2,188
Views
125
CrossRef citations to date
0
Altmetric
Review Article

Microbial glucoamylases: characteristics and applications

&
Pages 225-255 | Accepted 02 Jun 2009, Published online: 27 Aug 2009

References

  • Aalbaek T, Reeslev M, Jensen B, Eriksen SH. 2002. Acid protease and formation of multiple forms of glucoamylase in batch and continuous cultures of Aspergillus niger. Enzyme Microb Technol 30: 410–415.
  • Abdullah M, Fleming ID, Taylor PM, Whelan WJ. 1963. Substrate specificity of the amyloglucosidases of Aspergillus niger. Biochem J 89: 35–36.
  • Abe JI, Nagano H, Hizukuri S. 1985. Kinetic and structural properties of the three forms of glucoamylase of Rhizopus delemar. J Appl Biochem 7: 235–247.
  • Abe JI, Nakajiima K, Nagano H, Hizkuri S, Obata K. 1988. Properties of the raw starch digesting amylase of Aspergillus sp. K-27: a synergistic action of glucoamylase and α-amylase. Carbohydr Res 175: 85–92.
  • Adam AC, Latorre-Garcia L, Polaina J. 2004. Structural analysis of glucoamylase encoded by the STA1 gene of Saccharomyces cerevisiae (var. diastaticus). Yeast 21: 379–388.
  • Agaphonov MO, Romanova NV, Trushkina PM, Smirnov VN, Ter-Avanesyan MD. 2002. Aggregation and retention of human urokinase type plasminogen activator in the yeast endoplasmic reticulum. BMC Mol Biol 3: 15.
  • Alazard D, Baldenspeger JF. 1982. Amylolytic enzymes from Aspergillus hennebergi (A. niger Group): purification and characterization of amylases from solid and liquid cultures. Carbohydr Res 107: 231–241.
  • Aleshin AE, Golubev A, Firsov LM, Honzatko RB. 1992. Crystal structure of glucoamylase from Aspergillus awamori var. X100–2.2 å resolution. J Biol Chem 267: 19291–19298.
  • Aleshin AE, Hoffman C, Firsov LM, Honzatko RB. 1994. Crystal structure of glucoamylase from Aspergillus awamori var. X100-2.2 å resolution. J Mol Biol 238: 575–591.
  • Aleshin AE, Firsov LM, Honzatko RB. 1994. Refined structure for the complex of acarbose with glucoamylase from Aspergillus awamori var. X100-2.4 å resolution. J Biol Chem 269: 15631–15639.
  • Aleshin AE, Stoffer B, Firsov LM, Svensson B, Honzatko RB. 1996. Crystallographic complexes of glucoamylase with maltooligosaccharide analogs: relationship of stereochemical distortions at the nonreducing end to the catalytic mechanism. Biochemistry 35: 8319–8328.
  • Aleshin AE, Feng PH, Honzatko RB, Reilly PJ. 2003. Crystal structure and evolution of prokaryotic glucoamylase. J Mol Biol 327: 61–73.
  • Ali S, Hossain Z. 1991. Characteristics of glucoamylase from Aspergillus terreus. J Appl Bacteriol 71: 144–146.
  • Ali S, Malek S, Hossain Z. 1994. Purification and characterization of a thermostable glucoamylase from a myrothecium isolate. J Appl Bacteriol 76: 210–215.
  • Allen M, Coutinho PM, Ford C. 1998. Stabilization of Aspergillus awamori glucoamylase by proline substitution and combining stabilizing mutations. Protein Eng 11: 783–788.
  • Allison DS, Rey MW, Berka RM, Armstrong G, Dunncoleman NS. 1992. Transformation of the thermophilic fungus Humicola grisea var. thermoidea and overproduction of Humicola glucoamylase. Curr Genet 21: 225–229.
  • Alteriis E, Silvestro G, Poletto M, Romano V, Capitanio D, Compagno C, Parascandola P. 2004. Kluyveromyces lactis cells entrapped in Ca-alginate beads for the continuous production of a heterologous glucoamylase. J Biotechnol 109: 83–92.
  • Alteriis E, Silvestro G, Poletto M, Romano V, Parascandola P. 2006. Heterologous glucoamylase production with immobilised Kluyveromyces lactis cells in a fluidised bed reactor operating as a two-(liquid–solid) or a three-(gas–liquid–solid) phases system. Process Biochem 41: 2352–2356.
  • Altintas MM, Ulgen K, Kirdar B, Onsan ZI, Oliver SG. 2002. Improvement of ethanol production from starch by recombinant yeast through manipulation of environmental factors. Enzyme Microb Technol 31: 640–647.
  • Annous BA, Blaschek HP. 1990. Regulation and localization of amylolytic enzymes in Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 56: 2559–2561.
  • Anto H, Trivedi UB, Patel KC. 2006. Glucoamylase production by solid-state fermentation using rice flake manufacturing waste products as substrate. Bioresour Technol 97: 1161–1166.
  • Antranikian G. 1992. Microbial degradation of starch. In Winkelmann G, ed. Microbial Degradation of Natural Products (pp. 27–51 ). Weinhein, Germany: VCH.
  • Aquino ACMM, Jorge JA, Terenzi HF, Polizeli MLTM. 2001. Thermostable glucose-tolerant glucoamylase produced by thermophilic fungus Scytalidium thermophilum. Folia Microbiol 46: 11–16.
  • Ashikari T, Nakamura N, Tanaka Y, Kiuchi N, ShiBano Y, Tanaka T, Amachi T, Yoshizumi H. 1986. Rhizopus raw-starch-degrading glucoamylase: its cloning and expression in yeast. Agric Biol Chem 50: 957–964.
  • Ashikari T, Kunisaki S, Matsumoto N, Amachi T, Yoshizumi H. 1989. Direct fermentation of raw corn to ethanol by yeast transformants containing a modified Rhizopus glucoamylase gene. Appl Microbiol Biotechnol 32: 129–133.
  • Azad MA, Lebenthal E. 1990. Role of rat intestinal glucoamylase in glucose polymer hydrolysis and absorption. Pediatr Res 28: 166–170.
  • Bakir U, Coutinho PM, Sullivan PA, Ford C, Reilly PJ. 1993. Cassette mutagenesis of Aspergillus awamori glucoamylase near its general acid residue to probe its catalytic and pH properties. Protein Eng 6: 939–946.
  • Belshaw NJ, Williamson G. 1990. Production and purification of a granular-starch-binding domain of glucoamylase 1 from Aspergillus niger. FEBS Lett 269: 350–353.
  • Bender H. 1981. A bacterial glucoamylase degrading cyclodextrins, Partial purification and properties of the enzyme from a Flavobacterium species. Eur J Biochem 115: 287–291.
  • Beolchini F, Del Re G, Di Giacomo G, Spera L, Veglio F. 2006. Biological treatment of agro-industrial wastewater for the production of glucoamylase and Rhizopus biomass. Separation Science Technol 41: 471–483.
  • Berka RM, Rey MW, Thompson SA, Gray GL, Carmona CL, Power SD. 1993. Molecular cloning, analysis and expression of the gla1 gene encoding a thermostable, raw starch-digesting glucoamylase from the fungus Humicola grisea var. thermoidea. EMBL Data Base.
  • Berland CR, Sigurskjold BW, Stoffer B, Frandsen TP, Svensson B. 1995. Thermodynamics of inhibitor binding to mutant forms of glucoamylase from Aspergillus niger determined by isothermal titration calorimetry. Biochemistry 34: 10153–10161.
  • Bertoldo C, Antranikian G. 2002. Starch hydrolyzing enzymes from thermophilic archaea and bacteria. Curr Opin Chem Biol 6: 151–160.
  • Bertolin TE, Schmidell W, Maiorano AE, Casara J, Costa JA. 2003. Influence of carbon, nitrogen and phosphorous sources on glucoamylase production by Aspergillus awamori in solid state fermentation. Z Naturforsch 58: 708–712.
  • Betz SF. 1993. Disulfide bonds and the stability of globular proteins. Protein Sci 2: 1551–1558.
  • Bhatti HN, Rashid MH, Nawaz R, Asgher M, Perveen R, Jabbar A. 2007a. Optimization of media for enhanced glucoamylase production in solid-state fermentation by Fusarium solani. Food Technol Biotechnol 45: 51–56.
  • Bhatti HN, Rashid MH, Nawaz R, Asgher M, Perveen R, Jabbar A. 2007b. Purification and characterization of a novel glucoamylase from Fusarium solani. Food Chem 103: 338–343.
  • Birol G, Onsan ZI, Kirdar B, Oliver SG. 1998. Ethanol production and fermentation characteristics of recombinant Saccharomyces cerevisiae strains grown on starch. Enzyme Microb Technol 22: 672–677.
  • Bock K, Pedersen H. 1987. The substrate specificity of the enzyme amyloglucosidase (AMG): part 1. Deoxy derivatives. Acta Chem Scand B41: 617–628.
  • Boel E, Hjort I, Svensson B, Norris F, Norris KE, Fiil NP. 1984. Glucoamylases G1 and G2 from Aspergillus niger are synthesized from two different but closely related mRNAs. EMBO J 3: 1097–1102.
  • Bon E, Webb C. 1989. Passive immobilization of Aspergillus awamori spores for subsequent glucoamylase production. Enzyme Microb Technol 11: 495–499.
  • Bourne Y, Henrissat B. 2001. Glycoside hydrolases and glycosyltransferases: families and functional modules. Curr Opin Struct Biol 11: 593–600.
  • Brandi A, Cicchi S, Cordero FM, Frignoli R, Goti A, Picasso S, Vogel P. 1995. Assignment of the absolute configuration of natural lentiginosine by synthesis and enzymic assays of optically pure (+) and (–)-enantiomers. J Org Chem 60: 6806–6812.
  • Bui DM, Kunze I, Foerster S, Wartmann T, Horstmann C, Manteuffel R, Kunze G. 1996a. Cloning and expression of an Arxula adeninivorans glucoamylase gene in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 44: 610–619.
  • Bui DM, Kunze I, Horstmann C, Schimdt T, Breunig KD, Kunze G. 1996b. Expression of the Arxula adeninivorans glucoamylase gene in Kluyveromyces lactis. Appl Microbiol Biotechnol 45: 102–106.
  • Buleon A, Colonna P, Planchot V, Ball S. 1998. Starch granules: structure and biosynthesis. Int J Biol Macromol 23: 85–112.
  • Bult CJ, White O, Olsen GJ, Zhou L, Fleischmann RD, Sutton GG, Blake JA, FitzGerald LM, Clayton RA, Gocayne JD, Kerlavage AR, Dougherty BA, Tomb JF, Adams MD, Reich CI, Overbeek R, Kirkness EF, Weinstock KG, Merrick JM, Glodek A, Scott JL, Geoghagen NS, Venter JC. 1996. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273: 1058–1073.
  • Campos L, Felix CR. 1995. Purification and charcterization of a glucoamylase from Humicola grisea. Appl Environ Microbiol 61: 2436–2438.
  • Cardona F, Goti A, Brandi A, Scarselli M, Niccolai N, Mangani S. 1997. Molecular dynamics simulations on the complexes of glucoamylase II (471) from Aspergillus awamori var. X100 with 1-deoxynojirimycin and lentiginosine. J Mol Modeling 3: 249–260.
  • Cereia M, Terenzi HF, Jorge JA, Greene LJ, Rosa JC, Polizeli MLTM. 2000. Glucoamylase activity from the thermophilic fungus Scytalidium thermophilum: biochemical and regulatory properties. J Basic Microbiol 40: 83–92.
  • Cha HJ, Yoo YJ, Ahm JH, Kang HS. 1992. Expression of glucoamylase gene using Suc 2 promoter in Saccharomyces cerevisiae. Biotechnol Lett 14: 747–752.
  • Chaga G, Porath J, Illeni T. 1993. Isolation and purification of amyloglucosidase from Halobacterium sodomense. Biomed Chromatogr 7: 256–261.
  • Chen HM, Ford C, Reilly PJ. 1994. Substitution of asparagine residues in Aspergillus awamori glucoamylase by site-directed mutagenesis to eliminate N-glycosylation and inactivation by deamidation. Biochem J 301: 275–281.
  • Chen HM, Li Y, Panda T, Buehler FU, Ford C, Reilly PJ. 1996. Effect of replacing helical glycine residues with alanines on reversible and irreversible stability and production of Aspergillus awamori glucoamylase. Protein Eng 9: 499–505.
  • Chen J, Li DC, Zhang YQ, Zhou QX. 2005. Purification and characterization of a thermostable glucoamylase from Chaetomium thermophilum. J Gen Appl Microbiol 51: 175–181.
  • Chen J, Zhang YQ, Zhao CQ, Li AN, Zhou QX, Li DC. 2007. Cloning of a gene encoding thermostable glucoamylase from Chaetomium thermophilum and its expression in Pichia pastoris. J Appl Microbiol 103: 2277–2284.
  • Chen L, Coutinho PM, Nikolov Z, Ford C. 1995. Deletion analysis of the starch-binding domain of Aspergillus glucoamylase. Protein Eng 8: 1049–1055.
  • Chiquetto ML, Facciotti MCR, Kilikian BV, Schmidell W. 1992. Influence of carbon and nitrogen sources on glucoamylase production by Aspergillus in batch process. Biotechnol Lett 14: 465–470.
  • Cho KM, Cha HJ, Yoo YJ, Seo JH. 1997. Enhancement of recombinant glucoamylase expression by introducing yeast GAL7 mRNA termination sequence. J Biotechnol 55: 9–20.
