824
Views
14
CrossRef citations to date
0
Altmetric
Review Article

Advances in techniques for assessment of microalgal lipids

, , &
Pages 566-578 | Received 14 Sep 2015, Accepted 06 Jun 2016, Published online: 15 Jul 2016

References

  • Ratledge C, Wynn JP. The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol. 2002;51:1–51.
  • Meng X, Yang J, Xu X, et al. Biodiesel production from oleaginous microorganisms. Renew Energy. 2009;34:1–5.
  • Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007;25:294–306.
  • Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev. 2010;14:217–232.
  • Dismukes GC, Carrieri D, Bennette N, et al. Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr Opin Biotechnol. 2008;19:235–240.
  • Brown MR, Jeffrey SW, Volkman JK, et al. Nutritional properties of microalgae for mariculture. Aquaculture. 1997;151:315–331.
  • Dunstan GA, Volkman JK, Barrett SM, et al. Changes in the lipid composition and maximisation of the polyunsaturated fatty acid content of three microalgae grown in mass culture. J Appl Phycol. 1993;5:71–83.
  • Ranga Rao A, Sarada R, Ravishankar GA. Influence of CO2 on growth and hydrocarbon production in Botryococcus braunii. J Microbiol Biotechnol. 2007b;17:414–419.
  • Ranga Rao A, Dayananda C, Sarada R. Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Bioresour Technol. 2007;98:560–564.
  • Medina AR, Grima EM, Giménez AG, et al. Downstream processing of algal polyunsaturated fatty acids. Biotechnol Adv. 1998;16:517–580.
  • Halim R, Danquah MK, Webley PA. Extraction of oil from microalgae for biodiesel production: a review. Biotechnol Adv. 2012;30:709–732.
  • da Silva TL, Roseiro JC, Reis A. Applications and perspectives of multi-parameter flow cytometry to microbial biofuels production processes. Trends Biotechnol. 2012;30:225–232.
  • Folch J, Lees M, Stanley GHS. A simple methods for the isolation and purification of total lipids from animal tissues. J Biol Chem. 1957;226:497–509.
  • Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37:911–917.
  • Smedes F, Thomasen TK. Evaluation of the Blight & Dyer lipid determiation method. Mar Pollut Bull. 1996;32:681–688.
  • Do TKT, Hadji-Minaglou F, Antoniotti S, et al. Authenticity of essential oils. TrAC Trends Anal Chem. 2015;66:146–157.
  • Elsey D, Jameson D, Raleigh B, et al. Fluorescent measurement of microalgal neutral lipids. J Microbiol Methods. 2007;68:639–642.
  • Solovchenko A, Khozin-Goldberg I, Chivkunova O. Real time spectral techniques for the detection of buildup of valuable compounds and stress in microalgal cultures: implication for biotechnology. In: Johnsen MN, ed. Microalgae: biotechnology, microbiology and energy. New York: Nova Science Publisher; 2012. p. 251–275.
  • Alonzo F, Mayzaud P. Spectrofluorometric quantification of neutral and polar lipids in zooplankton using Nile Red. Mar Chem. 1999;67:289–301.
  • Greenspan P, Mayer EP, Fowler SD. Nile red: a selective fluorescent stain for intracellular lipid droplets. J Cell Biol. 1985;100:965–973.
  • Cooper MS, Hardin WR, Petersen TW, et al. Visualizing “green oil in live algal cells”. J Biosci Bioeng. 2010;109:198–201.
  • Cooksey KE, Guckert JB, Williams SA, et al. Fluorometric determination of the neutral lipid content of microalgal cells using Nile Red. J Microbiol Methods. 1987;6:333–345.
  • Greenspan P, Fowler SD. Spectrofluorometric studies of the lipid probe Nile red. J Lipid Res. 1985;26:781–789.
  • Stanley DF, Greenspan P. Application of Nile red, a fluorescent hydrophobic probe, for the detection of neutral lipid deposits in tissue sections: comparision with oil red O. J Histochem Cytochem. 1985;33:833–836.
  • Fowler SD, Brown WJ, Warfel J, et al. Use of Nile Red for the rapid in situ quantitation of lipids on thin-layer chromatograms. J Lipid Res. 1979;28:1225–1232.
