782
Views
50
CrossRef citations to date
0
Altmetric
Review Article

Oxidative stress in industrial fungi

, &
Pages 199-213 | Accepted 29 Apr 2009, Published online: 09 Jun 2009

References

  • Abrashev R, Dolashka P, Christova R, Stefanova L, Angelova M. 2005. Role of antioxidant enzymes in survival of conidiospores of Aspergillus niger 26 under conditions of temperature stress. J Appl Microbiol 99(4): 902–909.
  • Abrashev RI, Pashova SB, Stefanova LN, Vassilev SV, Dolashka-Angelova PA, Angelova MB. 2008. Heat-shock-induced oxidative stress and antioxidant response in Aspergillus niger 26. Can J Microbiol 54(12): 977–983.
  • Alvarez-Peral FJ, Zaragoza O, Pedreno Y, Arguelles JC. 2002. Protective role of trehalose during severe oxidative stress caused by hydrogen peroxide and the adaptive oxidative stress response in Candida albicans. Microbiology 148(8): 2599–2606.
  • Ames BN, Shigenaga MK, Hagen TM. 1995. Mitochondrial decay in aging. Biochim Biophys Acta 1271(1): 165–170.
  • Angelova MB, Pashova SB, Spasova BK, Vassilev SV, Slokoska LS. 2005. Oxidative stress response of filamentous fungi induced by hydrogen peroxide and paraquat. Mycol Res 109(2): 150–158.
  • Arguelles JC. 2000. Physiological roles of trehalose in bacteria and yeasts: a comparative analysis. Arch Microbiol 174(4): 217–224.
  • Bai Z, Harvey LM, McNeil B. 2001. Use of the chemiluminescent probe lucigenin to monitor the production of the superoxide anion radical in a recombinant Aspergillus niger B1-D. Biotechnol Bioeng 75(2): 204–211.
  • Bai Z, Harvey LM, McNeil B. 2003a. Elevated temperature effects on the oxidant/antioxidant balance in submerged batch cultures of the filamentous fungus Aspergillus niger B1-D. Biotechnol Bioeng 83(7): 772–779.
  • Bai Z, Harvey LM, McNeil B. 2003b. Oxidative stress in submerged cultures of fungi. Crit Rev Biotechnol 23(4): 267–302.
  • Bai Z, Harvey LM, McNeil B. 2003c. Physiological responses of chemostat cultures of Aspergillus niger B1-D to simulated and actual oxidative stress. Biotechnol Bioeng 82(6): 691–701.
  • Bai Z, Harvey LM, White S, McNeil B. 2004. Effects of oxidative stress on production of heterologous and native protein, and culture morphology in batch and chemostat cultures of Aspergillus niger B1-D. Enzyme Microb Technol 34(1): 10–21.
  • Beckman JS, Koppenol WH. 1996. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 271: C1424–1437.
  • Beinert H, Holm RH, Munck E. 1997. Iron-sulfur clusters: nature’s modular, multipurpose structures. Science 277(5326): 653–659.
  • Benaroudj N, Lee DH, Goldberg AL. 2001. Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. J Biol Chem 276(26): 24261–24267.
  • Benov L, Fridovich I. 1995. Superoxide dismutase protects against aerobic heat shock in Escherichia coli. J Bacteriol 177(11): 3344–3346.
  • Bilinski T, Krawiec Z, Liczmanski A, Litwinska J. 1985. Is hydroxyl radical generated by the Fenton reaction in vivo? Biochem Biophys Res Commun 130(2): 533–539.
  • Bussink HJ, Oliver R. 2001. Identification of two highly divergent catalase genes in the fungal tomato pathogen, Cladosporium fulvum. Eur J Biochem 268(1): 15–24.
  • Cabiscol E, Piulats E, Echave P, Herrero E, Ros J. 2000. Oxidative stress promotes specific protein damage in Saccharomyces cerevisiae. J Biol Chem 275(35): 27393–27398.
  • Cadenas E, Davies KJ. 2000. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med 29(3-4): 222–230.