  • Chou WI, Pai TW, Liu SH, Hsiung BK, Chang MDT. 2006. The family 21 carbohydrate-binding module of glucoamylase from Rhizopus oryzae consists of two sites playing distinct roles in ligand binding. Biochem J 396: 469–477.
  • Christensen U. 2000. pH-dependence of the fast step of maltose hydrolysis catalysed by glucoamylase G1 from Aspergillus niger. Biochem J 349: 623–628.
  • Christensen U, Olsen K, Stoffer BB, Svensson B. 1996. Substrate binding mechanism of Glu180→Gln, Asp176→Asn, and wild-type glucoamylases from Aspergillus niger. Biochemistry 35: 15009–15018.
  • Christensen T, Stoffer BB, Svensson B, Christensen U. 1997. Some details of the reaction mechanism of glucoamylase from Aspergillus niger. Kinetic and structural studies on Trp 52→Phe and Trp 317→Phe mutants. Eur J Biochem 250: 638–645.
  • Christensen T, Svensson B, Sigurskjold BW. 1999. Thermodynamics of reversible and irreversible unfolding and domain interactions of glucoamylase from Aspergillus niger studied by differential scanning and isothermal titration calorimetry. Biochemistry 38: 6300–6310.
  • Christensen T, Frandsen TP, Kaarsholm NC, Svensson B, Sigurskjold BW. 2002. Physicochemical characterisation of the two active site mutants Trp52→Phe and Asp55→Val of glucoamylase from Aspergillus niger. Biochim Biophys Acta 1601: 163–171.
  • Clarke AJ, Svensson B. 1984a. Identification of an essential tryptophanyl residue in the primary structure of glucoamylase G2 from Aspergillus niger. Carlesberg Res Commun 49: 559–566.
  • Clarke AJ, Svensson B. 1984b. The role of tryptophanyl residues in the function of Aspergillus niger glucoamylase G1 and G2. Carlesberg Res Commun 49: 111–122.
  • Cole GE, McCabe PC, Inlow D, Gelfand DH, Ben-Bassat A, Innis MA. 1988. Stable expression of Aspergillus awamori glucoamylase in distiller’s yeast. Bio/Technol 6: 417–421.
  • Cornett CAG, Fang TY, Reilly PJ, Ford C. 2003. Starch-binding domain shuffling in Aspergillus niger glucoamylase. Protein Eng 16: 521–529.
  • Coutinho PM, Henrissat B. 1999. Carbohydrate-active enzymes: an integrated database approach. In Gilbert HJ, Davies G, Henrissat B, Svensson B, eds. Recent Advances in Carbohydrate Bioengineering (pp. 3–12). Cambridge, Royal Society of Chemistry.
  • Coutinho PM, Reilly PJ. 1994. Structural similarities in glucoamylases by hydrophobic cluster analysis. Protein Eng 7: 749–760.
  • Coutinho PM, Reilly PJ. 1997. Glucoamylase structural, functional, and evolutionary relationships. Proteins: Struct Funct Genet 29: 334–347.
  • Coutinho PM, Dowd MK, Reilly PJ. 1997a. Automated docking of glucosyl disaccharides in the glucoamylase active site. Proteins 28: 162–173.
  • Coutinho PM, Dowd MK, Reilly PJ. 1997b. Automated docking of monosaccharide substrates and analogues and methyl α-acarviosinide in the glucoamylase active site. Proteins 27: 235–248.
  • Coutinho PM, Dowd MK, Reilly PJ. 1997c. Automated docking of isomaltose analogues in the glucoamylase active site. Carbohydr Res 297: 309–324.
  • Coutinho PM, Dowd MK, Reilly PJ. 1998. Automated docking of alpha-(1,4) and alpha-(1,6)-linked glucosyl trisaccharides in the glucoamylase active site. Ind Eng Chem Res 37: 2148–2157.
  • Crabb WD, Mitchinson C. 1997. Enzymes involved in the processing of starch to sugars. TIBTECH 15: 349–352.
  • Crabb WD, Shetty JK, 1999. Commodity scale production of sugars from starches. Curr Opin Microbiol 2: 252–256.
  • da Silva BW, Peralta WM. 1998. Purification and characterization of a thermostable glucoamylase from Aspergillus fumigatus. Can J Microbiol 44: 493–497.
  • Das A, Ghosh A. 1989. Breeding by protoplast fusion for glucoamylase production. Biotechnol Lett 11: 705–708.
  • Davies G, Henrissat B. 1995. Structures and mechanisms of glycosyl hydrolases. Structure 3: 853–859.
  • Davies GJ, Wilson KS, Henrissat B. 1997. Nomenclature for sugar-binding subsites in glycosyl hydrolases. Biochem J 321: 557–559.
  • Day DF. 1978. A thermophilic glucoamylase from Cephalosporium eichhorniae. Curr Microbiol 1: 181–184.
  • de Gouveia T, Kilikian BV. 2000. Bioaffinity extraction of glucoamylase in aqueous two-phase systems using starch as free bioligand. J Chromatogr B. 743: 241–246.
  • de las Mercedes Dana M, Pintor-Toro JA. 2005. Post-transcriptional control of a glucoamylase gene from Trichoderma harzianum under stress conditions. Mol Microbiol 57: 250–260.
  • De Mot R, Verachtert H. 1985. Purification and characterization of extracellular amylolytic enzymes from the yeast Filobasidium capsuligenum. Appl Environ Microbiol 50: 1474–1482.
  • De Mot R, Verachtert H. 1986. Secretion of α-amylase and multiple forms of glucoamylase by the yeast Trichosporon pullulans. Can J Microbiol 32: 47–51.
  • De Mot R, Verachtert H. 1987. Purification and characterization of extracellular α-amylase and glucoamylase from the yeast Candida antarctica CBS 6678. Eur J Biochem 164: 643–654.
  • De Mot R, Oudenduck EV, Verachtert H. 1985. Purification and characterization of an extracellular glucoamylase from the yeast Candida tsukubaensis CBS 6389. Antonie van Leeuwenhoek 51: 275–287.
  • Delorme E, Lorenzini T, Giffin J, Martin F, Jacobsen F, Boone T, Elliott S. 1992. Role of glycosylation on the secretion and biological activity of erythropoietin. Biochemistry 31: 9871–9876.
  • Diagne I, Pechexonov VT, Bulat SA, Firsov LM. 1996. GenBank Entry # U59303.
  • Dock C, Hess M, Antranikian G. 2008. A thermoactive glucoamylase with biotechnological relevance from the thermoacidophilic Euryarchaeon Thermoplasma acidophilum. Appl Microbiol Biotechnol 78: 105–114.
  • Dohmen RJ, Strasser AWM, Dahlems UM, Hollenberg CP. 1990. Cloning of the Schwanniomyces occidentalis glucoamylase gene and its expression in Saccharomyces cerevisiae. Gene (Amst.) 95: 111–121.
  • Dowhanick TM, Russell I, Scherer SW, Stewart GG, Seligy VL. 1990. Expression and regulation of glucoamylase from the yeast Schwanniomyces castelli. J Bacteriol 172: 2360–2366.
  • Dube S, Fisher JW, Powell JS. 1988. Glycosylation at specific sites of erythropoietin is essential for biosynthesis, secretion, and biological function. J Biol Chem 263: 17516–17521.
  • Ducki A, Grundmann O, Konermann L, Mayer F, Hoppert M. 1998. Glucoamylase from Thermoanaerobacterium thermosaccharolyticum: sequence studies and analysis of the macromolecular architecture of the enzyme. J General Appl Microbiol 44: 327–335.
  • Ebertova H. 1966. Amylolytic enzymes of Endomycopsis capsularis II: a study of the properties of isolated α-amylase, amyloglucosidase, and maltose-transglucosidase. Folia Microbiol (Prague) 11: 422–438.
  • Eksteen JM, Rensburg P, Cordero Otero RR, Pretorius IS. 2003. Starch fermentation by recombinant Saccharomyces cerevisiae strains expressing the α-amylase and glucoamylase genes from Lipomyces kononenkoae and Saccharomycopsis fibuligera. Biotechnol Bioeng 84: 639–646.
  • Ellaiah P, Adinarayana K, Bhavani Y, Padmaja P, Srinivasulu B. 2002. Optimization of process parameters for glucoamylase production under solid state fermentation by a newly isolated Aspergillus species. Process Biochem 38: 615–620.
  • Erratt JA, Nasim A. 1986a. Allelism within the DEX and STA gene families in Saccharomyces diastaticus. Mol Gen Genet 202: 255–256.
  • Erratt JA, Nasim A. 1986b. Cloning and expression of a Saccharomyces diastaticus glucoamylase gene in Saccharomyces cerevisiae and Schizosaccharomyces pombe. J Bacteriol 166: 484–490.
  • Erratt JA, Stewart GG. 1978. Genetic and biochemical studies on yeast strains able to utilize dextrins. J Am Soc Brew Chem 36: 151–156.
  • Erratt JA, Stewart GG. 1981. Fermentation studies using Saccharomyces diastaticus yeast strains. Dev Ind Microbiol 22: 557–589.
  • Evans R, Ford C, Sierks M, Nikolov Z, Svensson B. 1990. Activity and thermal stability of genetically truncated forms of Aspergillus glucoamylase. Gene 91: 131–134.
  • Facciotti MCR, Wuhstrack GH, Tonso A, Chiquetto ML, Schmidell W. 1991. Effect of yeast-extract on glucoamylase synthesis by Aspergillus awamori NRRL 3112. Biotechnol Lett 13: 547–552.
  • Fagerstrom R. 1991. Subsite mapping of Hormoconis resinae glucoamylases and their inhibition by gluconolactone. J Gen Microbiol 137: 1001–1008.
  • Fagerstrom R. 1994. Evidence for a polysaccharide-binding domain in Hormoconis resinae glucoamylase P: effects of its proteolytic removal on substrate specificity and inhibition by beta-cyclodextrin. Microbiol 140: 2399–2407.
  • Fagerstrom R, Kalkkinen. 1995. Characterization, subsite mapping and partial amino acid sequence of glucoamylase from the filamentous fungus Trichoderma reesei. Biotechnol Appl Biochem 21: 223–231.
  • Fang TY, Ford C. 1998. Protein engineering of Aspergillus awamori glucoamylase to increase its pH optimum. Protein Eng 11: 383–388.
  • Fang TY, Coutinho PM, Reilly PJ, Ford C. 1998a. Mutations to alter Aspergillus awamori glucoamylase selectivity. I. Tyr48Phe49→Trp, Tyr116→Trp, Tyr175→Phe, Arg241→Lys, Ser411→Ala and Ser411→Gly. Protein Eng 11: 119–126.
  • Fang TY, Honzatko RB, Reilly PJ, Ford C. 1998b. Mutations to alter Aspergillus awamori glucoamylase selectivity. II. Mutation of residues 119 and 121. Protein Eng 11: 127–133.
  • Federici F, Petruccioli M, Miller MW. 1990. Enhancement and stabilization of the production of glucoamylase by immobilized cells of Aureobasidium pullulans in a fluidized-bed reactor. Appl Microbiol Biotechnol 33: 407–409.
  • Federici RG, Federici F, Petruccioli M. 1990. Continuous production of glucoamylase by immobilized growing cells of Aureobasidium pullulans. Biotechnol Lett 12: 661–666.
  • Feng B, Hu W, Ma BP, Wang YZ, Huang HZ, Wang SQ, Qian XH. 2007a. Purification, characterization, and substrate specificity of a glucoamylase with steroidal saponin-rhamnosidase activity from Curvularia lunata. Appl Microbiol Biotechnol 76: 1329–1338.
  • Feng B, Kang LP, Ma BP, Quan B, Zhou WB, Wang YZ, Zhao Y, Liu YX, Wang SQ. 2007b. The substrate specificity of a glucoamylase with steroidal saponin-rhamnosidase activity from Curvularia lunata. Tetrahedron 63: 6796–6812.
  • Feng PH, Berensmeier S, Buchholz K, Reilly PJ. 2002. Production, purification, and characterization of Thermoanaerobacterium thermosaccharolyticum glucoamylase. Starch/Starke 54: 328–337.
  • Fierobe HP, Stoffer BB, Frandsen TP, Svensson B. 1996. Mutational modulation of substrate bond-type specificity and thermostability of glucoamylase from Aspergillus awamori by replacement with short homologue active site sequences and thiol/disulfide engineering. Biochemistry 35: 8696–8704.
  • Fierobe HP, Mirgorodskaya E, McGuire KA, Roepstorff P, Svensson B, Clarke AJ. 1998. Restoration of catalytic activity beyond wild-type level in glucoamylase from Aspergillus awamori by oxidation of the Glu400Cys catalytic-base mutant to cysteinesulfinic acid. Biochemistry 37: 3743–3752.
  • Fleming ID. 1968. Amyloglucosidase. In Raidley JA, ed. Starch and Its Dervatives (pp. 498–508 ). London: Chapman and Hall Ltd.
  • Fleming ID, Pegler HF. 1963. The determintion of glucose in the presence of maltose and isomaltose by a stable, specific enzymic reagent. Analyst 88: 967–968.
  • Flory N, Gorman M, Coutinho PM, Ford C, Reilly PJ. 1994. Thermosensitive mutants of Aspergillus awamori glucoamylase by random mutagenesis: inactivation kinetics and structural interpretation. Protein Eng 7: 1005–1012.
  • Fogarty WM, Benson CP. 1983. Purification and properties of a thermophilic amyloglucosidase from Aspergillus niger. Eur J Appl Microbiol Biotechnol 18: 271–275.