  • Chen W, Sommerfeld M, Hu Q. Microwave-assisted Nile red method for in vivo quantification of neutral lipids in microalgae. Bioresour Technol. 2011b;102:135–141.
  • Bertozzini E, Galluzzi L, Penna A, et al. Application of the standard addition method for the absolute quantification of neutral lipids in microalgae using Nile red. J Microbiol Methods. 2011;87:17–23.
  • Chen H, Pan T, Chen J, et al. Waveband selection for NIR spectroscopy analysis of soil organic matter based on SG smoothing and MWPLS methods. Chemom Intell Lab Syst. 2011a;107:139–146.
  • Govender T, Ramanna L, Rawat I, et al. BODIPY staining, an alternative to the Nile Red fluorescence method for the evaluation of intracellular lipids in microalgae. Bioresour Technol. 2012;114:507–511.
  • Isleten-Hosoglu M, Gultepe I, Elibol M. Optimization of carbon and nitrogen sources for biomass and lipid production by Chlorella saccharophila under heterotrophic conditions and development of Nile Red fluorescence based method for quantification of its neutral lipid content. Biochem Eng J. 2012;61:11–19.
  • De la Hoz Siegler H, Ayidzoe W, Ben-Zvi A, et al. Improving the reliability of fluorescence-based neutral lipid content measurements in microalgal cultures. Algal Res. 2012;1:176–184.
  • Taylor RL, Rand JD, Caldwell GS. Treatment with algae extracts promotes flocculation, and enhances growth and neutral lipid content in Nannochloropsis oculata a candidate for biofuel production. Mar Biotechnol. 2012;14:774–781.
  • Guzmán HM, de la Jara Valido A, Presmanes KF, et al. Quick estimation of intraspecific variation of fatty acid composition in Dunaliella salina using flow cytometry and Nile Red. J Appl Phycol. 2012;24:1237–1243.
  • Cirulis JT, Strasser BC, Scott JA, et al. Optimization of staining conditions for microalgae with three lipophilic dyes to reduce precipitation and fluorescence variability. Cytometry a. 2012;81:618–626.
  • Velmurugan N, Sung M, Yim SS, et al. Evaluation of intracellular lipid bodies in Chlamydomonas reinhardtii strains by flow cytometry. Bioresour Technol. 2013;138:30–37.
  • Feng GD, Zhang F, Cheng LH, et al. Evaluation of FT-IR and Nile Red methods for microalgal lipid characterization and biomass composition determination. Bioresour Technol. 2013;128:107–112.
  • Wong DM, Franz AK. A comparison of lipid storage in Phaeodactylum tricornutum and Tetraselmis suecica using laser scanning confocal microscopy. J Microbiol Methods. 2013;95:122–128.
  • Yang ZK, Niu YF, Ma YH, et al. Molecular and cellular mechanisms of neutral lipid accumulation in diatom following nitrogen deprivation. Biotechnol Biofuels. 2013;6:67
  • Davis RW, Jones HDT, Collins AM, et al. Label-free measurement of algal triacylglyceride production using fluorescence hyperspectral imaging. Algal Res. 2014;5:181–189.
  • Wong DM, Nguyen TTN, Franz AK. Ethylenediaminetetraacetic acid (EDTA) enhances intracellular lipid staining with Nile Red in microalgae Tetraselmis suecica. Algal Research. 2014;5:158–163.
  • Ren HY, Liu BF, Kong F, et al. Improved Nile red staining of Scenedesmus sp. by combining ultrasonic treatment and three-dimensional excitation emission matrix fluorescence spectroscopy. Algal Res. 2015;7:11–15.
  • Cabanelas ITD, Zwart M, Kleinegris DMM, et al. Rapid method to screen and sort lipid accumulating microalgae. Bioresour Technol. 2015;184:47–52.
  • Kimura K, Yamaoka M, Kamisaka Y. Rapid estimation of lipids in oleaginous fungi and yeasts using Nile Red fluorescence. J Microbiol Methods. 2004;56:331–338.
  • Lee SJ, Yoon BD, Oh HM. Rapid method for the determination of lipid from the green alga Botryococcus braunii. Biotechnol Tech. 1998;12:553–556.
  • Chen W, Zhang C, Song L, et al. A high throughput Nile Red method for quantitative measurement of neutral lipids in microalgae. J Microbiol Methods. 2009;77:41–47.
