. K., Yang K. H. Levan. Polysaccharides from Prokaryotes, E. Vandamme, S. De Baets, A. Steinbüchel. Wiley-VHC, Weinheim 2002; 37–90
  • Ricelli A., Baruzzi F., Solfrizzo M., Morea M., Fanizzi F. P. Biotransformation of patulin by Gluconobacter oxydans. Appl. Environ. Microbiol. 2007; 73: 785–792
  • Robyt J. F. Structure, biosynthesis and uses of non-starch polysaccharides: dextran, alternan, pullulan and algin. Developments in Carbohydrate Chemistry, R. J. Alexander, H. F. Zobel. American Association of Cereal Chemists, St. Paul, Minnesota 1992; 262–292
  • Roh H.-J., Yoon S.-H., Kim P. Preparation of L-arabinose isomerase originated from Escherichia coli as a biocatalyst for D-tagatose production. Biotechnol. Lett. 2000; 22: 197–199
  • Rollini M., Manzoni M. Bioconversion of D-galactitol to tagatose and dehydrogenase activity induction in Gluconobacter oxydans. Process Biochem. 2005; 40: 437–444
  • Romano A., Gandolfi R., Nitti P., Rollini M., Molinari F. Acetic acid bacteria as enantioselective biocatalysts. J. Mol. Catal. B-Enzym. 2002; 17: 235–240
  • Sauer M., Branduardi P., Valli M., Porro D. Production of L-ascorbic acid by metabolically engineered Saccharomyces cerevisiae Zygosaccharomyces bailii. Applied and Environmental Microbiology 2004; 70: 6068–6091
  • Schedel M. Regioselective oxidation of aminosorbitol with Gluconobacter oxydans, a key reaction in the industrial synthesis of 1-deoxynojirimycin. Biotransformations, D. R. Kelly. Wiley-VCH, Weinheim 2000; 296–311
  • Seto A., Kojima Y., Tonouchi N., Tsuchida T., Yoshinaga F. Screening of bacterial cellulose-producing Acetobacter strains suitable for sucrose as a carbon source. Biosci. Biotechnol. Biochem. 1997; 61: 735–736
  • Shaw D. R. D., Bygrave F. L. NAD+-linked D-mannitol dehydrogenase in Acetobacter suboxydans. Biochim. Biophys. Acta 1966; 113: 608–610
  • Shigematsu T., Takamine K., Kitazato M., Morita T., Naritomi T., Morimura S., Kida K. Cellulose production from glucose using a glucose dehydrogenase gene (gdh)-deficient mutant of Gluconacetobacter xylinus and its use for bioconversion of sweet potato pulp. J. Biosci. Bioeng. 2005; 99: 415–422
  • Shinagawa E., Matsushita K., Adachi O., Ameyama M. D-gluconate dehydrogenase, 2-keto-D-gluconate yielding, from gluconobacter-dioxyacetonicus—purification and characterization. Agricultural and Biological Chemistry 1984; 48: 1517–1522
  • Shinagawa E., Matsushita K., Adachi O., Ameyama M. Purification and characterization of 2-keto-d-gluconate dehydrogenase from Gluconobacter melanogenus. Agricultural and Biological Chemistry 1981; 45: 1079–1085
  • Shinagawa E., Matsushita K., Adachi O., Ameyama M. Purification and characterization of D-sorbitol dehydrogenase from membrane of Gluconobacter suboxydans var α. Agricultural and Biological Chemistry 1982; 46: 135–141
  • Shinagawa E., Matsushita K., Adachi O., Ameyama M. Selective production of 5-keto-D-gluconate by Gluconobacter strains. J. Ferm. Technol. 1983; 61: 359–363
  • Shinagawa E., Matsushita K., Toyama H., Adachi O. Production of 5-keto-D-gluconate by acetic acid bacteria is catalyzed by pyrroloquinoline quinone (PQQ)-dependent membrane-bound D-gluconate dehydrogenase. J. Mol. Catal. B-Enzym. 1999; 6: 341–350
  • Shinjoh M., Tazoe M., Hoshino T. NADPH-dependent L-sorbose reductase is responsible for L-sorbose assimilation in Gluconobacter suboxydans IFO 3291. J. Bacteriol. 2002; 184: 861–863
  • Sievers M., Swings J. The family Acetobacteraceae. Bergey's Manual of Systematic Bacteriology, 2nd Edition, G. M. Garrity, D. J. Brenner, N. R. Krieg, J. T. Staley. Springer, New York 2005; 41–95