  • Ford C. 1999. Improving operating performance of glucoamylase by mutagenesis. Curr Opin Biotechnol 10: 352–357.
  • Fowler T, Berka RM, Ward M. 1990. Regulation of the glaA gene of Aspergillus niger. Curr Genet 18: 537–545.
  • Frandsen TP, Dupont C, Lehmback J, Stoffer B, Sierks MR, Honztak RB, Svensson B. 1994. Site directed mutagenesis of the catalytic base glutamic acid 400 in glucoamylase from Aspergillus niger and tyrosin48 and glutamine 401 both hydrogen bonded to the γ-carboxylate group of glutamic acid 400. Biochemistry 33: 13808–13816.
  • Frandsen TP, Christensen T, Stoffer B, Lehmback J, Dupont C, Hanzatic RB, Svensson B. 1995. Mutational analysis of the roles in catalysis and substrate recognition of arginines 54 and 305, aspartic acid 309 and tryptophan 317 located at subsite 1 and 2 in glucoamylase from Aspergillus niger. Biochemistry 34: 10162–10169.
  • Frandsen TP, Stoffer B, Palcic MM, Hof S, Svensson B. 1996. Structure and energetics of the glucoamylase-isomaltose transition-state complex probed by using modeling and deoxygenated substrates coupled with site-directed mutagenesis. J Mol Biol 263: 79–89.
  • Frandsen TP, Fierobe HP, Svensson B. 1999. Engineering specificity and stability in glucoamylase from Aspergillus niger. In Alberghin L, ed. Protein Engineering in Industrial Biotechnology (pp. 189–206 ). Amsterdam: Harwood Academic.
  • Fukuda K, Teramoto Y, Goto M, Sakamoto J, Mitsuiki S, Hayashida S. 1992. Specific inhibition by cyclodextrins of raw starch digestion by fungal glucoamylase. Biosci Biotechnol Biochem 56: 556–559.
  • Fukuda T, Kato-Murai M, Kuroda K, Ueda M, Suye SI. 2008. Improvement in enzymatic desizing of starched cotton cloth using yeast codisplaying glucoamylase and cellulose-binding domain. Appl Microbiol Biotechnol 77: 1225–1232.
  • Furuta H. 1997. Production of glucoamylase by passively immobilized cells of a flocculent yeast, Saccharomyces diastaticus. J Ferment Bioeng. 84: 169–171.
  • Gagiano M, Van Dyk D, Bauer FF, Lambrechts MG, Pretorius IS. 1999. Divergent regulation of the evolutionarily closely related promoters of the Saccharomyces cerevisiae STA2 and MUC1 genes. J Bacteriol 181: 6497–6508.
  • Ganzlin M, Rinas U. 2008. In-depth analysis of the Aspergillus niger glucoamylase (glaA) promoter performance using high-throughput screening and controlled bioreactor cultivation techniques. J Biotechnol 135: 266–271.
  • Gasperik J, Hostinova E. 1993. Glucoamylases encoded by variant Saccharomycopsis fibuligera genes: structure and properties. Curr Microbiol 27: 11–14.
  • Gellissen G, Hollenberg CP. 1997. Application of yeasts in gene expression studies: a comparison of Saccharomyces cerevisiae, Hansenula polymorpha and Kluyveromyces lactis—a review. Gene 190: 87–97.
  • Gellissen G, Janowicz ZA, Merckelbach A, Piontek M, Keup P, Weydemann U, Hollenberg CP, Strasser AWM. 1991. Heterologous gene expression in Hansenula polymorpha: efficient secretion of glucoamylase. Bio/Technol 9: 291–295.
  • Ghose A, Chatterjee BS, Das A. 1990. Characterization of glucoamylase from Aspergillus terreus 4. FEMS Microbiol Lett 66: 345–350.
  • Ghosh A, Chatterjee B, Das A. 1991. Purification and characterization of glucoamylase of Aspergillus terrues NA-170 mutant. J Appl Bacteriol 71: 162–169.
  • Giardina T, Gunning AP, Juge N, Faulds CB, Furniss CSM, Svensson B, Morris VJ, Williamson G. 2001. Both binding sites of the starch-binding domain of Aspergillus niger glucoamylase are essential for inducing a conformational change in amylose. J Mol Biol 313: 1149–1159.
  • Gibbs PA, Seviour RJ, Schmid F. 2000. Growth of filamentous fungi in submerged culture: problems and possible solutions. Crit Rev Biotechnol 20: 17–48.
  • Gibson R, Hornfeld S, Schlesinger S. 1980. A role for oligosaccharides in glycoprotein biosynthesis. Trends Biochem Sci 5: 290–293.
  • Gill RK, Kaur J. 2004. A thermostable glucoamylase from a thermophilic Bacillus sp.: characterization and thermostability. J Ind Microbiol Biotechnol 11: 540–543.
  • Giordano RLC, Trovati J, Schmidell W. 2008. Continuous production of ethanol from starch using glucoamylase and yeast co-immobilized in pectin gel. Appl Biochem Biotechnol 147: 47–61.
  • Glazer AN, Nikaido H. 1995. Microbial enzymes. In Glazer AN, Nikaido H, eds. Microbial Biotechnology (pp. 241–263 ). New York: W.H. Freeman and Co.
  • González CF, Fariña JI, de Figueroa LIC. 2008. Optimized amylolytic enzymes production in DSM-70554: an approach to efficient cassava starch utilization. Enzyme Microb Technol 42: 272–277.
  • Goti A, Cardona F, Brandi A. 1996. (1S,2S,7R,8aS)- and (1S,2S,7S,8aS)-trihydroxyoctahydroindolizine: two new glycosidase inhibitors by nitrone cycloaddition strategy. Tetrahedron: Asymmetry 7: 1659–1674.
  • Goto M, Ekino K, Furukawa K. 1997. Expression and functional analysis of a hyperglycosylated glucoamylase in a parental host, Aspergillus awamori var. kawachi. Appl Environ Microbiol 63: 2940–2943.
  • Goto M, Tsukamoto M, Kwon I, Ekino K, Furukawa K. 1999. Functional analysis of O-linked oligosaccharides in threonine/serine-rich region of Aspergillus glucoamylase by expression in mannosyltransferase-disruptants of yeast. Eur J Biochem 260: 596–602.
  • Goto M, Shinoda N, Oka T, Sameshima Y, Ekino K, Furukawa K. 2004. Thr/Ser-rich domain of Aspergillus glucoamylase is essential for secretion. Biosci Biotechnol Biochem 68: 961–963.
  • Gouka RJ, Punt PJ, van den Hondel CA. 1997a. Efficient production of secreted proteins by Aspergillus: progress, limitations and prospects. Appl Microbiol Biotechnol 47: 1–11.
  • Gouka RJ, Punt PJ, van den Hondel CA. 1997b. Glucoamylase gene fusions alleviate limitations for protein production in Aspergillus awamori at the transcriptional and (post) translational levels. Appl Environ Microbiol 63: 488–497.
  • Guerra OG, Rubio IGS, da Silva Filho CG, Bertoni RA, Govea RCS, Vicente EJ. 2006. A novel system of genetic transformation allows multiple integrations of a desired gene in Saccharomyces cerevisiae chromosomes. J Microbiol Methods 67: 437–445.
  • Gunnarsson A, Svensson B, Nilson B, Svensson S. 1984. Structural studies on the O-glycosidically linked carbohydrate chains of glucoamylase G1 from Aspergillus niger. Eur J Biochem 145: 463–467.
  • Haasum I, Erickson SH, Jensen B, Olesen J. 1991. Growth and glucoamylase production by a thermophilic fungus Thermomyces lanuginosus in a synthetic medium. Appl Micobiol Biotechnol 34: 656–660.
  • Halaouli S, Record E, Casalot L, Hamdi M, Sigoillot JC, Asther M, Lomascolo A. 2006. Cloning and characterization of a tyrosinase gene from the white-rot fungus Pycnoporus sanguineus, and overproduction of the recombinant protein in Aspergillus niger. Appl Microbiol Biotechnol 70: 580–589.
  • Hang YD, Woodams E. 1993. Thermophilic glucoamylase from Talaromyces flavus. Lett Appl Microbiol 17: 156–157.
  • Harris EMS, Aleshin AE, Firsov LM, Honzatko RB. 1993. Refined structure for the complex of 1-deoxynojirimycin with glucoamylase from Aspergillus awamori var. X100–2.4 å resolution. Biochemistry 32: 1618–1626.
  • Hata Y, Kitamoto K, Gomi K, Kumagai C, Tamaura G, Hara S. 1991a. The glucoamylase cDNA from Aspergillus oryzae: its cloning, nucleotide sequence, and expression in Saccharomyces cerevisiae. Agric Biol Chem 55: 941–949.
  • Hata Y, Tsuchuya K, Kitamoto K, Gomi K, Kumagai C, Tamura G, Hara S. 1991b. Nucleotide sequence and expression of the glucoamylase-encoding gene (glaA) from Aspergillus oryzae. Gene 108: 145–150.
  • Hata Y, Kitamoto K, Gomi K, Kumagai C, Tamura G. 1992a. Functional elements of the promoter region of the Aspergillus oryzae glaA gene encoding glucoamylase. Curr Genet 22: 85–91.
  • Hata Y, Tsuchiya K, Kitamoto K, Gomi K, Kumagai C, Tamura G, Hara S. 1992b. Nucleotide sequence and expression of the glucoamylase-encoding gene (glaA) from Aspergillus oryzae. Gene 108: 145–150.
  • Hata Y, Ishida H, Kojima Y, Ichikawa E, Kawato A, Suginami K, Imayasu S. 1997. Comparison of two glucoamylases produced by Aspergillus oryzae in solid state culture (koji) and in submerged culture. J Ferment Bioeng 84: 532–537.
  • Hata Y, Ishida H, Ichikawa E, Kawato A, Suginami K, Imayasu S. 1998. Nucleotide sequence of an alternative glucoamylase encoding gene (glaB) expressed in solid-state culture of Aspergillus oryzae. Gene 207: 127–134.
  • Hayashida S, Nakahara K, Kuroda K, Miyata T, Iwanaga S. 1989a. Structure of the raw-starch-affinity site on the Aspergillus awamori var. kawachii glucoamylase molecule. Agric Biol Chem 53: 135–141.
  • Hayashida S, Nakahara K, Kanlayakrit W, Hara T, Teramoto Y. 1989b. Characteristics and function of raw-starch-affinity site on Aspergillus awamori var. kawachi glucoamylase I molecule. Agric Biol Chem 53: 143–149.
  • Hayashida S, Kuroda K, Ohta K, Kuhara S, Fukuda K, Sakaki Y. 1989c. Molecular cloning of the glucoamylase I gene of Aspergillus awamori var. kawachi for localization of the raw-starch-affinity site. Agric Biol Chem 53: 923–929.
  • Hehre EJ, Okada G, Genghof DS. 1969. Configurational specificity: unappreciated key to understanding enzymatic reversions and de novo glycosidic bond synthesis. I. Reversal of hydrolysis by α-, β-, and glucoamylases with donors of correct anomeric form. Arch Biochem Biophys 135: 74–89.
  • Henriksen SAL, Even S, Muller C, Punt PJ, van den Hondel CA, Nielsen J. 1999. Study of the glucoamylase promoter in Aspergillus niger using green fluorescent protein. Microbiol 145: 729–734.
  • Hiromi K. 1970. Interpretation of dependency of rate parameters on the degree of polymerization of substrate in enzyme-catalyzed reactions: evaluation of subsite affinities of exo-enzyme. Biochem Biophys Research Comm 40: 1–6.
  • Hiromi K, Nitta Y, Numata C, Ono S. 1973. Subsite affinities of glucoamylase: examination of the validity of the subsite theory. Biochim Biophys Acta 302: 362–375.
  • Hiromi K, Ohnishi M, Tanaka A. 1983. Subsite structure and ligand binding mechanism of glucoamylase. Mol Cell Biochem 51: 79–95.
  • Hiromi K, Tanaka A, Ohnishi M. 1982. Fluorometric studies on the binding of gluconolactone, glucose, and glucosides to the subsites of glucoamylase. Biochemistry 21: 102–107.
  • Horvathova V, Slajsova K, Sturdik E. 2004. Evaluation of the glucoamylase Glm from Saccharomycopsis fibuligera IFO 0111 in hydrolysing the corn starch. Biologia, Bratislava 59: 361–365.
  • Hostinova E. 2002. Amylolytic enzymes produced by the yeast Saccharomycopsis fibuligera. Biologia, Bratislava 57(Suppl. 11): 247–251.
  • Hostinova E, Balanova J, Gasperik J. 1991. The nucleotide sequence of the glucoamylase gene GLA1 from Saccharomycopsis fibuligera KZ. FEMS Microbiol Lett 83: 103–108.
  • Hostinova E, Solovicova A, Dvorsky R, Gasperik J. 2003. Molecular cloning and 3D structure prediction of the first raw-starch-degrading glucoamylase without a separate starch-binding domain. Arch Biochem Biophys 411: 189–195.
  • Houghton-Larsen J, Pedersen PA. 2003. Cloning and characterisation of a glucoamylase gene (GlaM) from the dimorphic zygomycete Mucor circinelloides. Appl Microbiol Biotechnol 62: 210–217.
  • Hulseweh B, Dahlems UM, Dohmen J, Strasser WM, Hollenberg CP. 1997. Characterization of the active site of Schwanniomyces occidentalis glucoamylase by in vitro mutagenesis. Eur J Biochem 244: 128–133.
