960
Views
35
CrossRef citations to date
0
Altmetric
Review Article

Profiling microbial lignocellulose degradation and utilization by emergent omics technologies

, , , &
Pages 626-640 | Received 11 Mar 2016, Accepted 22 Jun 2016, Published online: 20 Jul 2016

References

  • Youngs H, Somerville C. Development of feedstocks for cellulosic biofuels. F1000 Biol Rep. 2012;4:10.
  • Tilman D, Hill J, Lehman C. Carbon-negative biofuels from low-input high-diversity grassland biomass. Science. 2006;314:1598–1600.
  • Pollegioni L, Tonin F, Rosini E. Lignin-degrading enzymes. FEBS J. 2015;282:1190–1213.
  • Wei H, Xu Q, Taylor Ii LE, et al. Natural paradigms of plant cell wall degradation. Curr Opin Biotechnol. 2009;20:330–338.
  • Behling R, Valange S, Chatel G. Heterogeneous catalytic oxidation for lignin valorization into valuable chemicals: what results? What limitations? What trends? Green Chem. 2016;18:1839–1854.
  • Lee SK, Chou H, Ham TS, et al. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr Opin Biotechnol. 2008;19:556–563.
  • Sheridan C. Big oil turns on biofuels. Nat Biotechnol. 2013;31:870–873.
  • Deangelis KM, Allgaier M, Chavarria Y, et al. Characterization of trapped lignin-degrading microbes in tropical forest soil. PLoS One. 2011;6:e19306.
  • Deangelis KM, Sharma D, Varney R, et al. Evidence supporting dissimilatory and assimilatory lignin degradation in Enterobacter lignolyticus scf1. Front Microbiol. 2013;4:280.
  • Zuroff T, Curtis W. Developing symbiotic consortia for lignocellulosic biofuel production. Appl Microbiol Biotechnol. 2012;93:1423–1435.
  • Ferrer M, Golyshina OV, Chernikova TN, et al. Novel hydrolase diversity retrieved from a metagenome library of bovine rumen microflora. Environ Microbiol. 2005;7:1996–2010.
  • Wang F, Li F, Chen G, et al. Isolation and characterization of novel cellulase genes from uncultured microorganisms in different environmental niches. Microbiol Res. 2009;164:650–657.
  • Qi M, Wang P, O'toole N, et al. Snapshot of the eukaryotic gene expression in muskoxen rumen – a metatranscriptomic approach. PLoS One. 2011;6:e20521.
  • Aylward FO, Burnum KE, Scott JJ, et al. Metagenomic and metaproteomic insights into bacterial communities in leaf-cutter ant fungus gardens. ISME J. 2012;6:1688–1701.
  • D'haeseleer P, Gladden JM, Allgaier M, et al. Proteogenomic analysis of a thermophilic bacterial consortium adapted to deconstruct switchgrass. PLoS One. 2013;8:e68465.
  • Jiménez DJ, Chaves-Moreno D, Van Elsas JD. Unveiling the metabolic potential of two soil-derived microbial consortia selected on wheat straw. Sci Rep. 2015;5:13845.
  • Yamada R, Hasunuma T, Kondo A. Endowing non-cellulolytic microorganisms with cellulolytic activity aiming for consolidated bioprocessing. Biotechnol Adv. 2013;31:754–763.
  • Lambertz C, Garvey M, Klinger J, et al. Challenges and advances in the heterologous expression of cellulolytic enzymes: a review. Biotechnol Biofuels. 2014;7:135.
  • Horn S, Vaaje-Kolstad G, Westereng B, et al. Novel enzymes for the degradation of cellulose. Biotechnol Biofuels. 2012;5:45.
  • Chen R, Dou J. Biofuels and bio-based chemicals from lignocellulose: metabolic engineering strategies in strain development. Biotechnol Lett. 2016;38:213–221.
  • Roth S, Spiess AC. Laccases for biorefinery applications: a critical review on challenges and perspectives. Bioprocess Biosyst Eng. 2015;38:2285–2313.
  • Payne CM, Knott BC, Mayes HB, et al. Fungal cellulases. Chem Rev. 2015;115:1308–1448.
  • Moreno AD, Ibarra D, Alvira P, et al. A review of biological delignification and detoxification methods for lignocellulosic bioethanol production. Crit Rev Biotechnol. 2015;35:342–354.