  • Haugland R. Handbook of Fluorescent Probes and Research Chemicals. Eugene, OR: Molecular Probes Inc; 1996.
  • Rumin J, Bonnefond H, Saint-Jean B, et al. The use of fluorescent Nile Red and BODIPY for lipid measurement in microalgae. Biotechnol Biofuels. 2015;8:42
  • Rabi I, Millman S, Kusch P, et al. The molecular beam resonance method for measuring nuclear magnetic moments. The magnetic moments of Li 6 3, Li 7 3 and F 19 9. Phys Rev. 1939;55:526.
  • Chauton MS, Størseth TR, Krane J. High-resolution magic angle spinning NMR analysis of whole cells of Chaetoceros muelleri (bacillariophyceae) and comparison with 13C-NMR and distortionless enhancement by polarization transfer 13C-NMR analysis of lipophilic extracts. J Phycol. 2004;40:611–618.
  • Todt H, Burk W, Guthausen G, et al. Quality control with time-domain NMR. Eur J Lipid Sci Technol. 2001;103:835–840.
  • Danielewicz MA, Anderson LA, Franz AK. Triacylglycerol profiling of marine microalgae by mass spectrometry. J Lipid Res. 2011;52:2101–2108.
  • Todt H, Guthausen G, Burk W, et al. Water/moisture and fat analysis by time-domain NMR. Food Chem. 2006;96:436–440.
  • Andrew E. Magic angle spinning in solid state nmr spectroscopy. Phil Trans R Soc London A. 1981;299:505–520.
  • Akoh CC, Min DB. Food lipids: chemistry, nutrition, and biotechnology, 3rd ed. London (UK): Taylor & Francis, CRC Press; 2008.
  • Carneiro HSP, Medeiros ARB, Oliveira FCC, et al. Determination of ethanol fuel adulteration by methanol using partial least-squares models based on Fourier transform techniques. Energy Fuels. 2008;22:2767–2770.
  • Ramadan MF, Moersel JT. Screening of the antiradical action of vegetable oils. J Food Compos Anal. 2006;19:838–842.
  • Monteiro MR, Ambrozin ARP, Lião LM, et al. 1H NMR and multivariate calibration for the prediction of biodiesel concentration in diesel blends. J Am Oil Chemists Soc. 2009b;86:581–585.
  • Monteiro MR, Ambrozin ARP, da Silva Santos M, et al. Evaluation of biodiesel-diesel blends quality using 1H NMR and chemometrics. Talanta. 2009a;78:660–664.
  • Chauton MS, Optun OI, Bathen TF, et al. HR MAS 1H NMR spectroscopy analysis of marine microalgal whole cells. Mar. Ecol. Progr. Ser. 2003a;256:57–62.
  • Chauton MS, Størseth TR, Johnsen G. High-resolution magic angle spinning 1H NMR analysis of whole cells of Thalassiosira pseudonana (Bacillariophyceae): broad range analysis of metabolic composition and nutritional value. J Appl Phycol. 2003b;15:533–542.
  • Beal CM, Webber ME, Ruoff RS, et al. Lipid analysis of Neochloris oleoabundans by liquid state NMR. Biotechnol Bioeng. 2010;106:573–583.
  • Davey PT, Hiscox WC, Lucker BF, et al. Rapid triacylglyceride detection and quantification in live micro-algal cultures via liquid state 1H NMR. Algal Res. 2012;1:166–175.
  • Nuzzo G, Gallo C, d’Ippolito G, et al. Composition and quantitation of microalgal lipids by eretic 1H NMR method. Marine Drugs. 2013;11:3742–3753.
  • Arnold AA, Genard B, Zito F, et al. Identification of lipid and saccharide constituents of whole microalgal cells by 13C solid-state NMR. Biochimica Et Biophysica Acta (BBA). 2014;1848:369–377.
  • Han Y, Wen Q, Chen Z, et al. Review of methods used for microalgal lipid-content analysis. Energy Procedia. 2011;12:944–950.
  • Meiboom S, Gill D. Modified spin‐echo method for measuring nuclear relaxation times. Rev Sci Instrum. 1958;29:688–691.
  • Kersey AD, Davis MA, Patrick HJ, et al. Fiber grating sensors. J Lightwave Technol. 1997;15:1442–1463.