  • Hyun HH, Zeikus JG. 1985. Regulation and genetic enhancement of glucoamylase and pullulanase production in Clostridium thermohydrosulfuricum. J Bacteriol 164: 1146–1152.
  • Iefuji H, Chino M, Kato M, Iimura Y. 1996. Raw-starch-digesting and thermostable α-amylase from the yeast Cryptococcus sp. S-2: purification, characterization, cloning and sequencing. Biochemical J 318: 989–996.
  • Innis MA, Holland MJ, McCabe PC, Cole GE, Wittman VP, Tal R, Watt KWK, Gelfand DH, Holland JP, Meade JH. 1985. Expression, glycosylation, and secretion of an Aspergillus glucoamylase by Saccharomyces cerevisiae. Science 228: 21–26.
  • Inokuchi N, Takahashi T, Irie M. 1981. Purification and characterization of a minor glucoamylase from Aspergillus saitoi. J Biochem 90: 1055–1067.
  • Ishida H, Hata Y, Kawato A, Abe Y, Suginami K, Imayasu S. 2000. Identification of functional elements that regulate the glucoamylase-encoding gene (glaB) expressed in solid state culture of Aspergillus oryzae. Curr Genet 37: 373–379.
  • Itoh T, Ohtsuki I, Yamashita I, Fukui S. 1987. Nucleotide sequence of the glucoamylase gene glu1 in the yeast Saccharomycopsis fibuligera. J Bacteriol 169: 4171–4176.
  • Jacks AJ, Sorimachi K, Le Gal-Coëffet MF, Williams G, Archer DB, Williamson MP. 1995. 1H and 15N Assignments and secondary structure of the starch-binding domain of glucoamylase from Aspergillus niger. Eur J Biochem 233: 568–578.
  • Jafari-Aghdam J, Khajeh K, Ranjbar B, Nemat-Gorgani M. 2005. Deglycosylation of glucoamylase from Aspergillus niger: effects on structure, activity and stability. Biochim Biophys Acta 1750: 61–68.
  • Jaffar MB, Bharat RP, Norouzian D, Irani SD, Shetty P. 1993. Production of glucoamylase by nematophagus fungi Arthrobotrys species. Indian J Exp Biol 31: 87–89.
  • Jaleel SA, Srikanta S, Karanth NG. 1992. Production of fungal amyloglucosidase by solid state fermentation – influence of some parameters. J Microbiol Biotechnol 7: 1–8.
  • Jamai L, Ettayebi K, Yamani JE, Ettayebi M. 2007. Production of ethanol from starch by free and immobilized Candida tropicalis in the presence of α-amylase. Bioresour Technol 98: 2765–2770.
  • James JA, Lee BH. 1995. Cultural conditions for production of glucoamylase from Lactobacillus amylovoms ATCC 33621. J Appl Bacteriol 79: 499–505.
  • James JA, Lee BH. 1996. Characterization of glucoamylase from Lactobucillus amylovorus ATCC 33621. Biotech Lett 18: 1401–1406.
  • James JA, Lee BH. 1997. Glucoamylase: microbial sources, industrial applications and molecular biology-A review. Food Biochem 21: 1–52.
  • James JA, Robert N, Lee BH. 1996. Cloning and expression of a glucoamylase gene from Lactobacillus amylovorus ATCC 33621 in Escherichia coli. Biotechnol Lett 18: 1407–1412.
  • James JA, Berger JL, Lee BH. 1997. Purification of glucoamylase from Lactobacillus amylovorus ATCC 33621. Curr Microbiol 34: 186–191.
  • Janecek S, Sevcik J. 1999. The evolution of starch-binding domain. FEBS Lett 30: 456: 119–125.
  • Janse BJH, Pretorius IS. 1995. One-step enzymatic hydrolysis of starch using a recombinant strain of Saccharomyces cerevisiae producing α-amylase, glucoamylase and pullulanase. Appl Microbiol Biotechnol 42: 878–883.
  • Jensen B, Olsen J. 1999. Amylases and their inudstrial potential. In Johri BN, Satyanarayana T, Olsen J, eds. Thermophilic Moulds in Biotechnology (pp. 115–137 ). The Netherlands: Kluwer Academic Publishers.
  • Jin B, Leeuwen J, Patel B. 1999. Production of fungal protein and glucoamylase by Rhizopus oligosporus from starch processing wastewater. Process Biochem 34: 59–65.
  • Joutsjoki VV. 1994. Construction by one-step gene replacement of Trichoderma reesei strains that produce the glucoamylase P of Hormoconis resinae. Curr Genet 26: 422–429.
  • Joutsjoki VV, Torkkeli TK. 1992. Glucoamylase P gene of Hormoconis resinae: molecular cloning, sequencing and introduction into Trichoderma reesei. FEMS Microbiol Lett 99: 237–243.
  • Joutsjoki VV, Kuittinen M, Torkkeli TK, Suominen PL. 1993. Secretion of the Hormoconis resinae glucoamylase P enzyme from Trichoderma reesei directed by the natural and the cbh1 gene secretion signal. FEMS Microbiol Lett 112: 281–286.
  • Joutsjoki VV, Torkkeli TK, Nevalainen KMH. 1993. Transformation of Trichoderma reesei with the Hormoconis resinae glucoamylase P (gamP) gene: production of a heterologous glucoamylase by Trichoderma reesei. Curr Genet 24: 223–228.
  • Juge N, Le Gal-Coeffet MF, Furniss CSM, Gunning AP, Kramhoft B, Morris VJ, Williamson G, Svensson B. 2002. The starch binding domain of glucoamylase from Aspergillus niger: overview of its structure, function, and role in raw-starch hydrolysis. Biologia, Bratislava 11: 239–245.
  • Kanlayakrit W, Ishimatsu K, Nakao M, Hayashida S. 1987. Characteristics of raw starch digesting glucoamylase from thermophilic fungus Rhizomucor pusillus. J Ferment Technol 65: 379–385.
  • Katkocin DM, Word NS, Yang SS. 1985. Thermostable glucoamylase and method for its production. US Patent 4 536 477.
  • Kaur P, Satyanarayana T. 2001. Partial purification and characterization of glucoamylase of thermophilic mould Thermomucor indicae-seudaticae. Indian J Microbiol 41: 195–199.
  • Kaur P, Satyanarayana T. 2004. Production and starch saccharification by a thermostable and neutral glucoamylase of a thermophilic mould Thermomucor indicae-seudaticae. World J Microbiol Biotechnol 20: 419–425.
  • Kelkar HS, Deshpande MV. 1993. Purification and characterization of pullulan hydrolyzing enzyme from Sclerotium rolfsii. Starch/Starke 45: 361–368.
  • Kelly S, Grimm LH, Hengstler J, Schultheis E, Krull R, Hempel DC. 2004. Agitation effects on submerged growth and product formation of Aspergillus niger. Bioprocess Biosystems Eng 26: 315–323.
  • Khaw TS, Katakura Y, Koh J, Kondo A, Ueda M, Shioya S. 2006. Evaluation of performance of different surface-engineered yeast strains for direct ethanol production from raw starch. Appl Microbiol Biotechnol 70: 573–579.
  • Khaw TS, Katakura Y, Ninomiya K, Moukamnerd C, Kondo A, Ueda M, Shioya S. 2007. Enhancement of ethanol production by promoting surface contact between starch granules and arming yeast in direct ethanol fermentation. J Biosci Bioeng 103: 95–97.
  • Kim K, Park CS, Mattoon JR. 1988. High-efficiency, one-step starch utilization by transformed Saccharomyces cells which secrete both yeast glucoamylase and mouse alpha-amylase. Appl Environ Microbiol 54: 966–971.
  • Kim MS, Park JT, Kim YW, Lee HS, Nyawira R, Shin HS, Park CS, Yoo SH, Kim YR, Moon TW, Park KH. 2004. Properties of a novel thermostable glucoamylase from the hyperthermophilic archaeon Sulfolobus solfataricus in relation to starch processing. Appl Environ Microbiol 70: 3933–3940.
  • Kleinman MJ, Wilkinson AE, Wright IP, Evans IH, Bevan EA. 1988. Purification and properties of an extracellular glucoamylase from a diastatic strain of Saccharomyces cerevisiae. Biochem J 249: 163–170.
  • Knox AM, Preez JC, Kilian SG. 2004. Starch fermentation characteristics of Saccharomyces cerevisiae strains transformed with amylase genes from Lipomyces kononenkoae and Saccharomycopsis fibuligera. Enzyme Microb Technol 34: 453–460.
  • Kolhekar SR, Mahajan PB, Ambedkar SS, Bower PS. 1985. Purification and characterization of glucoamylase from a higher yielding mutant of Aspergillus candidus link var. aureus. Appl Microbiol Biotechnol 22: 181–186.
  • Krishna C. 2005. Solid-state fermentation systems- An overview. Crit Rev Biotechnol 25: 1–30.
  • Kuchin SV, Kartasheva NN, Benevolensky SV. 1993. Genes required for derepression of an extracellular glucoamylase gene, STA2, in the yeast Saccharomyces. Yeast 9: 533–541.
  • Kuek C. 1991. Production of glucoamylase using Aspergillus phoenicus immobilized in calcium alginate beads. Appl Microbiol Biotechnol 35: 466–470.
  • Kumar P, Satyanarayana T. 2006. Biotechnological aspects of thermophilic fungal glucoamylases. In Bagyanarayana G, Bhadraiah B, Kunwar IK, eds. Emerging Trends in Mycology, Plant Pathology and Microbial Biotechnology (pp. 519–543 ). Hyderabad, India: B. S. Publications.
  • Kumar P, Satyanarayana T. 2008. Potential applications of microbial enzymes in improving quality and shelf life of bakery products. In Koutinas A, Pandey A, Larroche C, eds. Current Topics on Bioprocesses in Food Industry (pp. 132–142 ). New Delhi, India: Asiatech Publishers.
  • Kumar P, Satyanarayana T. 2009. Overproduction of glucoamylase by a deregulated mutant of a thermophilic mold Thermomucor indicae-seudaticae. Appl Biochem Biotechnol 158: 113–125.
  • Kumar P, Satyanarayana T. 2007a. Production of thermostable and neutral glucoamylase using immobilized Thermomucor indicae-seudaticae. World J Microbiol Biotechnol 23: 509–517.
  • Kumar P, Satyanarayana T. 2007b. Optimization of culture variables for improving glucoamylase production by alginate-entrapped Thermomucor indicae-seudaticae using statistical methods. Bioresour Technol 98: 1252–1259.
  • Kumar P, Satyanarayana T. 2007c. Economical glucoamylase production by alginate-immobilized Thermomucor indicae-seudaticae in cane molasses medium. Lett Appl Microbiol 45: 392–397.
  • Kumar S, Satyanarayana T. 2001. Medium optimization for glucoamylase production by a yeast, Pichia subpelliculosa ABWF-64 in submerged cultivation. World J Microbiol Biotechnol 19: 598–601.
  • Kumar S, Satyanarayana T. 2003. Purification and kinetics of a raw starch-hydrolyzing, thermostable and neutral glucoamylase of a thermophilic mould Thermomucor indicae-seudaticae. Biotechnol Prog 19: 936–944.
  • Kumar S, Satyanarayana T. 2004a. Statistical optimization of a thermostable and neutral glucoamylase production by a thermophilic mould Thermomucor indicae-seudaticae in solid-state fermentation. World J Microbiol Biotechnol 20: 895–902.
  • Kumar S, Satyanarayana T. 2004b. Production of thermostable and neutral glucoamylase by a thermophilic mould Thermomucor indicae-seudaticae in solid-state fermentation. Indian J Microbiol 44: 53–57.
  • Kumar S, Kumar P, Satyanarayana T. 2007. Production of raw starch-saccharifying thermostable and neutral glucoamylase by the thermophilic mold Thermomucor indicae-seudaticae in submerged fermentation. Appl Biochem Biotechnol 142: 221–230.
  • Lambrechts MG, Pretorius IS, D’Aguanno VS, Sollitti P, Marmur J. 1994. Multiple positive and negative cis-acting elements of the STA2 gene regulate glucoamylase synthesis in Saccharomyces cerevisiae. Gene 146: 137–144.
  • Lambrechts MG, Pretorius IS, Sollitti P, Marmur J. 1991. Primary structure and regulation of a glucoamylase-encoding gene (STA2) in Saccharomyces diastaticus. Gene 100: 95–103.
  • Lambrechts MG, Sollitti P, Marmur J, Pretorius IS. 1996. A multicopy suppressor gene, MSS10, restores STA2 expression in Saccharomyces cerevisiae strains containing the STA10 repressor gene. Curr Genet 29: 523–529.
  • Latorre-Garcia L, Adam AC, Manzanares P, Polaina J. 2005. Improving the amylolytic activity of Saccharomyces cerevisiae glucoamylase by the addition of a starch binding domain. J Biotechnol 118: 167–176.
  • Le Gal-Coeffet MF, Jacks AJ, Sorimachi K, Williamson MP, Williamson G, Archer DB. 1995. Expression in Aspergillus niger of the starch-binding domain of glucoamylase: comparison with the proteolytically produced starch-binding domain. Eur J Biochem 233: 561–567.
  • Lee JW, Kang DO, Kim BY, Oh WK, Mheen TI, Pyun YR, Ahn JS. 2000. Mutagenesis of the glucoamylase signal peptide of Saccharomyces diastaticus and functional analysis in Saccharomyces cerevisiae. FEMS Microbiol Lett 193: 7–11.