  • Carneiro P, Duarte M, Videira A. 2004. The main external alternative NAD(P)H dehydrogenase of Neurospora crassa mitochondria. Biochim Biophys Acta 1608(1): 45–52.
  • Chance B, Sies H, Boveris A. 1979. Hydroperoxide metabolism in mammalian organs. Physiol Rev 59(3): 527–605.
  • Chen Q, Thorpe J, Dohmen JR, Li F, Keller JN. 2006. Ump1 extends yeast lifespan and enhances viability during oxidative stress: central role for the proteasome? Free Radic Biol Med 40(1): 120–126.
  • Colussi C, Albertini MC, Coppola S, Rovidati S, Galli F, Ghibelli L. 2000. H2O2-induced block of glycolysis as an active ADP-ribosylation reaction protecting cells from apoptosis. FASEB J 14(14): 2266–2276.
  • Costa VM, Amorim MA, Quintanilha A, Moradas-Ferreira P. 2002. Hydrogen peroxide-induced carbonylation of key metabolic enzymes in Saccharomyces cerevisiae: the involvement of the oxidative stress response regulators Yap1 and Skn7. Free Radic Biol Med 33(11): 1507–1515.
  • Culotta VC, Yang M, O’Halloran TV 2006. Activation of superoxide dismutases: putting the metal to the pedal. Biochim Biophys Acta 1763(7): 747–758.
  • Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R. 2003. Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta 329(1-2): 23–38.
  • Dalton TP, Shertzer HG, Puga A. 1999. Regulation of gene expression by reactive oxygen. Annu Rev Pharmacol Toxicol 39: 67–101.
  • Davidson JF, Schiestl RH. 2001a. Cytotoxic and genotoxic consequences of heat stress are dependent on the presence of oxygen in Saccharomyces cerevisiae. J Bacteriol 183(15): 4580–4587.
  • Davidson JF, Schiestl RH. 2001b. Mitochondrial respiratory electron carriers are involved in oxidative stress during heat stress in Saccharomyces cerevisiae. Mol Cell Biol 21(24): 8483–8489.
  • Davidson JF, Whyte B, Bissinger PH, Schiestl RH. 1996. Oxidative stress is involved in heat-induced cell death in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 93(10): 5116–5121.
  • Davies KJ. 2001. Degradation of oxidized proteins by the 20S proteasome. Biochimie 83(3-4): 301–310.
  • Davies KJ, Lin SW. 1988a. Degradation of oxidatively denatured proteins in Escherichia coli. Free Radic Biol Med 5(4): 215–223.
  • Davies KJ, Lin SW. 1988b. Oxidatively denatured proteins are degraded by an ATP-independent proteolytic pathway in Escherichia coli. Free Radic Biol Med 5(4): 225–236.
  • Denicola A, Batthyany C, Lissi E, Freeman BA, Rubbo H, Radi R. 2002. Diffusion of nitric oxide into low density lipoprotein. J Biol Chem 277(2): 932–936.
  • Dikalov S, Jiang J, Mason RP. 2005. Characterization of the high-resolution ESR spectra of superoxide radical adducts of 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline N-oxide (DEPMPO) and 5,5-dimethyl-1-pyrroline N-oxide (DMPO). Analysis of conformational exchange. Free Radic Res 39(8): 825–836.
  • Emri T, Pocsi I, Szentirmai A. 1997. Glutathione metabolism and protection against oxidative stress caused by peroxides in Penicillium chrysogenum. Free Radic Biol Med 23(5): 809–814.
  • Emri T, Pocsi I, Szentirmai A. 1999. Analysis of the oxidative stress response of Penicillium chrysogenum to menadione. Free Radic Res 30(2): 125–132.
  • Fernandes DC, Wosniak J Jr, Pescatore LA, Bertoline MA, Liberman M, Laurindo FR, Santos CX. 2007. Analysis of DHE-derived oxidation products by HPLC in the assessment of superoxide production and NADPH oxidase activity in vascular systems. Am J Physiol Cell Physiol 292(1): C413–422.
  • Fillinger S, Chaveroche MK, van Dijck P, de Vries R, Ruijter G, Thevelein J, d’Enfert C. 2001. Trehalose is required for the acquisition of tolerance to a variety of stresses in the filamentous fungus Aspergillus nidulans. Microbiology 147(7): 1851–1862.