  • Montella S, Amore A, Faraco V. Metagenomics for the development of new biocatalysts to advance lignocellulose saccharification for bioeconomic development. Crit Rev Biotechnol. 2015;1–12.
  • Bugg TDH, Ahmad M, Hardiman EM, et al. The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Biotechnol. 2011;22:394–400.
  • Picart P, Domínguez De María P, Schallmey A. From gene to biorefinery: microbial β-etherases as promising biocatalysts for lignin valorization. Front Microbiol. 2015;6:916.
  • Asgher M, Shahid M, Kamal S, et al. Recent trends and valorization of immobilization strategies and ligninolytic enzymes by industrial biotechnology. J Mol Catal B Enzym. 2014;101:56–66.
  • Rubin EM. Genomics of cellulosic biofuels. Nature. 2008;454:841–845.
  • Chen W, Zhang CK, Cheng Y, et al. A comparison of methods for clustering 16s rRNA sequences into OTUs. PLoS One. 2013;8:e70837.
  • Eichorst SA, Varanasi P, Stavila V, et al. Community dynamics of cellulose-adapted thermophilic bacterial consortia. Environ Microbiol. 2013;15:2573–2587.
  • De Gannes V, Eudoxie G, Hickey WJ. Prokaryotic successions and diversity in composts as revealed by 454-pyrosequencing. Bioresour Technol. 2013;133:573–580.
  • Ventorino V, Aliberti A, Faraco V, et al. Exploring the microbiota dynamics related to vegetable biomasses degradation and study of lignocellulose-degrading bacteria for industrial biotechnological application. Sci Rep. 2015;5:8161.
  • Mhuantong W, Charoensawan V, Kanokratana P, et al. Comparative analysis of sugarcane bagasse metagenome reveals unique and conserved biomass-degrading enzymes among lignocellulolytic microbial communities. Biotechnol Biofuels. 2015;8:16.
  • Do TH, Nguyen TT, Nguyen TN, et al. Mining biomass-degrading genes through illumina-based de novo sequencing and metagenomic analysis of free-living bacteria in the gut of the lower termite Coptotermes gestroi harvested in Vietnam. J Biosci Bioeng. 2014;118:665–671.
  • Sheng P, Li Y, Marshall SD, et al. High genetic diversity of microbial cellulase and hemicellulase genes in the hindgut of Holotrichia parallela larvae. Int J Mol Sci. 2015;16:16545–16559.
  • Lombard V, Golaconda Ramulu H, Drula E, et al. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42:D490–DD95.
  • Feng H, Zhi Y, Shi W, et al. Isolation, identification and characterization of a straw degrading Streptomyces griseorubens jsd-1. Afr J Microbiol Res. 2013;7:2730–2735.
  • Feng H, Sun Y, Zhi Y, et al. Lignocellulose degradation by the isolate of Streptomyces griseorubens jsd-1. Funct Integr Genomics. 2015;15:163–173.
  • Yuki M, Kuwahara H, Shintani M, et al. Dominant ectosymbiotic bacteria of cellulolytic protists in the termite gut also have the potential to digest lignocellulose. Environ Microbiol. 2015;17:4942–4953.
  • Solomon KV, Haitjema CH, Henske JK, et al. Early-branching gut fungi possess a large, comprehensive array of biomass-degrading enzymes. Science. 2016;351:1192–1195.
  • Burnet MC, Dohnalkova AC, Neumann AP, et al. Evaluating models of cellulose degradation by Fibrobacter succinogenes s85. PLoS One. 2015;10:e0143809.
  • Yi X, Gu H, Gao Q, et al. Transcriptome analysis of Zymomonas mobilis zm4 reveals mechanisms of tolerance and detoxification of phenolic aldehyde inhibitors from lignocellulose pretreatment. Biotechnol Biofuels. 2015;8:153.
  • Williams N, Hyland A, Mitchener R, et al. Demonstrating the in situ biodegradation potential of phenol using Bio-Sep® Bio-Traps® and stable isotope probing. Remediation. 2013;23:7–22.
  • Pold G, Melillo J, Deangelis KM. Two decades of warming increases diversity of a potentially lignolytic bacterial community. Front Microbiol. 2015;6:480.