  • Lemieux RU, Spohr U, Bach M, Cameron DR, Frandsen TP, Stoffer BB, Svensson B, Palcic MM. 1996. Chemical mapping of the active site of glucoamylase of Aspergillus niger. Can J Chem 74: 319–335.
  • Li GX, Linko YY, Linko P. 1984. Glucoamylase and α-amylase production by immobilized Aspergillus niger. Biotechnol Lett 6: 645–650.
  • Li H, Chi Z, Duan X, Wang L, Sheng J, Wu L. 2007a. Glucoamylase production by the marine yeast Aureobasidium pullulans N13d and hydrolysis of potato starch granules by the enzyme. Process Biochem 42: 462–465.
  • Li H, Chi Z, Wang X, Duan X, Ma L, Gao L. 2007b. Purification and characterization of extracellular amylase from the marine yeast Aureobasidium pullulans N13d and its raw potato starch digestion. Enzyme Microb Technol 40: 1006–1012.
  • Li Y, Reilly PJ, Ford C. 1997. Effect of introducing proline residues on the stability of Aspergillus awamori. Protein Eng 10: 1199–1204.
  • Li Y, Coutinho PM, Ford C. 1998. Effect on thermostability and catalytic activity of introducing disulfide bonds into Aspergillus awamori glucoamylase. Protein Eng 11: 661–667.
  • Libby CB, Cornett CAG, Reilly PJ, Ford C. 1994. Effect of amino acid deletions in the O-glycosylated region of Aspergillus awamori glucoamylase. Protein Eng 7: 1109–1114.
  • Lin LL, Ma YJ, Chien HR, Hsu WH. 1998. Construction of an amylolytic yeast by multiple integration of the Aspergillus awamori glucoamylase gene into a Saccharomyces cerevisiae chromosome. Enzyme Microb Technol 23: 360–365.
  • Lin SC, Liu WT, Liu SH, Chou WI, Hsiung BK, Lin IP, Sheu CC, Chang MDT. 2007. Role of the linker region in the expression of Rhizopus oryzae glucoamylase. BMC Biochem 8: 9 (1–12).
  • Lindeman LR, Rocchiccioli C. 1979. Ethanol in Brazil; brief summary of the state of the industry in 1977. Biotechnol Bioeng 21: 1107–1119.
  • Lis H, Sharon N. 1993. Protein glycosylation: structural and functional aspects. Eur J Biochem 218: b1–27.
  • Liu HL. 2003. Molecular dynamics simulations to determine of the optimum length and type of O-glycosylation in the linker domain of glucoamylase from Aspergillus awamori. J Chin Inst Chem Engrs 34: 655–660.
  • Liu HL, Wang WC. 2002. The predicted unfolding order of the beta-strands in the starch binding domain from Aspergillus niger glucoamylase. Chem Phys Lett 366: 284–290.
  • Liu HL, Wang WC. 2003. Protein engineering to improve the thermostability of glucoamylase from Aspergillus awamori based on molecular dynamics simulations. Protein Eng 16: 19–25.
  • Liu HL, Coutinho PM, Ford C, Reilly PJ. 1998. Mutations to alter Aspergillus awamori glucoamylase selectivity. III. Asn20→Cys/Ala27→Cys, Ala27→Pro, Ser30→Pro, Lys108→Arg, Lys108→Met, Gly137→Ala, 311-314 Loop, Tyr312→Trp and Ser436→Pro. Protein Eng 11: 389–398.
  • Liu HL, Ford C, Reilly PJ. 1999. Mutations to alter Aspergillus awamori glucoamylase selectivity. IV. Combinations of Asn20→Cys/Ala27→Cys, Ser30→Pro, Gly137→Ala, 311–314 Loop, Ser411→Ala and Ser436→Pro. Protein Eng 12: 163–172.
  • Liu HL, Doleyres Y, Coutinho PM, Ford C, Reilly PJ. 2000. Replacement and deletion mutations in the catalytic domain and belt region of Aspergillus awamori glucoamylase to enhance thermostability. Protein Eng 13: 655–659.
  • Liu L, Liu J, Qiu RX, Zhu XG, Dong ZY, Tang GM. 2003. Improving heterologous gene expression in Aspergillus niger by introducing multiple copies of protein-binding sequence containing CCAAT to the promoter. Lett Appl Microbiol 36: 358–361.
  • Liu SH, Chou WI, Sheu CC, Chang MDT. 2005. Improved secretory production of glucoamylase in Pichia pastoris by combination of genetic manipulations. Biochem Biophys Res Commun 326: 817–824.
  • Liu YN, Lai YT, Chou WI, Chang MDT, Lyu PC. 2007. Solution structure of family 21 carbohydrate-binding module from Rhizopus oryzae glucoamylase. Biochem J 403: 21–30.
  • Lo WS, Dranginis AM. 1996. FLO11, a yeast gene related to the STA genes, encodes a novel cell surface flocculin. J Bacteriol 178: 7144–7151.
  • Lo WS, Dranginis AM. 1998. The cell surface flocculin Flo11 is required for pseudohyphae formation and invasion by Saccharomyces cerevisiae. Mol Biol Cell 9: 161–171.
  • Ma YJ, Lin LL, Chien HR, Hsu WH. 2000. Efficient utilization of starch by a recombinant strain of Saccharomyces cerevisiae producing glucoamylase and isoamylase. Biotechnol Appl Biochem 31: 55–59.
  • Machovic M, Janecek S. 2006. The evolution of putative starch-binding domains. FEBS Lett 580: 6349–6356.
  • Maiorella B, Wilke CHR, Blanch HW. 1981. Alcohol production and recovery. Adv Biochem Eng 20: 43–92.
  • Maisch WF, Sobolov M, Petricola AJ. 1979. Distilled beverages. In Peppler HJ, Perlman D, eds. Microbial Technology (p. 79 ). New York: Academic.
  • Manjunath P, Shenoy BC, Rao MRR. 1983. Fungal glucoamylases. J Appl Biochem 5: 235–260.
  • Martel MB, du Penhoat CH, Lertoublon R, Fevre M. 2002. Purification and characterization of a glucoamylase secreted by the plant pathogen Sclerotinia sclerotiorum. Can J Microbiol 48: 212–218.
  • McCarter J, Withers SG. 1994. Mechanisms of enzymatic glycoside hydrolysis. Curr Opin Str Biol 4: 885–892.
  • Meaden P, Ogden K, Bussey H, Tubb RS. 1985. A DEX gene conferring production of extracellular amyloglucosidase in yeast. Gene 34: 325–330.
  • Meagher MM, Reilly PJ. 1989. Kinetics of the hydrolysis of di- and trisaccharides by Aspergillus niger glucoamylses I and II. Biotechnol Bioeng 34: 689–693.
  • Meagher MM, Nikolov ZL, Reilly PJ. 1989. Subsite mapping of Aspergillus niger glucoamylases I and II with malto- and isomaltooligosaccharides. Biotechnol Bioeng 34: 681–688.
  • Merico A, Capitanio D, Vigentini I, Ranzi BM, Compagno C. 2004. How physiological and cultural conditions influence heterologous protein production in Kluyveromyces lactis. J Biotechnol 109: 139–146.
  • Mertens JA, Skory CD. 2007. Isolation and characterization of a second glucoamylase gene without a starch binding domain from Rhizopus oryzae. Enzyme Microb Technol 40: 874–880.
  • Mertens JA, Skory CD, Ibrahim AS. 2006. Plasmids for expression of heterologous proteins in Rhizopus oryzae. Arch Microbiol 186: 41–50.
  • Metwally M. 1998. Glucoamylase production in continuous cultures of Aspergillus niger with special emphasis on growth parameters. World J Microbiol Biotechnol 14: 113–118.
  • Michelin M, Ruller R, Ward RJ, Moraes LAB, Jorge JA, Terenzi HF, Polizeli MLTM. 2008. Purification and biochemical characterization of a thermostable extracellular glucoamylase produced by the thermotolerant fungus Paecilomyces variotii. J Ind Microbiol Biotechnol 35: 17–25.
  • Miller GL, 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31: 426–428.
  • Minami NM, Kilikian BV. 1998. Separation and purification of glucoamylase in aqueous two-phase system by a two-step extraction. J Chromatogr (B) 771: 309–312.
  • Mishra RS, Maheshwari R. 1996. Amylases of thermophilic fungus Thermomyces lanuginosus: their purification, properties, action on starch and response to heat. J Biosci 21: 653–672.
  • Mitsue T, Saha BC, Ueda S. 1979. Glucoamylase of Aspergillus oryzae cultured on steamed rice. J Appl Biochem 1: 410–422.
  • Modena D, Vanoni M, Englard S, Marmur J. 1986. Biochemical and immunological characterization of the STA2-encoded extracellular glucoamylase from Saccharomyces diastaticus. Arch Biochem Biophys 248: 138–150.
  • Mohamed L, Zakaria M, Ali A, Senhaji W, Mohamed O, Mohamed E, Hassan BEL, Mohamed J. 2007. Optimization of growth and extracellular glucoamylase production by Candida famata isolate. African J Biotechnol 6: 2590–2595.
  • Mohamed SA, Fahmy AS, Mohamed TM. 2005. Carbohydrases in camel (Camelus dromedarius) pancreas: purification and characterization of glucoamylase. Comp Biochem Physiol 140: 73–80.
  • Mojovic L, Nikolic S, Rakin M, Vukasinovic M. 2006. Production of bioethanol from corn meal hydrolyzates. Fuel 85: 1750–1755.
  • Mondal K, Sharma A, Gupta MN. 2003. Macroaffinity ligand-facilitated three-phase partitioning for purification of glucoamylase and pullulanase using alginate. Protein Expr Purif 28: 190–195.
  • Monma M, Mikuni K, Ishigami H, Kainuma K. 1987. Purification of the glucoamylase components of Chalara paradoxa by affinity chromatography and chromatofocusing. Carbohydr Res 159: 255–261.
  • Morris VJ, Gunning AP, Faulds CB, Williamson G, Svensson B. 2005. AFM images of complexes between Amylose and Aspergillus niger glucoamylase mutants, native and mutant starch binding domains: a model for the action of glucoamylase. Starch/Starke 57: 1–7.
  • Murai T, Ueda M, Shibasaki Y, Kamasawa N, Osumi M, Imanaka T, Tanaka A. 1999. Development of an arming yeast strain for efficient utilization of starch by co-display of sequential amylolytic enzymes on the cell surface. Appl Microbiol Biotechnol. 51: 65–70.
  • Nagasaka Y, Kurosawa K, Yokota A, Tomita F. 1998. Purification and properties of the raw-starch-digesting glucoamylases from Corticium rolfsii. Appl Microbiol Biotechnol 50: 323–230.
  • Nagasaka Y, Muraki N, Kimura A, Suto M, Yokota A, Tomita F. 1995. Cloning of Corticium rolfsii glucoamylase cDNA and its expression in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 44: 451–458.
  • Nagashima T, Yamamoto Y, Kitamoto K, Kumagai C. 1995. Functional role of A. oryzae glucoamylase C-terminal domain investigated using its cDNA. J Ferment Bioeng 80: 280–282.
  • Naim HY, Niermann T, Kleinhans U, Hollenberg CP, Strasser AW. 1991. Structural and functional similarities suggest that intestinal sucrase-isomaltase, human lysosomal alpha-glucosidase and Schwanniomyces occidentalis glucoamylase are derived from a common ancestral gene. FEBS Lett 294: 109–112.
  • Nakamura LK. 1970. Influence of the acceptor during transglucosylation by transglucosylamylase of Candida tropicalis. Can J Biochem 48: 1260–1267.
  • Nakamura T, Maeda Y, Tanoue N, Makita T, Kato M, Kobayashi T. 2006. Expression profile of amylolytic genes in Aspergillus nidulans. Biosci Biotechnol Biochem 70: 2363–2370.
  • Nakamura Y, Kobayashi F, Ohnaga M, Sawada T. 2000. Alcohol fermentation of starch by a genetic recombinant yeast having glucoamylase activity. Biotechnol Bioeng 53: 21–25.
  • Natarajan SK, Sierks MR. 1996. Identification of enzyme-substrate and enzyme-product complexes in the catalytic mechanism of glucoamylase from Aspergillus awamori. Biochem 35: 15269–15279.
  • Nelson N. 1944. A photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem 153: 375–380.
  • Neustroev KN, Golubev AM, Ibatullin FM, Moseichuk AV. 1993a. Microheterogeneity in O-type sugar chains of carbohydrases secreted by Asp. awamori. Biochem Mol Biol Int 30: 107–113.
  • Neustroev KN, Goulbev AM, Firsov LM, Ibatullin FH, Potasevich I, Makarov A. 1993b. Effect of modification of carbohydrate component on properties of glucoamylase. FEBS Lett 316: 157–160.
  • Nevalainen H, Te’o VJS. 2003. Enzyme production in industrial fungi-molecular genetic strategies for integrated strain improvement. In Arora DK, Kchachatourians GG, eds. Applied Mycology and Biotechnology (Vol 3) Fungal Genomics (pp. 241–259 ). Amsterdam: Elsevier Science.
  • Nguyen QD, Rezessy-Szabo JM, Hoschke A. 2000. Optimisation of composition of media for the production of amylolytic enzymes by Thermomyces lanuginosus ATCC 34626. Food Technol Biotechnol 38: 229–234.