  • Flint DH, Tuminello JF, Emptage MH. 1993. The inactivation of Fe-S cluster containing hydro-lyases by superoxide. J Biol Chem 268(30): 22369–22376.
  • Fridovich I. 1995. Superoxide radical and superoxide dismutases. Annu Rev Biochem 64: 97–112.
  • Gardner PR, Fridovich I. 1991. Superoxide sensitivity of the Escherichia coli aconitase. J Biol Chem 266(29): 19328–19333.
  • Gibbs PA, Seviour RJ, Schmid F. 2000. Growth of filamentous fungi in submerged culture: problems and possible solutions. Crit Rev Biotechnol 20(1): 17–48.
  • Giulivi C, Boveris A, Cadenas E. 1995. Hydroxyl radical generation during mitochondrial electron transfer and the formation of 8-hydroxydeoxyguanosine in mitochondrial DNA. Arch Biochem Biophys 316(2): 909–916.
  • Godon C, Lagniel G, Lee J, Buhler JM, Kieffer S, Perrot M, Boucherie H, Toledano MB, Labarre J. 1998. The H2O2 stimulon in Saccharomyces cerevisiae. J Biol Chem 273(35): 22480–22489.
  • Gonzalez-Parraga P, Hernandez JA, Arguelles JC. 2003. Role of antioxidant enzymatic defences against oxidative stress H2O2 and the acquisition of oxidative tolerance in Candida albicans. Yeast 20(14): 1161–1169.
  • Gralla EB, Kosman DJ. 1992. Molecular genetics of superoxide dismutases in yeasts and related fungi. Adv Genet 30: 251–319.
  • Grant CM, Collinson LP, Roe JH, Dawes IW. 1996. Yeast glutathione reductase is required for protection against oxidative stress and is a target gene for yAP-1 transcriptional regulation. Mol Microbiol 21(1): 171–179.
  • Grant CM, Quinn KA, Dawes IW. 1999. Differential protein S-thiolation of glyceraldehyde-3-phosphate dehydrogenase isoenzymes influences sensitivity to oxidative stress. Mol Cell Biol 19(4): 2650–2656.
  • Greenacre SA, Ischiropoulos H. 2001. Tyrosine nitration: localisation, quantification, consequences for protein function and signal transduction. Free Radic Res 34(6): 541–581.
  • Grune T, Merker K, Sandig G, Davies KJ. 2003. Selective degradation of oxidatively modified protein substrates by the proteasome. Biochem Biophys Res Commun 305(3): 709–718.
  • Halliwell B, Gutteridge JMC. 2007. Free Radicals in Biology and Medicine. Oxford, UK: Oxford University Press.
  • Halliwell B, Whiteman M. 2004. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 142(2): 231–255.
  • Hauptmann N, Grimsby J, Shih JC, Cadenas E. 1996. The metabolism of tyramine by monoamine oxidase A/B causes oxidative damage to mitochondrial DNA. Arch Biochem Biophys 335(2): 295–304.
  • Hisada H, Hata Y, Kawato A, Abe Y, Akita O. 2005. Cloning and expression analysis of two catalase genes from Aspergillus oryzae. J Biosci Bioeng 99(6): 562–568.
  • Imlay JA. 1995. A metabolic enzyme that rapidly produces superoxide, fumarate reductase of Escherichia coli. J Biol Chem 270(34): 19767–19777.
  • Imlay JA, Fridovich I. 1991. Assay of metabolic superoxide production in Escherichia coli. J Biol Chem 266(11): 6957–6965.
  • Inai Y, Nishikimi M. 2002. Increased degradation of oxidized proteins in yeast defective in 26S proteasome assembly. Arch Biochem Biophys 404(2): 279–284.
  • Ingledew WM. 1999. Alcohol production by Saccharomyces cerevisiae. In: Jacques K, Lyons TP, Kelsall DR, eds. The Alcohol Textbook (pp. 71–72 ). 3rd ed. Nottingham, UK: Nottingham University Press.