  • Davids M, Hugenholtz F, Martins Dos Santos V, et al. Functional profiling of unfamiliar microbial communities using a validated de novo assembly metatranscriptome pipeline. PLoS One. 2016;11:e0146423.
  • Larance M, Lamond AI. Multidimensional proteomics for cell biology. Nat Rev Mol Cell Biol. 2015;16:269–280.
  • Baker ES, Burnum-Johnson KE, Ibrahim YM, et al. Enhancing bottom-up and top-down proteomic measurements with ion mobility separations. Proteomics. 2015;15:2766–2776.
  • Ibrahim YM, Baker ES, Danielson WF, et al. Development of a new ion mobility (quadrupole) time-of-flight mass spectrometer. Int J Mass Spectrom. 2015;377:655–662.
  • Ewing MA, Glover MS, Clemmer DE. Hybrid ion mobility and mass spectrometry as a separation tool. J Chromatogr A. 2016;1439:3–25.
  • Zhang X, Garimella SVB, Prost SA, et al. Ion trapping, storage, and ejection in structures for lossless ion manipulations. Anal Chem. 2015;87:6010–6016.
  • Catherman AD, Skinner OS, Kelleher NL. Top down proteomics: facts and perspectives. Biochem Biophys Res Commun. 2014;445:683–693.
  • Nesvizhskii AI. Proteogenomics: concepts, applications, and computational strategies. Nat Methods. 2014;11:1114–1125.
  • Singh S, Tiwari R, Renuse S, et al. Proteomic analysis of Streptomyces sp. Ssr-198 grown on paddy straw. J Basic Microbiol. 2015;55:790–797.
  • Adav SS, Ng CS, Arulmani M, et al. Quantitative iTRAQ secretome analysis of cellulolytic Thermobifida fusca. J Proteome Res. 2010;9:3016–3024.
  • Aylward FO, Khadempour L, Tremmel DM, et al. Enrichment and broad representation of plant biomass-degrading enzymes in the specialized hyphal swellings of Leucoagaricus gongylophorus, the fungal symbiont of leaf-cutter ants. PLoS One. 2015;10:e0134752.
  • Aylward FO, Burnum-Johnson KE, Tringe SG, et al. Leucoagaricus gongylophorus produces diverse enzymes for the degradation of recalcitrant plant polymers in leaf-cutter ant fungus gardens. Appl Environ Microbiol. 2013;79:3770–3778.
  • Liu Y, Fredrickson JK, Sadler NC, et al. Advancing understanding of microbial bioenergy conversion processes by activity-based protein profiling. Biotechnol Biofuels. 2015b;8:156.
  • Sadler NC, Wright AT. Activity-based protein profiling of microbes. Curr Opin Chem Biol. 2015;24:139–144.
  • Sadler NC, Melnicki MR, Serres MH, et al. Live cell chemical profiling of temporal redox dynamics in a photoautotrophic cyanobacterium. ACS Chem Biol. 2013;9:291–300.
  • Ansong C, Sadler NC, Hill EA, et al. Characterization of protein redox dynamics induced during light-to-dark transitions and nutrient limitation in cyanobacteria. Front Microbiol. 2014;5:325.
  • Speers AE, Adam GC, Cravatt BF. Activity-based profiling in vivo using a copper(i)-catalyzed azide-alkyne [3+2] cycloaddition. J Am Chem Soc. 2003;125:4686.
  • Cravatt BF, Wright AT, Kozarich JW. Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. Annu Rev Biochem. 2008;77:383–414.
  • Hong V, Steinmetz NF, Manchester M, et al. Labeling live cells by copper-catalyzed alkyne-azide click chemistry . Bioconjug Chem. 2010;21:1912–1916.
  • Anderson LN, Culley DE, Hofstad BA, et al. Activity-based protein profiling of secreted cellulolytic enzyme activity dynamics in Trichoderma reesei qm6a, ng14, and rut-c30. Mol Biosyst. 2013;9:2992–3000.
  • Chauvigné-Hines LM, Anderson LN, Weaver HM, et al. Suite of activity-based probes for cellulose-degrading enzymes. J Am Chem Soc. 2012;134:20521–20532.