  • Sievers M., Swings J. The genus Gluconobacter. Bergey's Manual of Systematic Bacteriology, 2nd Edition, G. M. Garrity, D. J. Brenner, N. R. Krieg, J. T. Staley. Springer, New York 2005; 77–81
  • Silberbach M., Maier B., Zimmermann M., Buchs J. Glucose oxidation by Gluconobacter oxydans: characterization in shaking-flasks, scale-up and optimization of the pH profile. Appl. Microbiol. Biotechnol. 2003; 62: 92–98
  • Sonoyama T., Tani H., Matsuda K., Kageyama B., Tanimoto M., Kobayashi K., Yagi S., Kyotani H., Mitsushima K. Production of 2-keto-L-gulonic acid from D-glucose by 2-stage fermentation. Appl. Environ. Microbiol. 1982; 43: 1064–1069
  • Srivastava A. K., Giridhar R. Representation of culture transition states in A-suboxydans. J. Chem. Technol. Biotechnol. 1998; 73: 23–30
  • Srivastava A. K., Lasrado P. R. Fed-batch sorbitol to sorbose fermentation by A-suboxydans. Bioprocess Eng. 1998; 18: 457–461
  • Sugisawa T., Hoshino T. Purification and properties of membrane-bound D-sorbitol dehydrogenase fromGluconobacter suboxydans IFO 3255. Bioscience Biotechnology and Biochemistry 2002; 66: 57–64
  • Sugisawa T., Hoshino T., Fujiwara A. Purification and properties of NADPH-linked L-sorbose reductase from Gluconobacter melanogenus N44-1. Agr. Biol. Chem. 1991; 55: 2043–2049
  • Sugisawa T., Hoshino T., Nomura S., Fujiwara A. Isolation and characterization of membrane-bound L-sorbose dehydrogenase from Gluconobacter melanogenus UV10. Agricultural and Biological Chemistry 1991; 55: 363–370
  • Suzuki Y., Suzuki Y., Nagamine K., Endo K. Thiamine Saccharide Derivative and its Production. JP Patent N°92–0474165, 1994
  • Svitel J., Curilla O., Tkac J. Microbial cell-based biosensor for sensing glucose, sucrose or lactose. Biotechnology and Applied Biochemistry 1998; 27: 153–158
  • Svitel J., Tkac J., Vostiar I., Navratil M., Stefuca V., Bucko M., Gemeiner P. Gluconobacter in biosensors: applications of whole cells and enzymes isolated from Gluconobacter Acetobacter to biosensor construction. Biotechnol. Lett. 2006; 28: 2003–2010
  • Swings J. The genera Acetobacter Gluconobacter. The Prokaryotes, A. Balows, H. Trupper, M. Dworkin, W. Harder, K. Schleifer. Springer, New York 1992; 2268–2286
  • Tajima K., Uenishi N., Fujiwara M., Erata T., Munekata M., Takai M. The production of a new water-soluble polysaccharide by Acetobacter xylinum NCI 1005 and its structural analysis by NMR spectroscopy. Carbohydr. Res. 1997; 305: 117–122
  • Takahashi M., Yukphan P., Yamada Y., Suzuki K. I., Sakane T., Nakagawa Y. Intrageneric structure of the genus Gluconobacter analyzed by the 16S rRNA gene and 16S–23S rRNA gene internal transcribed spacer sequences. Journal of General and Applied Microbiology 2006; 52: 187–193
  • Takeda Y., Shimizu T. Cloning and sequencing of the gene encoding cytochrome-C-553 (Co) from Gluconobacter suboxydans. J. Ferm. Bioeng. 1991; 72: 1–6
  • Tkac J., Gemeiner P., Svitel J., Benikovsky T., Sturdik E., Vala V., Petrus L., Hrabarova E. Determination of total sugars in lignocellulose hydrolysate by a mediated Gluconobacter oxydans biosensor. Anal. Chim. Acta 2000; 420: 1–7
  • Tkac J., Svitel J., Novak R., Sturdik E. Triglyceride assay by amperometric microbial biosensor: Sample hydrolysis and kinetic approach. Anal. Lett. 2000; 33: 2441–2452
  • Tkac J., Vostiar I., Gemeiner P., Sturdik E. Monitoring of ethanol during fermentation using a microbial biosensor with enhanced selectivity. Bioelectrochemistry 2002; 56: 127–129