  • Inoue Y, Matsuda T, Sugiyama K, Izawa S, Kimura A. 1999. Genetic analysis of glutathione peroxidase in oxidative stress response of Saccharomyces cerevisiae. J Biol Chem 274(38): 27002–27009.
  • Izawa S, Inoue Y, Kimura A. 1995. Oxidative stress response in yeast: effect of glutathione on adaptation to hydrogen peroxide stress in Saccharomyces cerevisiae. FEBS Lett 368(1): 73–76.
  • Izawa S, Maeda K, Miki T, Mano J, Inoue Y, Kimura A. 1998. Importance of glucose-6-phosphate dehydrogenase in the adaptive response to hydrogen peroxide in Saccharomyces cerevisiae. Biochem J 330(2): 811–817.
  • Jackson SK, Liu KJ, Liu M, Timmins GS. 2002. Detection and removal of contaminating hydroxylamines from the spin trap DEPMPO, and re-evaluation of its use to indicate nitrone radical cation formation and S(N)1 reactions. Free Radic Biol Med 32(3): 228–232.
  • James WO, Elliot DC. 1995. Cyanide-resistant mitochondria from the spadix of an Arum. Nature (175): 89.
  • Jamieson DJ. 1992. Saccharomyces cerevisiae has distinct adaptive responses to both hydrogen peroxide and menadione. J Bacteriol 174(20): 6678–6681.
  • Jamieson DJ, Rivers SL, Stephen DW. 1994. Analysis of Saccharomyces cerevisiae proteins induced by peroxide and superoxide stress. Microbiology 140(12): 3277–3283.
  • Jamieson DJ, Stephen DW, Terriere EC. 1996. Analysis of the adaptive oxidative stress response of Candida albicans. FEMS Microbiol Lett 138(1): 83–88.
  • Joseph-Horne T, Hollomon DW, Wood PM. 2000. Fungal respiration: a fusion of standard and alternative components. Biochim Biophys Acta 1504: 179–195.
  • Juhnke H, Krems B, Kotter P, Entian KD. 1996. Mutants that show increased sensitivity to hydrogen peroxide reveal an important role for the pentose phosphate pathway in protection of yeast against oxidative stress. Mol Gen Genet 252(4): 456–464.
  • Karaffa L, Vaczy K, Sandor E, Biro S, Szentirmai A, Pocsi I. 2001. Cyanide-resistant alternative respiration is strictly correlated to intracellular peroxide levels in Acremonium chrysogenum. Free Radic Res 34(4): 405–416.
  • Kawasaki L, Aguirre J. 2001. Multiple catalase genes are differentially regulated in Aspergillus nidulans. J Bacteriol 183(4): 1434–1440.
  • Kawasaki L, Wysong D, Diamond R, Aguirre J. 1997. Two divergent catalase genes are differentially regulated during Aspergillus nidulans development and oxidative stress. J Bacteriol 179(10): 3284–3292.
  • Kelsall KT, Lyons TP. (1999). Management of fermentations in the production of alcohol: moving towards 23% ethanol. In: Jacques K, Lyons TP, Kelsall DR, eds. The Alcohol Textbook (pp. 27–33 ). 3rd ed. Nottingham, UK: Nottingham University Press.
  • Kirimura K, Yoda M, Shimizu H, Sugano S, Mizuno M, Kino K, Usami S. 2000. Contribution of cyanide-insensitive respiratory pathway, catalyzed by the alternative oxidase, to citric acid production in Aspergillus niger. Biosci Biotechnol Biochem 64(10): 2034–2039.
  • Kreiner M, McNeil B, Harvey LM. 2000. “Oxidative stress” response in submerged cultures of a recombinant Aspergillus niger B1-D. Biotechnol Bioeng 70(6): 662–669.
  • Kreiner M, Harvey LM, McNeil B. 2002. Oxidative stress response of a recombinant Aspergillus niger to exogenous menadione and H2O2 addition. Enzyme Microb Technol 30(3): 346–353.
  • Kreiner M, Harvey LM, McNeil B. 2003. Morphological and enzymatic responses of a recombinant Aspergillus niger to oxidative stressors in chemostat cultures. J Biotechnol 100(3): 251–260.
