13,525
Views
38
CrossRef citations to date
0
Altmetric
Review Article

Synthetic genome engineering forging new frontiers for wine yeast

Pages 112-136 | Received 08 Apr 2016, Accepted 16 Jul 2016, Published online: 18 Aug 2016

References

  • Willetts D. Eight great technologies. London: Policy Exchange; 2013.
  • Kelley NJ, Whelan DJ, Kerr E, et al. Engineering biology to address global problems: Synthetic Biology markets, needs, and applications. Industrial Biotechnol. 2014;10:140–149.
  • Silva A, Yang H, Boeke JD, et al. Freedom and responsibility in synthetic genomics: The Synthetic Yeast Project. Genetics. 2015;200:1021–1028.
  • Lee D, Lloyd N, Pretorius IS, et al. Heterologous production of raspberry ketone in the wine yeast Saccharomyces cerevisiae via pathway engineering and synthetic enzyme fusion. Microb Cell Fact. 2016;15:49–55.
  • Cameron DE, Bashor CJ, Collins JJ. A brief history of synthetic biology. Nat Rev Microbiol. 2014;12:381–390.
  • Cello J, Paul AV, Wimmer E. Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template. Science. 2002;297:1016–1018.
  • Smith HO, Hutchison CA, Pfannkoch C, et al. Generating a synthetic genome by whole genome assembly: Phi-X174 bacteriophage from synthetic oligonucleotides. Proc Natl Acad Sci USA. 2003;100:15440–15445.
  • Gibson DG, Benders GA, Andrews-Pfannkoch C, et al. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science. 2008;319:1215–1220.
  • Gibson DG, Glass JI, Lartigue C, et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science. 2010;329:52–56.
  • Gibson DG, Venter JG. Synthetic biology: construction of a yeast chromosome. Nature. 2014;509:168–169.
  • Hutchison CA, Chuang RY, Noskov VN, et al. Design and synthesis of a minimal bacterial genome. Science. 2016;351:6253–6255.
  • Isaacs FJ, Carr PA, Wang HH, et al. Precise manipulation of chromosomes in vivo enables genome-wide codon replacement. Science. 2011;333:348–353.
  • Lajoie MJ, Rovner AJ, Goodman DB, et al. Genomically recoded organisms expand biological functions. Science. 2013;342:357–360.
  • Pennisi E. Building the ultimate yeast genome. Science. 2014;343:1426–1429.
  • Jolly NP, Varela C, Pretorius IS. Not your ordinary yeast: non-Saccharomyces yeasts in wine production uncovered. FEMS Yeast Res. 2014;14:215–237.
  • Pretorius IS D, Toit MD, Van Rensburg P. Designer yeasts for the fermentation industry of the 21st Century. Food Technol Biotechnol. 2003;41:3–10.
  • Herskowitz I. Life cycle of the budding yeast Saccharomyces cerevisiae. Microbiol Rev. 1988;52:536–553.
  • Jermy A. Milestones in synthetic (micro)biology. Nat Microbiol. 2014;12:309.
  • Chambers PJ, Pretorius IS. Fermenting knowledge: the history of winemaking, science and yeast research. EMBO Rep. 2010;11:1–7.
  • Pretorius IS, Curtin CD, Chambers PJ. The winemaker’s bug: from ancient wisdom to opening new vistas with frontier yeast science. Bioeng Bugs. 2012;3:147–156.
  • Goffeau A, Barrell BG, Bussey H. Life with 6000 genes. Science. 1996;274:546–567.
  • Oliver SG. From DNA sequence to biological function. Nature. 1996;379:597–600.
  • Winzeler EA, Shoemaker DD, Astromoff A. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science. 1999;285:901–906.
  • Annaluru N, Muller H, Mitchell LA, et al. Total synthesis of a functional designer eukaryotic chromosome. Science. 2014;344:55–58.
  • Dymond JS, Richardson SM, Coombes CE, et al. Synthetic chromosome arms function in yeast and generate phenotypic diversity by design. Nature. 2011;477:471–476.
  • Hinnen A, Hicks JB, Fink GR. Transformation of yeast. Proc Natl Acad Sci USA. 1978;75:1929–1933.
  • Pretorius IS, Høj PB. Grape and wine biotechnology: challenges, opportunities and potential benefits. Austral J Grape Wine Res. 2005;11:83–108.
  • Borneman AR, Pretorius IS, Chambers PJ. Comparative genomics: a revolutionary tool for wine yeast strain development. Curr Opin Biotechnol. 2013;24:192–199.
  • Borneman AR, Schmidt SA, Pretorius IS. At the cutting-edge of grape and wine biotechnology. Trends Genet. 2013;29:263–271.
  • Williams CT, Pretorius IS, Paulsen PT. Synthetic evolution of metabolic productivity using biosensors. Trends Biotechnol. 2016;34:371–381.
  • David F, Siewers V. Advances in yeast genome engineering. FEMS Yeast Res. 2015;15:1–14. doi:10.1111/1567-1364.12200.
  • Kim IL, Roldão A, Siewers V, et al. A systems-level approach for metabolic engineering of yeast cell factories. FEMS Yeast Res. 2012;12:228–248.
  • Hansen EH, Møller BL, Kock GR, et al. De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker’s yeast (Saccharomyces cerevisiae). Appl Environ Microbiol. 2009;75:2765–2774.
  • Brochado AR, Matos C, Møller BL, et al. Improved vanillin production in baker’s yeast through in silico design. Microbial Cell Fact. 2010;9:1–15.
  • Brochado AR, Patil KR. Overexpression of O-methyltransferase leads to improved vanillin production in baker’s yeast only when complemented with model-guided network engineering. Biotechnol Bioeng. 2013;110:656–659.