  • Nguyen QD, Rezessy-Szabo JM, Claeysssens M, Stals I, Hoschke A. 2002. Purification and characterization of amylolytic enzymes from thermophilic fungus Thermomyces lanuginosus strain ATCC 34626. Enzyme Microb Technol 31: 345–352.
  • Nielsen BR, Lehmbeck J, Frandsen TP. 2002. Cloning, heterologous expression, and enzymatic characterization of a thermostable glucoamylase from Talaromyces emersonii. Protein Expr Purif 26: 1–8.
  • Nigam P, Singh D. 1995. Enzyme and microbial systems involved in starch processing. Enzyme Microb Technol 17: 770–778.
  • Nikolov ZL, Meagher MM, Reilly PJ. 1989. Kinetics, equilibria, and modeling of the formation of oligosaccharides from D-glucose with Aspergillus niger glucoamylases I and II. Biotechnol Bioeng 34: 694–704.
  • Norouzian D, Akbarzadeh A, Scharer JM, Young MM. 2006. Fungal glucoamylases. Biotechnol Adv 24: 80–85.
  • Norouzian D, Jaffar MB. 1993. Immobilization of glucoamylase produced by fungus Arthrobotrys amerospor. Indian J Exp Biol 31: 680–681.
  • Norouzian D, Rostami K, Nouri ID, Saleh M. 2000. Subsite mapping of purified glucoamylases I, II, III produced by Arthrobotrys amerospora ATCC 34468. World J Microbiol Biotechnol 16: 155–161.
  • Nunberg JH, Meade JH, Cole G, Lawyer FC, McCabe P, Schweickart V, Tal R, Wittman VP, Flatgaard JE, Innis MA. 1984. Molecular cloning and characterization of the glucoamylase gene of Aspergillus awamori. Mol Cell Biol 4: 2306–2315.
  • Odibo FJC, Ulbrich-Hofmann R. 2001. Thermostable α-amylase and glucoamylase from Thermomyces lanuginosus F1. Acta Biotechnol 21: 141–153.
  • Ohnishi H, Sakai H, Ohta T. 1991. Purification and some properties of a glucoamylase from Clostridium sp. G0005. Agric Biol Chem 55: 1901–1902.
  • Ohnishi H, Kitamura H, Minowa T, Sakai H, Ohta T. 1992. Molecular cloning of a glucoamylase gene from a thermophile Clostridium and kinetics of the cloned enzyme. Eur J Biochem 207: 413–418.
  • Oka T, Sameshima Y., Koga T, Kim H, Goto M, Furukawa K. 2005. Protein O-mannosyltransferase A of Aspergillus awamori is involved in O-mannosylation of glucoamylase I. Microbiol 151: 3657–3667.
  • Okada G. 1976. Enzymatic studies on a cellulase system of Trichoderma viride IV Purification and properties of a less-random type cellulase. J Biochem (Tokyo) 80: 913–922.
  • Okimoto Y, Yoshimoto H, Shima H, Akada R, Nimi O, Yamashita I. 1989. Genes required for transcription of STA1 encoding an extracellular glucoamylase in the yeast Saccharomyces. Agric Biol Chem 53: 2797–2800.
  • Olsen J, Thomsen KK. 1991. Improvement of bacterial β-glucanase thermostability by glycosylation. J Gen Microbiol 137: 579–585.
  • Olsen K, Christensen U, Sierks M, Svensson B. 1993. Reaction mechanisms of Trpl20→Phe and wild-type glucoamylases from Aspergillus niger: interactions with maltooligodextrins and acarbose. Biochemistry 32: 9686–9693.
  • Olsen K, Svensson B, Christensen U. 1992. Stopped-flow fluorescence and steady-state kinetic studies of ligand-binding reactions of glucoamylase from Aspergillus niger. Eur J Biochem 209: 777–784.
  • Ono K, Shigeta S, Oka S. 1988. Effective purification of glucoamylase in Koji, a solid culture of Aspergillus oryzae on steamed rice, by affinity chromatography using an immobilized acarbose (BAY g-542). Agric Biol Chem 52: 1707–1714.
  • Oren A. 1983. A thermophilic amyloglucosidase from Halobacterium sodomense, a halophilic bacterium from the Dead Sea. Curr Microbiol 8: 225–230.
  • Pacheco-Chavez RA, Carvalho JCM, Tavares LC, Vessoni Penna TC, Converti A, Sato S. 2004. Production of α-amylase and glucoamylase by a new isolate of Trichoderma sp. using sorghum starch as a carbon source. Eng Life Sci 4: 369–372.
  • Page RDM. 1996. TreeView: an application to display phylogenetic trees on personal computers. Comp Applications Biosci 12: 357–358.
  • Paldi T, Levy I, Shoseyov O. 2003. Glucoamylase starch-binding domain of Aspergillus niger B1: molecular cloning and functional characterization. Biochem J 372: 905–910.
  • Panchal CJ, Russell I, Sills AM, Stewart GG. 1984. Genetic manipulation of brewing and related yeast strains. Food Technol 38: 99–111.
  • Pandey A. 1990. Improvements in solid state fermentation for glucoamylase production. Biological Wastes 34: 11–19.
  • Pandey A. 1995. Glucoamylase research: an overview. Starch/Starke 42: 439–445.
  • Pandey A, Radhakrishnan S. 1992. Packed-bed column bioreactor for production of enzyme. Enzyme Microb Technol 14: 486–488.
  • Pandey A, Radhakrishnan S. 1993. The production of glucoamylase by Aspergillus niger NCIM 1245. Process Biochem 28: 305–309.
  • Pandey A, Ashakumary L, Selvakumar P. 1995. Copra waste—a novel substrate for solid-state fermentation. Bioresour Technol 51: 217–220.
  • Pandey A, Nigam P, Soccol C, Soccol V, Singh D, Mohan R. 2000. Advances in microbial amylases. Biotechnol Appl Biochem 31: 135–152.
  • Pandey A, Selvakumar P, Ashakumary L. 1994. Glucoamylase production by Aspergillus niger on rice bran is improved by adding nitrogen sources. World J Microbiol Biotechnol 10: 348–349.
  • Pandey A, Selvakumar P, Ashakumary L. 1996. Performance of a column bioreactor for glucoamylase synthesis by Aspergillus niger in SSF. Process Biochem 31: 43–46.
  • Pandey A, Soccol CR, Rodriguez-Leon JA, Nigam P. 2001. Solid-State Fermentation in Biotechnology. New Delhi: Asiatech Publishers, Inc.
  • Papagianni M, Joshi N, Moo-Young M. 2002. Comparative studies on extracellular protease secretion and glucoamylase production by free and immobilized Aspergillus niger cultures. J Ind Microbiol Biotechnol 29: 259–263.
  • Pardo JM, Ianez E, Zalacain M, Claros MG, Jimenez A. 1988. Similar short elements in the 5~ regions of the STA2 and SGA genes from Saccharomyces cerevisiae. FEBS Lett 239: 179–184.
  • Pardo JM, Polaina J, Jimenez A. 1986. Cloning of the STA2 and SGA genes encoding glucoamylases in yeasts and regulation of their expression by the STA10 gene of Saccharomyces cerevisiae. Nucleic Acids Res 14: 4701–4718.
  • Park JN, Shin DJ, Kim HO, Kim DH, Lee HB, Chun SB, Bai S. 1999. Expression of Schwanniomyces occidentalis α-amylase gene in Saccharomyces cerevisiae var. diastaticus. J Microbiol Biotechnol 9: 668–671.
  • Pasari AB, Korus RA, Heimsch RC. 1988. Kinetics of the amylase system of Schwanniomyces castellii. Enzyme Microb Technol 10: 156–160.
  • Paszczynski A, Miedziak I, Lobarzewski J, Kochmanska J, Trojanowski J. 1982. A simple method of afinity chromatograpy or the purification of glucoamylase obtained from Aspergillus niger C. FEBS Lett 149: 63–66.
  • Patel D, Evans IH, Bevan EA. 1990. A genetic analysis of glucoamylase activity in the diastatic yeast Saccharomyces cerevisiae NCYC 625. Curr Genet 17: 281–288.
  • Pazur JH, Ando T. 1960. The hydrolysis of glucosyl oligosaccharides with α-d-(1,4) and α-d-(1,6) bonds by fungal amyloglucosidase. J Biol Chem 235: 297–302.
  • Pazur JH, Kleppe K. 1962. The hydrolysis of α-D-glucosides by amyloglucosidase from Aspergillus niger. J Biol Chem 237: 1002–1006.
  • Pazur JH, Tominaga Y, Forseberg LS, Simpson DL. 1980. Glucoenzymes: an unusual type of glucoprotein structure for a glucoamylase. Carbohydr Res 84: 103–114.
  • Pedersen H, Beyer M, Nielson J. 2000. Glucoamylase production in batch, chemostat and fed batch cultivation by an industrial strain of Aspergillus niger. Appl Microbiol Biotechnol 53: 272–277.
  • Peixoto SC, Jorge JA, Terenzi HF, deLourdes M, Polizeli TM. 2003. Rhizopus microsporus var. rhizopodiformis: a thermotolerant fungus with potential for production of thermostable amylases. Int Microbiol 6: 269–273.
  • Penninga D, der Veen BA, Knegtel RMA, van Hijum SAFT, Kalk HJ, Kalk KH, Dijkstra BW, Dijkhuizen L. 1996. The raw starch binding domain of cyclodextrin glycosyltransferase from Bacillus circulans strain 251. J Biol Chem 271: 32777–32784.
  • Peters D. 2006. Carbohydrates for fermentation. Biotechnol J 1: 806–814.
  • Polaina J, Wiggs MY. 1983. STA10: a gene involved in the control of starch utilization by Saccharomyces. Curr Genet 7: 109–112.
  • Polakovic M, Bryjak J. 2004. Modelling of potato starch saccharification by an Aspergillus niger glucoamylase. Biochem Eng J 18: 57–64.
  • Pretorius IS, Modena D, Vanoni M, Englard S, Marmur J. 1986a. Transcriptional control of glucoamylase synthesis in vegetatively growing and sporulating Saccharomyces cerevisiae species. Mol Cell Biol 6: 3034–3041.
  • Pretorius IS, Chow T, Marmur J. 1986. Identification and physical characterization of yeast glucoamylase structural genes. Mol Gen Genet 203: 36–41.
  • Pretorius IS, Chow T, Modena D, Marmur J. 1986b. Molecular cloning and characterization of the STA2 glucoamylase gene of Sacchaomyces cerevisiae. Mol Gen Genet 203: 29–35.
  • Pretorius IS, Lambrechts MG, Marmur J. 1991. The glucoamylase multigene family in Saccharomyces cerevisiae var. diastaticus: an overview. Crit Rev Biochem Mol Biol 26: 53–76.
  • Quigley TA, Kelly CT, Doyle EM, Fogarty WM. 1998. Patterns of raw starch digestion by the glucoamylase of Cladosporium gossypiicola ATCC 38026. Process Biochem 33: 677–681.
  • Rajoka MI, Yasmeen A. 2005. Induction and production studies of a novel glucoamylase of Aspergillus niger. World J Microbiol Biotechnol 21: 179–187.
  • Ramadas M, Holst O, Mattiasson B. 1996. Production of amyloglucosidase by Aspergillus niger under different cultivation regimens. World J Microbiol Biotechnol 12: 267–271.
  • Ramesh HP, Tharanathan RN. 2003. Carbohydrates—the renewable raw materials of high biotechnological value. Crit Rev Biotechnol 23: 149–173.
  • Rao BV, Sastri NVS, Subba Rao PV. 1979. A thermostable glucoamylase from the thermophilic fungus Thermomyces lanuginosus. Biochem J 193: 379–387.
  • Rao BV, Sastri NVS, Subba Rao PV. 1981. Purification and characterization of a thermostable glucoamylase from the thermophilic fungus Thermomyces lanuginosus. Biochem J 193: 379–387.
  • Reilly PJ. 1999. Protein engineering of glucoamylase to improve industrial performance-a review. Starch/Starke 51: 269–274.
  • Reilly PJ. 2006. Glucoamylase. In Whitaker JR, Voragen AGJ, Wong DWS, eds. Handbook of Enzymology (pp. 727–738 ). New York: Marcel Dekker, Inc.
  • Rey MW, Brown KM, Golightly EJ, Fuglasang CC, Nielsen BR, Hendriksen HV, Butterworth A, Xu F. 2003. Cloning, heterologous expression, and characterization of Thielavia terrestris glucoamylase. Biotechnol Appl Biochem 111: 153–166.
  • Riaz M, Perveen R, Javed MR, Nadeem H, Rashid MH. 2007. Kinetic and thermodynamic properties of novel glucoamylase from Humicola sp. Enzyme Microb Technol 41: 558–564.
  • Roberts IN, Jeenes DJ, MacKenzie DA, Wilkinson AP, Sumner IG, Archer DB. 1992. Heterologous gene expression in Aspergillus niger, a glucoamylase–porcine pancreatic prophospholipase A2 fusion protein is secreted and processed to yield mature enzyme. Gene 122: 155–161.
  • Rubinder K, Chadha BS, Singh N, Saini H, Singh S. 2002. Amylase hyperproduction by deregulated mutants of the thermophilic fungus Thermomyces lanuginosus. J Ind Microbiol Biotechnol 29: 70–74.
  • Rubinder K, Chadha BS, Singh S, Saini HS. 2000. Amylase hyper-producing haploid recombinant strains of Thermomyces lanuginosus obtained by intraspecific protoplast fusion. Can J Microbiol 46: 669–673.
  • Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425.