  • Krumova E, Dolashki A, Pashova S, Dolashka-Angelova P, Stevanovic S, Hristova R, Stefanova L, Voelter W, Angelova M. 2008. Unusual location and characterization of Cu/Zn-containing superoxide dismutase from filamentous fungus Humicola lutea. Arch Microbiol 189(2): 121–130.
  • Lee J-S, Hah Y-C, Roe J-H. 1993. The induction of oxidative enzymes in Streptomyces coelicolor upon hydrogen peroxide treatment. J Gen Microbiol 139: 1013–1018.
  • Lee JC, Straffon MJ, Jang TY, Higgins VJ, Grant CM, Dawes IW. 2001. The essential and ancillary role of glutathione in Saccharomyces cerevisiae analysed using a grande gsh1 disruptant strain. FEMS Yeast Res 1(1): 57–65.
  • Li Q, Abrashev R, Harvey LM, McNeil B. 2008a. Oxidative stress-associated impairment of glucose and ammonia metabolism in the filamentous fungus, Aspergillus niger B1-D. Mycol Res 112(9): 1049–1055.
  • Li Q, Harvey LM, McNeil B. 2008b. The effects of elevated process temperature on the protein carbonyls in the filamentous fungus, Aspergillus niger B1-D. Proc Biochem 43(8): 877.
  • Li Q, Harvey LM, McNeil B. 2008c. Oxygen enrichment effects on protein oxidation, proteolytic activity and the energy status of submerged batch cultures of Aspergillus niger B1-D. Proc Biochem 43(3): 238.
  • Li Q, McNeil B, Harvey LM. 2008d. Adaptive response to oxidative stress in the filamentous fungus Aspergillus niger B1-D. Free Radic Biol Med 44(3): 394–402.
  • Liochev SI, Fridovich I. 1998. Lucigenin as mediator of superoxide production: revisited. Free Radic Biol Med 25(8): 926–928.
  • Longo VD, Liou LL, Valentine JS, Gralla EB. 1999. Mitochondrial superoxide decreases yeast survival in stationary phase. Arch Biochem Biophys 365(1): 131–142.
  • Luo Y, Li WM, Wang W. 2008. Trehalose: protector of antioxidant enzymes or reactive oxygen species scavenger under heat stress? Environ Exp Bot 63(1-3): 378–384.
  • Michan S, Lledias F, Baldwin JD, Natvig DO, Hansberg W. 2002. Regulation and oxidation of two large monofunctional catalases. Free Radic Biol Med 33(4): 521–532.
  • Minagawa N, Koga S, Nakano M, Sakajo S, Yoshimoto A. 1992. Possible involvement of superoxide anion in the induction of cyanide-resistant respiration in Hansenula anomala. FEBS Lett 302(3): 217–219.
  • Minard KI, McAlister-Henn L. 2001. Antioxidant function of cytosolic sources of NADPH in yeast. Free Radic Biol Med 31(6): 832–843.
  • Moore AL, Bonner WD Jr, Rich PR. 1978. The determination of the proton-motive force during cyanide-insensitive respiration in plant mitochondria. Arch Biochem Biophys 186: 298–306.
  • Naqui A, Chance B, Cadenas E. 1986. Reactive oxygen intermediates in biochemistry. Annu Rev Biochem 55: 137–166.
  • Navarro RE, Aguirre J. 1998. Posttranscriptional control mediates cell type-specific localization of catalase A during Aspergillus nidulans development. J Bacteriol 180(21): 5733–5738.
  • Navarro RE, Stringer MA, Hansberg W, Timberlake WE, Aguirre J. 1996. catA, a new Aspergillus nidulans gene encoding a developmentally regulated catalase. Curr Genet 29(4): 352–359.
  • Nedeva TS, Petrova VY, Zamfirova DR, Stephanova EV, Kujumdzieva AV. 2004. Cu/Zn superoxide dismutase in yeast mitochondria—a general phenomenon. FEMS Microbiol Lett 230(1): 19–25.