  • Cheben P, Powell I, Janz S, et al. Wavelength-dispersive device based on a Fourier-transform Michelson-type arrayed waveguide grating. Opt Lett. 2005;30:1824–1826.
  • Hsu SCP. Infrared Spectroscopy. In: Frank S, ed. Handbook of instrumental techniques for analytical chemistry. Arlington, VA: Prentice Hall; 1997. p. 995.
  • Smith BC. Fundamentals of Fourier transform infrared spectroscopy. Boca Raton, FL: CRC press; 2011.
  • Dean AP, Sigee DC, Estrada B, et al. Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae. Bioresour Technol. 2010;101:4499–4507.
  • Wagner H, Liu Z, Langner U, et al. The use of FTIR spectroscopy to assess quantitative changes in the biochemical composition of microalgae. J Biophotonics. 2010;3:557–566.
  • Laurens LML, Wolfrum EJ. Feasibility of spectroscopic characterization of algal lipids: chemometric correlation of NIR and FTIR Spectra with exogenous lipids in algal biomass. Bioenergy Res. 2011;4:22–35.
  • Odlare M, Nehrenheim E, Ribé V, et al. Cultivation of algae with indigenous species: potentials for regional biofuel production. Appl Energy. 2011;88:3280–3285.
  • Mecozzi M, Pietroletti M, Tornambè A. Molecular and structural characteristics in toxic algae cultures of Ostreopsis ovata and Ostreopsis spp. evidenced by FTIR and FTNIR spectroscopy. Spectrochimica Acta Part A. 2011;78:1572–1580.
  • Mayers JJ, Flynn KJ, Shields RJ. Rapid determination of bulk microalgal biochemical composition by Fourier-Transform Infrared spectroscopy. Bioresour Technol. 2013;148:215–220.
  • Liu J, Mukherjee J, Hawkes JJ, et al. Optimization of lipid production for algal biodiesel in nitrogen stressed cells of Dunaliella salina using FTIR analysis. J Chem Technol Biotechnol. 2013;88:1807–1814.
  • Meng Y, Yao C, Xue S, et al. Application of fourier transform infrared (FT-IR) spectroscopy in determination of microalgal compositions. Bioresour Technol. 2014;151:347–354.
  • Silva CSP, Silva-Stenico ME, Fiore MF, et al. Optimization of the cultivation conditions for Synechococcus sp. PCC7942 (cyanobacterium) to be used as feedstock for biodiesel production. Algal Research. 2014;3:1–7.
  • Vogt F, White L. Spectroscopic analyses of chemical adaptation processes within microalgal biomass in response to changing environments. Anal Chim Acta. 2015;867:18–28.
  • Fuentes-Grünewald C, Bayliss C, Zanain M, et al. Evaluation of batch and semi-continuous culture of Porphyridium purpureum in a photobioreactor in high latitudes using Fourier Transform Infrared Spectroscopy for monitoring biomass composition and metabolites production. Bioresour Technol. 2015;189:357–363.
  • Murdock JN, Dodds WK, Wetzel DL. Subcellular localized chemical imaging of benthic algal nutritional content via HgCdTe array FT-IR. Vib Spectrosc. 2008;48:179–188.
  • Cogdill RP, Drennen J. Near-infrared spectroscopy. Drugs Pharm Sci. 2006;160:313.
  • Lammertyn J, Peirs A, De Baerdemaeker J, et al. (Light penetration properties of NIR radiation in fruit with respect to non-destructive quality assessment. Postharvest Biol Technol. 2000;18:121–132.
  • Martens H, Naes T. Multivariate Calibration. Chichester: John Wiley and Sons; 1992.
  • Bokobza L. Near infrared spectroscopy. J Near Infrared Spectrosc. 1998;6:3–18.
  • Sandnes JM, Ringstad T, Wenner D, et al. Real-time monitoring and automatic density control of large-scale microalgal cultures using near infrared (NIR) optical density sensors. J Biotechnol. 2006;122:209–215.
  • Challagulla V, Walsh KB, Subedi P. Biomass and total lipid content assessment of microalgal cultures using near and short wave infrared spectroscopy. Bioenergy Res. 2014;7:306–318.
  • Laurens LML, Wolfrum EJ. High-throughput quantitative biochemical characterization of algal biomass by NIR spectroscopy; multiple linear regression and multivariate linear regression analysis. J Agric Food Chem. 2013;61:12307–12314.