  • Tkac J., Vostiar I., Gorton L., Gemeiner P., Sturdik E. Improved selectivity of microbial biosensor using membrane coating. Application to the analysis of ethanol during fermentation. Biosens. Bioelectron. 2003; 18: 1125–1134
  • Tkac J., Vostiar I., Sturdik E., Gemeiner P., Mastihuba V., Annus J. Fructose biosensor based on D-fructose dehydrogenase immobilised on a ferrocene-embedded cellulose acetate membrane. Anal. Chim. Acta 2001; 439: 39–46
  • Tkachenko A. A., Loitsyanskaya M. S. Effect of glucose on levan sucrase synthesis by Gluconobacter oxydans. Microbiology 1976; 45: 387–391
  • Tonouchi N., Sugiyama M., Yokozeki K. Construction of a vector plasmid for use in Gluconobacter oxydans. Biosci. Biotechnol. Biochem. 2003; 67: 211–213
  • Tonouchi N., Yanase H., Kojima Y., Tsuchida T., Yoshinaga F., Horinouchi S. Increased cellulose production from sucrose with reduced levan accumulation by an Acetobacter strain harboring a recombinant plasmid. Biosci. Biotechnol. Biochem. 1998; 62: 833–836
  • Tsukada Y., Perlman D. Fermentation of L-sorbose by Gluconobacter melanogenus.1. General characteristics of fermentation. Biotechnology and Bioengineering 1972; 14: 799–810
  • Uchiyama T. Metabolism in microorganisms. Part II. Biosynthesis and degradation of fructans by microbial enzymes other than levansucrase. Science and Technology of Fructans, M. Suzuki, N. J. Chatterton. CRC Press, Boca Raton, FL 1993; 169–190
  • Vandamme E. J., De Baets S., Vanbaelen A., Joris K., De Wulf P. Improved production of bacterial cellulose and its application potential. Polym. Degrad. Stabil. 1998; 59: 93–99
  • Velizarov S., Beschkov V. Biotransformation of glucose to free gluconic acid by Gluconobacter oxydans: substrate and product inhibition situations. Process Biochem. 1998; 33: 527–534
  • Velizarov S., Beschkov V., Georgieva T. Inhibitory effects of gluconic acid on glucose oxidation by Gluconobacter. Comptes Rendus de l'Academie Bulgare des Sciences 1997; 50: 63–66
  • Verma V., Qazi P., Cullum J., Qazi G. N. Genetic heterogeneity among keto-acid-producing strains of Gluconobacter oxydans. World J. Microbiol. Biotechnol. 1997; 13: 289–294
  • White S. A., Claus G. W. Effect of intra-cytoplasmic membrane-development on oxidation of sorbitol and other polyols by Gluconobacter oxydans. J. Bacteriol. 1982; 150: 934–943
  • Williams W. S., Cannon R. E. Alternative environmental roles for cellulose produced by Acetobacter xylinum. Appl. Environ. Microbiol. 1989; 55: 2448–2452
  • Yamamoto K., Yoshikawa K., Kitahata S., Okada S. Purification and some properties of dextrin dextranase from Acetobacter capsulatus ATCC 11894. Biosci. Biotechnol. Biochem. 1992; 56: 169–173
  • Yamamoto K., Yoshikawa K., Okada S. Detailed action mechanism of dextrin dextranase from Acetobacter capsulatus ATCC 11894. Biosci. Biotechnol. Biochem. 1993; 57: 47–50
  • Yamamoto K., Yoshikawa K., Okada S. Dextran synthesis from reduced maltooligosaccharides by dextrin dextranase from Acetobacter capsulatus ATCC 11894. Biosci. Biotechnol. Biochem. 1993; 57: 136–137
  • Yamamoto K., Yoshikawa K., Okada S. Effective production of glycosyl steviosides by alpha-1,6 transglucosylation of dextrin dextranase. Biosci. Biotechnol. Biochem. 1994; 58: 1657–1661
  • Yamamoto K., Yoshikawa K., Okada S. Palatinose Sugar Adduct and its Production. JP Patent N°92–1239459, 1992
  • Zigova J., Svitel J., Sturdik E. Possibilities of butyric acid production by butanol oxidation with Gluconobacter oxydans coupled with extraction. Chem. Biochem. Eng. Q. 2000; 14: 95–100

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.