  • Nienow AW. 1990. Agitators for mycelial fermentations. Trends Biotechnol 8: 224–233.
  • Noventa-Jordao MA, Couto RM, Goldman MH, Aguirre J, Iyer S, Caplan A, Terenzi HF, Goldman GH. 1999. Catalase activity is necessary for heat-shock recovery in Aspergillus nidulans germlings. Microbiology 145(11): 3229–3234.
  • Nystrom T. 2005. Role of oxidative carbonylation in protein quality control and senescence. EMBO J 24(7): 1311–1317.
  • O’Brien KM, Dirmeier R, Engle M, Poyton RO. 2004. Mitochondrial protein oxidation in yeast mutants lacking manganese-(MnSOD) or copper- and zinc-containing superoxide dismutase (CuZnSOD): evidence that MnSOD and CuZnSOD have both unique and overlapping functions in protecting mitochondrial proteins from oxidative damage. J Biol Chem 279(50): 51817–51827.
  • O’Donnell A, Bai Y, Bai Z, McNeil B, Harvey LM. 2007. Introduction to bioreactors of shake-flask inocula leads to development of oxidative stress in Aspergillus niger. Biotechnol Lett 29(6): 895–900.
  • Pedreno Y, Gimeno-Alcaniz JV, Matallana E, Arguelles JC. 2002. Response to oxidative stress caused by H2O2 in Saccharomyces cerevisiae mutants deficient in trehalase genes. Arch Microbiol 177(6): 494–499.
  • Peraza L, Hansberg W. 2002. Neurospora crassa catalases, singlet oxygen and cell differentiation. Biol Chem 383(3-4): 569–575.
  • Privalle CT, Fridovich I. 1987. Induction of superoxide dismutase in Escherichia coli by heat shock. Proc Natl Acad Sci USA 84(9): 2723–2726.
  • Raitt DC, Johnson AL, Erkine AM, Makino K, Morgan B, Gross DS, Johnston LH. 2000. The Skn7 response regulator of Saccharomyces cerevisiae interacts with Hsf1 in vivo and is required for the induction of heat shock genes by oxidative stress. Mol Biol Cell 11(7): 2335–2347.
  • Reinheckel T, Sitte N, Ullrich O, Kuckelkorn U, Davies KJ, Grune T. 1998. Comparative resistance of the 20S and 26S proteasome to oxidative stress. Biochem J 335(3): 637–642.
  • Rich PR. 1978. Quinol oxidation in Arum maculatum mitochondria and its application to the assay, solubilisation and partial purification of the alternative oxidase. FEBS Lett 96: 252–256.
  • Richter C. 1987. Biophysical consequences of lipid peroxidation in membranes. Chem Phys Lipids 44(2-4): 175–189.
  • Schliebs W, Wurtz C, Kunau WH, Veenhuis M, Rottensteiner H. 2006. A eukaryote without catalase-containing microbodies: Neurospora crassa exhibits a unique cellular distribution of its four catalases. Eukaryot Cell 5(9): 1490–1502.
  • Shanmuganathan A, Avery SV, Willetts SA, Houghton JE. 2004. Copper-induced oxidative stress in Saccharomyces cerevisiae targets enzymes of the glycolytic pathway. FEBS Lett 556(1-3): 253–259.
  • Shenton D, Grant CM. 2003. Protein S-thiolation targets glycolysis and protein synthesis in response to oxidative stress in the yeast Saccharomyces cerevisiae. Biochem J 374(2): 513–519.
  • Siedow JN, Umbach AL. 1995. Plant mitochondrial electron transfer and molecular biology. Plant Cell 7: 821–831.
  • Sierra-Campos E, Valdez-Solana MA, Matuz-Mares D, Velazquez I, Pardo JP. 2009. Induction of morphological changes in Ustilago maydis cells by octyl gallate. Microbiology 155(2): 604–611.
  • Steels EL, Learmonth RP, Watson K. 1994. Stress tolerance and membrane lipid unsaturation in Saccharomyces cerevisiae grown aerobically or anaerobically. Microbiology 140 (3): 569–576.