  • Chandrasekar B, Colby T, Emran Khan Emon A, et al. Broad-range glycosidase activity profiling. Mol Cell Proteomics. 2014;13:2787–2800.
  • Duo T, Goddard-Borger ED, Withers SG. Fluoro-glycosyl acridinones are ultra-sensitive active site titrating agents for retaining β-glycosidases. Chem Commun (Camb). 2014;50:9379–9382.
  • Anderson LN, Koech PK, Plymale AE, et al. Live cell discovery of microbial vitamin transport and enzyme-cofactor interactions. ACS Chem Biol. 2016;11:345–354.
  • Dettmer K, Aronov PA, Hammock BD. Mass spectrometry-based metabolomics. Mass Spectrom Rev. 2007;26:51–78.
  • Reindl W, Deng K, Gladden JM, et al. Colloid-based multiplexed screening for plant biomass-degrading glycoside hydrolase activities in microbial communities. Energy Environ Sci. 2011;4:2884–2893.
  • Northen TR, Yanes O, Northen MT, et al. Clathrate nanostructures for mass spectrometry. Nature. 2007;449:1033–1036.
  • Cheng X, Hiras J, Deng K, et al. High throughput nanostructure-initiator mass spectrometry screening of microbial growth conditions for maximal β-glucosidase production. Front Microbiol. 2013;4:365.
  • Walker JA, Takasuka TE, Deng K, et al. Multifunctional cellulase catalysis targeted by fusion to different carbohydrate-binding modules. Biotechnol Biofuels. 2015;8:1–20.
  • Deng K, Takasuka TE, Bianchetti CM, et al. Use of nanostructure initiator mass spectrometry (NIMS) to deduce selectivity of reaction in glycoside hydrolases. Front Bioeng Biotechnol. 2015;3:165.
  • Deng K, Takasuka TE, Heins R, et al. Rapid kinetic characterization of glycosyl hydrolases based on oxime derivatization and nanostructure-initiator mass spectrometry (NIMS). ACS Chem Biol. 2014;9:1470–1479.
  • Huang EL, Aylward FO, Kim YM, et al. The fungus gardens of leaf-cutter ants undergo a distinct physiological transition during biomass degradation. Environ Microbiol Rep. 2014;6:389–395.
  • Tang X, Da Costa Sousa L, Jin M, et al. Designer synthetic media for studying microbial-catalyzed biofuel production. Biotechnol Biofuels. 2015;8:1.
  • Lopez-Gonzalez JA, Vargas-Garcia Mdel C, Lopez MJ, et al. Enzymatic characterization of microbial isolates from lignocellulose waste composting: chronological evolution. J Environ Manage. 2014;145:137–146.
  • Liu Z, Inokuma K, Ho SH, et al. Combined cell-surface display- and secretion-based strategies for production of cellulosic ethanol with Saccharomyces cerevisiae. Biotechnol Biofuels. 2015c;8:162.
  • Couturier M, Mathieu Y, Li A, et al. Characterization of a new aryl-alcohol oxidase secreted by the phytopathogenic fungus Ustilago maydis. Appl Microbiol Biotechnol. 2016;100:697–606.
  • Helmich KE, Pereira JH, Gall DL, Jr., et al. Structural basis of stereospecificity in the bacterial enzymatic cleavage of beta-aryl ether bonds in lignin. J Biol Chem. 2016;291:5234–5246.
  • Xie N, Ruprich-Robert G, Silar P, et al. Bilirubin oxidase-like proteins from Podospora anserina: promising thermostable enzymes for application in transformation of plant biomass. Environ Microbiol. 2015;17:866–875.
  • Canam T, Town JR, Tsang A, et al. Biological pretreatment with a cellobiose dehydrogenase-deficient strain of Trametes versicolor enhances the biofuel potential of canola straw. Bioresour Technol. 2011;102:10020–10027.
  • Bhalla A, Bischoff KM, Sani RK. Highly thermostable xylanase production from a thermophilic Geobacillus sp. strain wsucf1 utilizing lignocellulosic biomass. Front Bioeng Biotechnol. 2015;3:84.
  • Silva TLD, Roseiro JC, Reis A. Applications and perspectives of multi-parameter flow cytometry to microbial biofuels production processes. Trends Biotechnol. 2012;30:225–232.