  • Sato F, Okuyama M, Nakai H, Mori H, Kimura A, Chiba S. 2005. Glucoamylase originating from Schwanniomyces occidentalis is a typical α-glucosidase. Biosci Biotechnol Biochem 69: 1905–1913.
  • Satyanarayana T, Noorwez SM, Kumar S, Rao JLUM, Ezhilvannan M, Kaur P. 2004. Development of an ideal starch saccharification process using amylolytic enzymes from thermophiles. Biochem Soc Trans 32: 276–279.
  • Sauer J, Christensen T, Frandsen TP, Mirgorodskaya E, Mcguire KA, Driguez H, Roepstorff P, Sigurskjold BW, Svensson B. 2001. Stability and function of interdomain linker variants of glucoamylase 1 from Aspergillus niger. Biochem 40: 9336–9346.
  • Sauer J, Sigurskjold BW, Christensen U, Frandsen TP, Mirgorodskaya E, Harrison M, Roepstorff P, Svensson B. 2000. Glucoamylase: structure/function relationships, and protein engineering. Biochim Biophys Acta 1543: 275–293.
  • Savelev AN, Firsov LM. 1983. Effect of modification of some amino-acid radicals on enzymatic activity of glucoamylase from Aspergillus awamori. Biochem (Moscow) 48: 1125–1132.
  • Schepers B, Thiemann V, Antranikian G. 2006. Characterization of a novel glucoamylase from the thermoacidophilic Archaeon Picrophilus torridus heterologously expressed in E. coli. Eng Life Sci 6: 311–317.
  • Selvakumar P, Ashakumary L, Pandey A. 1998. Biosynthesis of glucoamylase from Aspergillus niger by solid-state fermentation using tea waste as the basis of solid substrate. Bioresour Technol 65: 83–85.
  • Semimaru T, Goto M, Furudawa K, Hayashida S. 1995. Functional analysis of the threonine and serine-rich Gp-1 domain of glucoamylase I from A. awamori var kawachi. Appl Environ Microbiol 61: 2885–2890.
  • Serour E, Antranikian G. 2002. Novel thermoactive glucoamylases from the thermoacidophilic Archaea Thermoplasma acidophilum, Picrophilus torridus and Picrophilus oshimae. Antonie Van Leeuwenhoek 81: 73–83.
  • Sevcik J, Solovicova A, Hostinova E, Gasperik J, Wilson KS, Dauter Z. 1998. Structure of glucoamylase from Saccharomycopsis fibuligera at 1.7 å resolution. Acta Crystallogr D54: 854–866.
  • Sevcik J, Hostinova E, Solovicova A, Gasperik J, Dauter Z, Wilson KS. 2006. Structure of the complex of a yeast glucoamylase with acarbose reveals the presence of a raw starch binding site on catalytic domain. FEBS J 273: 2171–2171.
  • Shenoy BC, Katwa LC, Appu Rao AG, Raghavendra Rao MR. 1985. Fungal glucoamylases. J Biosci 7: 399–419.
  • Shibuya I, Gomi K, Iimura Y, Takahashi K, Tamura G, Hara S. 1990. Molecular cloning of the glucoamylase gene of Aspergillus shirousami: its expression in Aspergillus oryzae. Agric Biol Chem 54: 1905–1914.
  • Shiraga S, Kawakami M, Ueda M. 2004. Construction of combinatorial library of starch-binding domain of Rhizopus oryzae glucoamylase and screening of clones with enhanced activity by yeast display method. J Mol Catal B. 28: 229–234.
  • Shoji H, Sugimoto T, Hosoi K, Shibata K, Tanabe M, Kawatsura K. 2007. Simultaneous production of glucoamylase and acid-stable α-amylase using novel submerged culture of Aspergillus kawachii NBRC4308. J Biosci Bioeng 103: 203–205.
  • Sierks MR, Svensson B. 1992. Kinetic identification of a hydrogen bonding pair in the glucoamylase-maltose transition state complex. Protein Eng 5: 185–188.
  • Sierks MR, Svensson B. 1993. Functional roles of the invariant aspartic acid 55, tyrosine 306, and aspartic acid 309 in glucoamylase from Aspergillus awamori studied by mutagenesis. Biochem 32: 1113–1117.
  • Sierks MR, Svensson B. 1994. Protein engineering of the relative specificity of glucoamylase from Aspergillus awamori based on sequence similarities between starch degrading enzymes. Protein Eng 7: 1479–1484.
  • Sierks MR, Ford C, Reilly PJ, Svensson B. 1989. Site-directed mutagenesis at the active site Trp120 of Aspergillus awamori glucoamylase. Protein Eng 2: 621–625.
  • Sierks MR, Ford C, Reilly PJ, Svensson B. 1990. Catalytic mechanism of fungal glucoamylase as defined by mutagenesis of Asp 176, Glu 179 and Glu 180 in the enzyme from Aspergillus awamori. Protein Eng 3: 193–198.
  • Sierks MR, Bock K, Refn S, Svensson B. 1992. Active site similarities of glucose dehydrogenase, glucose oxidase and glucoamylase probed by deoxygenated substrates. Biochem 31: 8972–8977.
  • Sigmund RD, McNally MT, Lee DB, Free SJ. 1985. Neurospora glucoamylase and a mutant affected in its regulation. Biochem Genet 23: 89–103.
  • Silveira ST, Oliveira MS, Costa JAV, Kalil SJ. 2006. Optimization of glucoamylase production by Aspergillus niger in solid-state fermentation. Appl Biochem Biotechnol 128: 131–139.
  • Sim L, Quezada-Calvillo R, Sterchi EE, Nichols BL, Rose DR. 2007. Human intestinal maltase-glucoamylase: crystal structure of the N-terminal catalytic subunit and basis of inhibition and substrate specificity. J Mol Biol 375: 782–792.
  • Simoes-Mendes B. 1984. Purification and characterisation of the extracellular amylases of the yeast Schwanniomyces alluvius. Can J Microbiol 30: 1163–1170.
  • Sinnott ML. 1990. Catalytic mechanisms of enzymatic glycosyl transfer. Chem Rev 90: 1171–1202.
  • Soccol CR, Iloki I, Marin B, Raimbault M. 1994. Comparative production of α-amylase, glucoamylase and protein enrichment of raw and cooked cassava by Rhizopus strains in submerged and solid state fermentations. J Food Sci Technol 31: 320–323.
  • Soccol CR, Rojan PJ, Patel AK, Woiciechowski AL, Vandenberghe LPS, Pandey A. 2005. Glucoamylase. In Pandey A, Webb C, Soccol CR, Larroche C, eds. Enzyme Technology (pp. 221–237 ). New Delhi: Asiatech Publishers, Inc.
  • Solovicova A, Gasperik J, Hostinova E. 1996. High-yield production of Saccharomycopsis fibuligera glucoamylase in Escherichia coli, refolding, and comparison of the nonglycosylated and glycosylated enzyme forms. Biochem Biophys Res Commun 224: 790–795.
  • Solovicova A, Christensen T, Hostinova E, Gasperik J, Sevcik J, Svensson B. 1999. Structure-function relationships in glucoamylases encoded by variant Saccharomycopsis fibuligera genes. Eur J Biochem 264: 756–764.
  • Somogyi M. 1952. Notes on sugar determination. J Biol Chem 195: 19–23.
  • Sorimachi K, Jacks AJ, Le Gal-Coeffet MF, Williamson G, Archer DB, Williamson MP. 1996. Solution structure of the granular starch binding domain of glucoamylase from Aspergillus niger by nuclear magnetic resonance spectroscopy. J Mol Biol 259: 970–987.
  • Sorimachi K, Le Gal-Coeffet MF, Williamson G, Archer DB, Williamson MP. 1997. Solution structure of the granular starch binding domain of Aspergillus niger glucoamylase bound to beta-cyclodextrin. Structure 5: 647–661.
  • Southall SM, Simpson PJ, Gilbert HJ, Williamson G, Williamson MP. 1999. The starch-binding domain from glucoamylase disrupts the structure of starch. FEBS Lett 447: 58–60.
  • Specka U, Mayer F. 1993. Cellular location, activity states, and macromolecular organization of glucoamylase in Clostridium thermosaccharolyticum. Arch Microbiol 160: 284–287.
  • Specka U, Mayer F, Antranikian G. 1991. Purification and properties of thermoactive glucoamylase from Clostridium thermosaccharolyticum. Appl Environ Microbiol 57: 2317–2323.
  • Spencer-Martins I, van Uden N. 1979. Extracellular amylolytic system of the yeast Lipomyces kononenkoae. Appl Microbiol Biotechnol 6: 241–250.
  • Spinelli BBL, Lourdes M, Polizeli TM, Terenzi HF, Jorge JA. 1996. Biochemical characterization of glucoamylase from the hyper producer exo-1 mutant strain of Neurospora crassa. FEMS Microbiol Lett 138: 173–177.
  • Srivastava RAK. 1984. Studies on extracellular and intracellular purified amylases from a thermophilic Bacillus stearothermophilus. Enzyme Microb Technol 6: 422–426.
  • Stamford TL, Stamford NP, Coelho LC, Araujo JM. 2002. Production and characterization of a thermostable glucoamylase from Streptosporangium sp. Endophyte of maize leaves. Bioresour Technol 83: 105–109.
  • Steverson EM, Korus RA, Admassu W, Heimsch RC. 1984. Kinetics of the amylase system of Saccharomycopsis fibuliger. Enzyme Microb Technol 6: 549–554.
  • Steyn AJC, Pretorius IS. 1990. Expression and secretion of amylolytic enzymes by Saccharomyces cerevisiae. Acta Varia 5: 76–126.
  • Stoffer B, Aleshin AE, Firsov LM, Svensson B, Honzatko RB. 1995. Refined structure for the complex of D-gluco-dihydroacarbose with glucoamylase from Aspergillus awamori var. X100–2.2 å resolution: dual conformations for extended inhibitors bound to the active site of glucoamylase. FEBS Lett 358: 57–61.
  • Stone PJ, Makoff AJ, Parish JH, Radford A. 1993. Cloning and sequence analysis of the glucoamylase gene of Neurospora crassa. Curr Genet 24: 205–211.
  • Sturtevant J, Dixon F, Wadsworth E, Latge JP, Zhao XJ, Calderone R. 1999. Identification and cloning of GCA1, a gene that encodes a cell surface glucoamylase from Candida albicans. Medical Mycol 37: 357–366.
  • Sun H, Ge X, Zhang W. 2007. Production of a novel raw-starch-digesting glucoamylase by Penicillium sp. X-1 under solid-state fermentation and its use in direct hydrolysis of raw starch. World J Microbiol Biotechnol 23: 603–613.
  • Svensson B, Sierks MR. 1992. Roles of the aromatic side chains in the binding of substrates, inhibitors, and cyclomalto-oligosaccharides to the glucoamylase from Aspergillus niger probed by perturbation difference spectroscopy, chemical modification, and mutagenesis. Carbohydr Res 227: 29–44.
  • Svensson B, Pedersen TG, Svendsen IB, Sakai T, Ottesen M. 1982. Characterization of 2 forms of glucoamylase from Aspergillus niger. Carlsberg Res Commun 47: 55–69.
  • Svensson B, Larsen K, Svendsen I. 1983. Amino acid sequence of tryptic fragments of glucoamylase G1 from Aspergillus niger. Carlsberg Res Commun 48: 517–527.
  • Svensson B, Larsen K, Svendsen I, Boel E. 1983. The complete amino acid sequence of the glycoprotein, glucoamylase G1, from Aspergillus niger. Carlsberg Res Commun 48: 529–544.
  • Svensson B, Larsen K, Gunnarsson A. 1986. Characterization of glucoamylase G2 from Aspergillus niger. Eur J Biochem 154: 497–502.
  • Svensson B, Hespersen H, Sierks MR, MacGregor EA. 1989. Sequence homology between putative raw-starch binding domains from different starch-degrading enzymes. Biochem J 264: 309–311.
  • Svensson B, Stoffer B, Frandsen TP, Sogaard M, Sierks MR, Rodenburg KW, Sigurskjold BW, Dupont C. 1994. Basic molecular features, mechanism and specificity of protein-carbohydrate interactions in amylolytic enzymes. In Bock K, Clausen H, eds. Proceedings of 36th Alfred Benzon Symposium (pp. 202–213 ). Copenhagen: Munksgaard.
  • Svensson B, Frandsen TP, Matsui I, Juge N, Fierobe HP, Stoffer B, Rodenburg KW. 1995. Mutational analysis of catalytic mechanism and specificity in amylolytic enzymes. In Petersen SB, Svensson B, Petersen S, eds. Carboydrate Bioengineering, Progress in Biotechnology 10 (pp. 125–145 ). Amsterdam: Elsevier.
  • Synowiecki J. 2007. The use of starch processing enzymes in the food industry. In Polaina J, Mac Cabe AP, eds. Industrial Enzymes, Structure, Function and Applications (pp. 19–34 ). The Netherlands: Springer.
  • Takahashi T, Tsuchida Y, Irie M. 1978. Purification and some properties of three forms of glucoamylase from a Rhizopus species. J Biochem (Tokyo) 84: 1183–1194.
  • Takahashi T, Inokuchi N, Irie M. 1981. Purification and characterization of a glucoamylase from Aspergillus saitoi. J Biochem (Tokyo) 89: 125–134.
  • Takahashi T, Tsuchida Y, Irie M. 1982. Isolation of two inactive fragments of Rhizopus sp. glucoamylase: relationship among three forms of the enzyme and the isolated fragments. J Biochem (Tokyo) 92: 1623–1633.