  • Stephen DW, Jamieson DJ. 1996. Glutathione is an important antioxidant molecule in the yeast Saccharomyces cerevisiae. FEMS Microbiol Lett 141(2-3): 207–212.
  • Sturtz LA, Diekert K, Jensen LT, Lill R, Culotta VC. 2001. A fraction of yeast Cu,Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. A physiological role for SOD1 in guarding against mitochondrial oxidative damage. J Biol Chem 276(41): 38084–38089.
  • Takasuka T, Sayers NM, Anderson MJ, Benbow EW, Denning DW. 1999. Aspergillus fumigatus catalases: cloning of an Aspergillus nidulans catalase B homologue and evidence for at least three catalases. FEMS Immunol Med Microbiol 23(2): 125–133.
  • Tanaka T, Izawa S, Inoue Y. 2005. GPX2, encoding a phospholipid hydroperoxide glutathione peroxidase homologue, codes for an atypical 2-Cys peroxiredoxin in Saccharomyces cerevisiae. J Biol Chem 280(51): 42078–42087.
  • Thieringer R, Kunau WH. 1991. The beta-oxidation system in catalase-free microbodies of the filamentous fungus Neurospora crassa. Purification of a multifunctional protein possessing 2-enoyl-CoA hydratase, L-3-hydroxyacyl-CoA dehydrogenase, and 3-hydroxyacyl-CoA epimerase activities. J Biol Chem 266(20): 13110–13117.
  • Tian Y, Mao L, Okajima T, Ohsaka T. 2002. Superoxide dismutase-based third-generation biosensor for superoxide anion. Anal Chem 74(10): 2428–2434.
  • Turrens JF. 2003. Mitochondrial formation of reactive oxygen species. J Physiol 552(2): 335–344.
  • Valenciano S, Lucas JR, Pedregosa A, Monistrol IF, Laborda F. 1996. Induction of beta-oxidation enzymes and microbody proliferation in Aspergillus nidulans. Arch Microbiol 166(5): 336–341.
  • Veiga A, Arrabaca JD, Loureiro-Dias MC. 2003. Stress situations induce cyanide-resistant respiration in spoilage yeasts. J Appl Microbiol 95(2): 364–371.
  • Walker GM. 1998. Yeast Physiology and Biotechnology (pp. 20–21 ). Wiley, New Jersey, USA.
  • Wallace MA, Liou LL, Martins J, Clement MH, Bailey S, Longo VD, Valentine JS, Gralla EB. 2004. Superoxide inhibits 4Fe-4S cluster enzymes involved in amino acid biosynthesis. Cross-compartment protection by CuZn-superoxide dismutase. J Biol Chem 279(31): 32055–32062.
  • Wieser R, Adam G, Wagner A, Schuller C, Marchler G, Ruis H, Krawiec Z, Bilinski T. 1991. Heat shock factor-independent heat control of transcription of the CTT1 gene encoding the cytosolic catalase T of Saccharomyces cerevisiae. J Biol Chem 266(19): 12406–12411.
  • Wojtaszek P. 1997. Oxidative burst: an early plant response to pathogen infection. Biochem J 322 (3): 681–692.
  • Wong CM, Siu KL, Jin DY. 2004. Peroxiredoxin-null yeast cells are hypersensitive to oxidative stress and are genomically unstable. J Biol Chem 279(22): 23207–23213.
  • Wongwicharn A, McNeil B, Harvey LM. 1999. Effect of oxygen enrichment on morphology, growth, and heterologous protein production in chemostat cultures of Aspergillus niger B1-D. Biotechnol Bioeng 65(4): 416–424.
  • Yamada K, Nakagawa CW, Mutoh N. 1999. Schizosaccharomyces pombe homologue of glutathione peroxidase, which does not contain selenocysteine, is induced by several stresses and works as an antioxidant. Yeast 15(11): 1125–1132.
  • Yukioka H, Inagaki S, Tanaka R, Katoh K, Miki N, Mizutani A, Masuko M. 1998. Transcriptional activation of the alternative oxidase gene of the fungus Magnaporthe grisea by a respiratory-inhibiting fungicide and hydrogen peroxide. Biochim Biophys Acta 1442(2-3): 161–169.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.