  • Brown M, Frampton DF, Dunstan G, et al. Assessing near-infrared reflectance spectroscopy for the rapid detection of lipid and biomass in microalgae cultures. J Appl Phycol. 2014;26:191–198.
  • Challagulla V, Walsh K, Subedi P. Microalgal fatty acid composition: rapid assessment using near infrared spectroscopy. J Appl Phycol. 2015;28:85–94. doi:10.1007/s10811-015-0533-5.
  • Liu B, Liu J, Chen T, et al. Rapid characterization of fatty acids in oleaginous microalgae by near-infrared spectroscopy. Int J Mol Sci. 2015;16:7045–7056.
  • Wei X, Jie D, Cuello JJ, et al. Microalgal detection by Raman microspectroscopy. TrAC Trends Anal Chem. 2014;53:33–40.
  • Oh S-K, Yoo SJ, Jeong DH, et al. Real-time estimation of glucose concentration in algae cultivation system using Raman spectroscopy. Bioresour Technol. 2013;142:131–137.
  • Xie C, Dinno MA, Li Y-Q. Near-infrared Raman spectroscopy of single optically trapped biological cells. Opt Lett. 2002;27:249–251.
  • Evans CL, Xie XS. Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine. Annu Rev Anal Chem (Palo Alto Calif). 2008;1:883–909.
  • Diem M, Griffiths PR, Chalmers JM. Vibrational spectroscopy for medical diagnosis. Chichester: Wiley; 2008.
  • Movasaghi Z, Rehman S, Rehman IU. Raman spectroscopy of biological tissues. Appl Spectrosc Rev. 2007;42:493–541.
  • Owen CA, Notingher I, Hill R, et al. Progress in Raman spectroscopy in the fields of tissue engineering, diagnostics and toxicological testing. J Mater Sci Mater Med. 2006;17:1019–1023.
  • Nie S, Emory SR. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science. 1997;275:1102–1106.
  • Ploetz E, Laimgruber S, Berner S, et al. Femtosecond stimulated Raman microscopy. Appl Physics B. 2007;87:389–393.
  • Ozeki Y, Kitagawa Y, Sumimura K, et al. Stimulated Raman scattering microscope with shot noise limited sensitivity using subharmonically synchronized laser pulses. Opt Express. 2010;18:13708–13719.
  • Huang YY, Beal CM, Cai WW, et al. Micro-Raman spectroscopy of algae: composition analysis and fluorescence background behavior. Biotechnol Bioeng. 2010;105:889–898.
  • Weiss TL, Chun HJ, Okada S, et al. Raman spectroscopy analysis of botryococcene hydrocarbons from the green microalga Botryococcus braunii. J Biol Chem 2010;285:32458–32466.
  • Samek O, Jonáš A, Pilát Z, et al. Raman microspectroscopy of individual algal cells: sensing unsaturation of storage lipids in vivo. Sensors (Basel). 2010;10:8635–8651.
  • Wu H, Volponi JV, Singh S. Single-cell diesel mining on microalgae: direct and quantitative monitoring of microalgal oil production in vivo by Raman spectroscopy. Biophys J. 2010;98:744a.
  • He X, Allen J, Black P, et al. Coherent anti-Stokes Raman scattering and spontaneous Raman spectroscopy and microscopy of microalgae with nitrogen depletion. Biomed Opt Express. 2012;3:2896–2906.
  • Sadeghi-Jorabchi H, Wilson R, Belton P, et al. Quantitative analysis of oils and fats by Fourier transform Raman spectroscopy. Spectrochimica Acta Part A. 1991;47:1449–1458.
  • Wu H, Volponi JV, Oliver AE, et al. In vivo lipidomics using single-cell Raman spectroscopy. Proc Natl Acad Sci USA 2011;108:3809–3814.
  • Cherney DP, Conboy JC, Harris JM. Optical-trapping Raman microscopy detection of single unilamellar lipid vesicles. Anal Chem. 2003;75:6621–6628.
  • Zoladek A, Pascut F, Patel P, et al. Development of Raman imaging system for time-course imaging of single living cells. J Spectroscopy. 2010;24:131–136.
  • Samek O, Zemánek P, Jonáš A, et al. Characterization of oil-producing microalgae using Raman spectroscopy. Laser Phys Lett. 2011;8:701–709.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.