  • Terashima M, Freeman ES, Jinkerson RE, et al. A fluorescence-activated cell sorting-based strategy for rapid isolation of high-lipid Chlamydomonas mutants. Plant J. 2015;81:147–159.
  • Rumin J, Bonnefond H, Saint-Jean B, et al. The use of fluorescent Nile Red and bodipy for lipid measurement in microalgae. Biotechnol Biofuels. 2015;8:42.
  • Ghanavati H, Nahvi I, Roghanian R. Monitoring growth and lipid production of new isolated oleaginous yeast Cryptococcus aerius uimc65 on glucose and xylose cultures. Biotechnol Bioproc Eng. 2014;19:468–477.
  • Pereira H, Barreira L, Mozes A, et al. Microplate-based high throughput screening procedure for the isolation of lipid-rich marine microalgae. Biotechnol Biofuels. 2011;4:1–12.
  • Ren HY, Liu BF, Ma C, et al. A new lipid-rich microalga Scenedesmus sp. strain R-16 isolated using Nile Red staining: effects of carbon and nitrogen sources and initial pH on the biomass and lipid production. Biotechnol Biofuels. 2013;6:143.
  • Grate JW, Mo KF, Shin Y, et al. Alexa fluor-labeled fluorescent cellulose nanocrystals for bioimaging solid cellulose in spatially structured microenvironments. Bioconjug Chem. 2015;26:593–601.
  • Foston M. Advances in solid-state NMR of cellulose. Curr Opin Biotechnol. 2014;27:176–184.
  • Lupoi JS, Singh S, Parthasarathi R, et al. Recent innovations in analytical methods for the qualitative and quantitative assessment of lignin. Renew Sustain Energy Rev. 2015;49:871–906.
  • Le Brech Y, Delmotte L, Raya J, et al. High resolution solid state 2D NMR analysis of biomass and biochar. Anal Chem. 2015;87:843–847.
  • Pereira SC, Maehara L, Machado CMM, et al. Physical–chemical–morphological characterization of the whole sugarcane lignocellulosic biomass used for 2G ethanol production by spectroscopy and microscopy techniques. Renew Energy. 2016;87:607–617.
  • Fu L, Mccallum SA, Miao J, et al. Rapid and accurate determination of the lignin content of lignocellulosic biomass by solid-state NMR. Fuel (Lond). 2015;141:39–45.
  • Sun J, Xu L, Ge M, et al. Radiation degradation of microcrystalline cellulose in solid status. J Appl Polym Sci. 2013;127:1630–1636.
  • Wang KQ, Xiong XY, Chen JP, et al. Comparison of gamma irradiation and steam explosion pretreatment for ethanol production from agricultural residues. Biomass Bioenergy. 2012;46:301–308.
  • Liu Y, Chen J, Wu X, et al. Insights into the effects of γ-irradiation on the microstructure, thermal stability and irradiation-derived degradation components of microcrystalline cellulose (MCC). RSC Adv. 2015a;5:34353–34363.
  • Yang L, Lu M, Carl S, et al. Biomass characterization of agave and opuntia as potential biofuel feedstocks. Biomass Bioenergy. 2015;76:43–53.
  • Warnecke F, Luginbuhl P, Ivanova N, et al. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature. 2007;450:560–565.
  • Allgaier M, Reddy A, Park JI, et al. Targeted discovery of glycoside hydrolases from a switchgrass-adapted compost community. PLoS One. 2010;5:e8812.
  • Suen G, Scott JJ, Aylward FO, et al. An insect herbivore microbiome with high plant biomass-degrading capacity. PLoS Genet. 2010;6:e1001129.
  • Hess M, Sczyrba A, Egan R, et al. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science. 2011;331:463–67.
  • van der Lelie D, Taghavi S, Mccorkle SM, et al. The metagenome of an anaerobic microbial community decomposing poplar wood chips. PLoS One. 2012;7:e36740.
  • Xia Y, Ju F, Fang HHP, et al. Mining of novel thermo-stable cellulolytic genes from a thermophilic cellulose-degrading consortium by metagenomics. PLoS One. 2013;8:e53779.
  • Singh KM, Reddy B, Patel D, et al. High potential source for biomass degradation enzyme discovery and environmental aspects revealed through metagenomics of indian buffalo rumen. Biomed Res Int, 2014, 267189.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.