  • Takahashi T, Kato K, Ikegami Y, Irie M. 1985. Different behavior towards raw starch of three forms of glucoamylase from a Rhizopus sp. J Biochem (Tokyo) 98: 663–671.
  • Takeda Y, Matsui H, Tanida M, Tani S, Chib S. 1985. Purification and substrate specificity of glucoamylase of Paecilomyces varioti AHU9417. Agric Biol Chem 49: 1633–1641.
  • Takegawa K, Inami M, Yamamoto H, Kumagai T, Tochikura T, Mikami B, Morita Y. 1988. Elucidation of the role of sugar chains in glucoamylase using endo-β-N-acetylglucosaminidase from Flavobacterium sp. Biochim Biophys Acta 995: 187–193.
  • Takesue Y, Takesue S. 1996. Purification and characterization of α-glucosidase complex from the intestine of the frog, Rana japonica. Biochim Biophys Acta 1296: 152–158.
  • Tamaki H. 1978. Genetic studies of ability to ferment starch in Saccharomyces: gene polymorphism. Mol Gen Genet 164: 205–209.
  • Tamaki H. 1980. Purification of glucoamylase isoenzymes produced by Saccharomyces diastaticus. Doshisha Joshi Diagaku Gakujutsu Kenkyu Neupo 31: 270–286.
  • Tamura MK, Shimizu MH, Tago M. 1981. Highly thermostable glucoamylase and process for its production. United State patent No. 4, 247, 637.
  • Tanaka T, Ashikari T, Nakamura N, Kiuchi N, Shibano Y, Amachi T, Yoshizumi H. 1986. Comparison of amino acid sequences of three glucoamylases and their structure-function relationship. Agric Biol Chem 50: 965–969.
  • Tanaka Y, Tao W, Blanchard JS, Hehre EJ. 1994. Transition state structure for the hydrolysis of α-D-glucopyranosyl fluoride by retaining and inverting reaction of glycosylases. J Biol Chem 269: 32306–32312.
  • Tatsumi H, Katano H, Ikeda T. 2007. Kinetic analysis of glucoamylase-catalyzed hydrolysis of starch granules from various botanical sources. Biosci Biotechnol Biochem 71: 946–950.
  • Taylor PM, Napier EJ, Fleming LD. 1978. Some properties of a glucoamylase produced from the thermophilic fungus Humicola lanuginosa. Carbohydr Res 61: 301–308.
  • te Biesebeke R, Biezen N, de Vos WM, van den Hondel CAMJJ, Punt PJ. 2005. Different control mechanisms regulate glucoamylase and protease gene transcription in Aspergillus oryzae in solid-state and submerged fermentation. Appl Microbiol Biotechnol 67: 75–82.
  • Tester RF, Karkalas J, Qi X. 2004. Starch structure and digestibility, Enzyme-Substrate relationship. World’s Poultry Sci J 60: 186–195.
  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882.
  • Thorsen TS, Johnsen AH, Josefsen K, Jensen B. 2006. Identification and characterization of glucoamylase from the fungus Thermomyces lanuginosus. Biochem Biophys Acta 1764: 671–676.
  • Tosi LRO, Terenzi HF, Jorge JA. 1993. Purification and characterization of an extracellular glucoamylase from the thermophilic Humicola grisea var. thermoidea. Can J Microbiol 39: 846–852.
  • Tsuboi A, Yamasaki Y, Suzuki Y. 1974. Two forms of glucoamylase from Mucor rouxianus. Agric Biol Chem 38: 543–550.
  • Ueda S, Saha BC. 1983. Behavior of Endomycopsis fibuligera glucoamylase towards raw starch. Enzyme Microb Technol 5: 196–198.
  • Uotsu-Tomita R, Tonozuka T, Sakai H, Sakano Y. 2001. Novel glucoamylase-type enzymes from Thermoactinomyces vulgaris and Methanococcus jannaschii whose genes are found in the flanking region of the alpha-amylase genes. Appl Microbiol Biotechnol 56: 465–473.
  • Vainio AEI, Torkkeli HT, Tuusa T, Aho SA, Fagerstrom BR, Korhola MP. 1993. Cloning and expression of Hormoconis resinae glucoamylase P cDNA in Saccharomyces cerevisiae. Curr Genet 24: 38–44.
  • Vainio AEI, Lantto R, Parkkinen EEM, Torkkeli HT. 1994. Production of Hormoconis resinae glucoamylase P by a stable industrial strain of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 41: 53–57.
  • van den Hondel CAMJJ, Punt PJ, Van Gorcom RFM. 1991. Heterologous gene expression in filamentous fungi. In Bennet JW, Lasure LL, eds. More Gene Manipulations in Fungi (pp. 396–428 ). San Diego, CA: Academic Press.
  • van den Steen P, Rudd PM, Dwek RA, Opdenakker G. 1998. Concepts and principles of O-linked glycosylation. Crit Rev Biochem Mol Biol 33: 151–208.
  • van der Maarel MJEC, van der Veen B, Uitdehaag JCM, Leemhuis H, Dijkhuizen L. 2002. Properties and applications of starch-converting enzymes of the α-amylase family. J Biotechnol 94: 137–155.
  • Varzakas TH, Roussos S, Arvanitoyannis IS. 2008. Glucoamylases production of Aspergillus niger in solid state fermentation using a continuous counter-current reactor. Int J Food Sci Technol 43: 1159–1168.
  • Ventura L, Gonzalez-Candelas L, Perez-Gonzalez JA, Ramon D. 1995. Molecular cloning and transcriptional analysis of the Aspergillus terreus gla1 gene encoding a glucoamylase. Appl Environ Microbiol 61: 399–402.
  • Verdoes JC, Punt PJ, Schrickx JM, van Verseveld HW, Stouthamer AH, van den Hondel CAMJJ. 1993. Glucoamylase overexpression in Aspergillus niger: molecular genetic analysis of strains containing multiple copies of the glaA gene. Transgenic Res 2: 84–92.
  • Verdoes JC, van Diepeningen AD, Punt PJ, Debets AJM, Stouthamer AH, van den Hondel CAMJJ. 1994a. Evaluation of molecular and genetic approaches to generate glucoamylase overproducing strains of Aspergillus niger. J Biotechnol 36: 165–175.
  • Verdoes JC, Punt PJ, Stouthamer AH, van den Hondel CAMJJ. 1994b. The effect of multiple copies of the upstream region on expression of the Aspergillus niger glucoamylase-encoding gene. Gene 145: 179–187.
  • Verdoes JC, Punt PJ, van den Hondel CAMJJ. 1995. Molecular genetic strain improvement for the overproduction of fungal proteins by filamentous fungi. Appl Microbiol Biotechnol 43: 195–205.
  • Vihinen M, Mantsala P. 1989. Microbial amylolytic enzymes. Crit Rev Biochem Mol Biol 24: 321–418.
  • Vivier MA, Lambrechts MG, Pretorius IS. 1997. Corregulation of starch degradation and dimorphism in the yeast Saccharomyces cerevisiae. Crit Rev Biochem Mol Biol 32: 405–435.
  • Vivier MA, Sollitti P, Pretorius IS. 1999. Functional analysis of multiple AUG codons in the transcripts of the STA2 glucoamylase gene from Saccharomyces cerevisiae. Mol Gen Genet 261: 11–20.
  • Volkova LD, Egorov NS, Yarovenko VL. 1978. Some problems related to the regulation of the glucoamylase synthesis by Endomycopsis fibuligera 21. Prikl Biokhim Mikrobiol 14: 333–340.
  • Wallis GLF, Swift RJ, Hemming FW, Trinci APJ, Peberdy JF. 1999. Glucoamylase overexpression and secretion in Aspergillus niger: analysis of glycosylation. Biochim Biophys Acta 1472: 576–586.
  • Wang C, Eufemi M, Turano C, Giartosio A. 1996. Influence of carbohydrate moiety on the stability of glycoproteins. Biochemistry 35: 7299–7307.
  • Wang Q, Wang X, Wang X, Ma H. 2008. Glucoamylase production from food waste by Aspergillus niger under submerged fermentation. Process Biochem 43: 280–286.
  • Wang Y, Fuchs E, da Silva R, McDaniel A, Seibel J, Ford C. 2006. Improvement of Aspergillus niger glucoamylase thermostability by directed evolution. Starch/Starke 58: 501–508.
  • Ward M, Wilson LJ, Kodama KH, Rey MW, Berka RM. 1990. Improved production of chymosin in Aspergillus by expression as a glucoamylase-chymosin fusion. Biotechnol 8: 435–440.
  • Webb E, Spencer-Martins I. 1983. Extracellular endodextranase from the yeast Lipomyces starkeyi. Can J Microbiol 29: 1092–1095.
  • Webber AL, Lambrechts MG, Pretorius IS. 1997. MSS11, a novel yeast gene involved in the regulation of starch metabolism. Curr Genet. 32: 260–266.
  • Weenink XO, Punt PJ, van den Hondel CAMJJ, Ram AFJ. 2006. A new method for screening and isolation of hypersecretion mutants in Aspergillus niger. Appl Microbiol Biotechnol 69: 711–717.
  • Wilke CR, Yang RD, Scamanna AF, Freitas RP. 1981. Raw material evaluation and process development studies for conversion of biomass to sugars and ethanol. Biotechnol Bioeng 23: 163–183.
  • Williamson G, Belshaw NJ, Williamson MP. 1992. O-glycosylation in Aspergillus glucoamylase: conformation and role in binding. Biochem J 282: 423–428.
  • Williamson G, Belshaw NJ, Noel TR, Ring SG, Williamson MP. 1992. O-glycosylation and stability: unfolding of glucoamylase induced by heat and guanidine hydrochloride. Eur J Biochem 207: 661–670.
  • Williamson MP, Le Gal-Coeffet MF, Sorimachi K, Furniss CSM, Archer DB, Williamson G. 1997. Function of conserved tryptophans in the Aspergillus niger glucoamylase 1 starch binding domain. Biochem 36: 7535–7539.
  • Wong DWS, Robertson GH, Lee CC, Wagschal K. 2007. Synergistic action of recombinant α-amylase and glucoamylase on the hydrolysis of starch granules. The Protein J 26: 159–164.
  • Xiao Z, Storms R, Tsang A. 2006. A quantitative starch–iodine method for measuring alpha-amylase and glucoamylase activities. Anal Biochem 351: 146–148.
  • Yamasaki Y, Konno H. 1991. Purification and properties of glucoamylase form Mucor javanicus. Agric Biol Chem 55: 2429–2430.
  • Yamasaki Y, Suzuki Y, Ozawa J. 1977a. Three forms of α-glucosidase and a glucoamylase from Aspergillus awamori. Agric Biol Chem 41: 2149–2161.
  • Yamasaki Y, Suzuki Y, Ozawa J. 1977b. Purification and properties of two forms of glucoamylase from Pencillium oxalicum. Agric Biol Chem 41: 755–762.
  • Yamasaki Y, Tsuboi A, Suzuki Y. 1977. Two forms of glucoamylases from Mucor rouxianus: properties of two glucoamylases. Agric Biol Chem 41: 2139–2148.
  • Yamashita I. 1989. The threonine- and serine-rich tract of the secretory glucoamylase can direct β-galactosidase to the cell envelope. Agric Biol Chem 53: 483–489.
  • Yamashita I, Fukui S. 1984. Genetic background of glucoamylase production in the yeast Saccharomyces. Agric Biol Chem 48: 137–142.
  • Yamashita I, Suzuki K, Fukui S. 1985. Nucleotide sequence of the extracellular glucoamylase gene STA1 in the yeast Saccharomyces diastaticus. J Bacteriol. 161: 567–573.
  • Yamashita I, Itoh T, Fukui S. 1985. Cloning and expression of the Saccharomycopsis fibuligera glucoamylase gene in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 23: 130–133.
  • Yamashita I, Nakamura M, Fukui S. 1985. Diversity of molecular structures in the yeast extracellular glucoamylases. J Gen Appl Microbiol 31: 399–401.
  • Yamashita I, Nakamura M, Fukui S. 1987. Gene fusion is a possible mechanism underlying the evolution of STA1. J Bacteriol 169: 2142–2149.
  • Yasuda M, Kuwae M, Matsushita H. 1989. Purification and properties of two forms of glucoamylase from Monascus sp. No. 3403. Agric Biol Chem 53: 274–249.
  • Yoshimoto H, Yamashita I. 1991. The GAM1/SNF2 gene of Saccharomyces cerevisiae encodes a highly charged nuclear protein required for transcription of the STA1 gene. Mol Gen Genet 228: 270–280.
  • Yoshimoto H, Ohmae M, Yamashita I. 1992a. The Saccharomyces cerevisiae GAM2/SIN3 protein plays a role in both activation and repression of transcription. Mol Gen Genet. 233: 327–330.
  • Yoshimoto H, Ohmae M, Yamashita I. 1992b. Identity of the GAM3 gene with ADR6, each required for transcription of the STA1 or ADH2 gene in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 56: 527–529.
  • Zaldivar-Aguero JM, Badino AC Jr, Vilaca PR, Facciotti MCR, Schmidell W. 1997. Influence of phosphate concentrations on glucoamylase production by Aspergillus awamori in submerged culture. Braz J Chem Eng. Sao Paulo. 14: 4.
  • Zhao J, Chen YH, Kwan HS. 2000. Molecular cloning, characterization, and differential expression of a glucoamylase gene from the basidiomycetous fungus Lentinula edodes. Appl Environ Microbiol 66: 2531–2535.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.