  • Cankar K, Van Houwelingen A, Bosch D, et al. A chicory cytochrome P450 mono-oxygenase CYP71AV8 for the oxidation of (+)-valencene. FEBS Lett. 2011;585:178–182.
  • Gallage NJ, Møller BL. Vanillin bioconversion and bioengineering of the most popular plant flavour and its de novo biosynthesis in the vanilla orchid. Mol Plant. 2015;8:40–57.
  • Strucko T, Magnesko O, Mortensen UH. Benchmarking two commonly used Saccharomyces cerevisiae strains for heterologous vanillin-β-glucoside production. Metabolic Eng Comm. 2015;2:99–108.
  • Becker VW, Armstrong GO, Van der Merwe MJ, et al. Metabolic engineering of Saccharomyces cerevisiae for the synthesis of the wine-related antioxidant resveratrol. FEMS Yeast Res. 2003;4:79–85.
  • Li M, Kildegaard KR, Chen Y, et al. De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae. Metab Eng. 2015;32:1–11.
  • Paddon CJ, Westfall PJ, Pitera DJ, et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature. 2013;496:528–532.
  • Andersen-Ranberg J, Kongstad KT, Nielsen MT, et al. Expanding the landscape of diterpene structural diversity through stereochemically controlled combinatorial biosynthesis. Angewandte Chem. 2016;128:2182–2186.
  • Pretorius IS. Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking. Yeast. 2000;16:675–729.
  • Verstrepen KJ, Chambers PJ, Pretorius IS. The development of superior yeast strains for the food and beverage industries: challenges, opportunities and potential benefits. In: Querol A, Fleet GH, editors. The yeast handbook: yeasts in food and beverages. Heidelberg: Springer; 2006. p. 399–444.
  • Chambers PJ, Bellon JR, Schmidt SA, et al. (2009). Non-genetic engineering approaches to isolating and generating novel yeasts for industrial applications. In: Kunze G, Satyanarayana T, editors. Yeast biotechnology: diversity and applications. Berlin: Springer; 2009. p. 433–457.
  • Cambon B, Monteil V, Remize F, et al. Effects of GPD1 overexpression in Saccharomyces cerevisiae commercial wine yeast strains lacking ALD6 genes. Appl Environ Microbiol. 2006;72:4688–4694.
  • De Barros Lopes MA, Rehman AU, Gockowiak H, et al. Fermentation properties of a wine yeast over-expressing the Saccharomyces cerevisiae glycerol 3-phosphate dehydrogenase gene (GPD2). Austral J Grape Wine Res. 2000;6:208–215.
  • Eglinton JM, Heinrich AJ, Pollnitz AP, et al. Decreasing acetic acid accumulation by a glycerol overproducing strain of Saccharomyces cerevisiae by deleting the ALD6 aldehyde dehydrogenase gene. Yeast. 2002;19:295–301.
  • Kutyna DR, Varela C, Henschke PA, et al. Microbiological approaches to lowering ethanol concentration in wine. Trends Food Sci Technol. 2010;21:293–302.
  • Kutyna DR, Varela C, Stanley GA, et al. Adaptive evolution of Saccharomyces cerevisiae to generate strains with enhanced glycerol production. Appl Microbiol Biotechnol. 2012;93:1175–1184.
  • Michnick S, Roustan J-L, Remize F, et al. Modulation of glycerol and ethanol yields during alcoholic fermentation in Saccharomyces cerevisiae strains overexpressed or disrupted for GPD1 encoding glycerol 3-phosphate dehydrogenase. Yeast. 1997;13:783–793.
  • Remize F, Roustan J, Sablayrolles J, et al. Glycerol overproduction by engineered Saccharomyces cerevisiae wine yeast strains leads to substantial changes in by-product formation and to a stimulation of fermentation rate in stationary phase. Appl Environ Microbiol. 1999;65:143–149.
  • Tilloy V, Ortiz-Julien A, Dequin S. Reduction of ethanol yield and improvement of glycerol formation by adaptive evolution of the wine yeast Saccharomyces cerevisiae under hyperosmotic conditions. Appl Environ Microbiol. 2014;80:2623–2632.
  • Tilloy V, Cadiere A, Ehsani M, et al. Reducing alcohol levels in wines through rational and evolutionary engineering of Saccharomyces cerevisiae. Int J Food Microbiol. 2015;213:49–58.
  • Varela C, Kutyna DR, Solomon M, et al. Evaluation of gene modification strategies to develop low-alcohol wine yeasts. Appl Environ Microbiol. 2012;17:6068–6077.
  • Cordente AG, Heinrich AJ, Pretorius IS, et al. Isolation of sulfite reductase variants of a commercial wine yeast with significantly reduced hydrogen sulfide production. FEMS Yeast Res. 2009;9:446–459.
  • Cordente AG, Curtin CD, Varela C, et al. Flavour-active wine yeasts. Appl Microbiol Biotechnol. 2012;96:601–618.
  • Luo Z, Walkey CJ, Madilao LL, et al. Functional improvement of Saccharomyces cerevisiae to reduce volatile acidity in wine. FEMS Yeast Res. 2013;13:485–494.
  • Lilly M, Bauer FF, Lambrechts MG, et al. The effect of increased yeast alcohol acetyltransferase and esterase activity on the flavour profiles of wine and distillates. Yeast. 2006;23:641–659.
  • Lilly M, Styger G, Bauer FF, et al. The effect of increased yeast branched-chain amino acid transaminase activity and the production of higher alcohols on the flavor profiles of wine and distillates. FEMS Yeast Res. 2006;6:726–743.
  • Carrau FM, Medina K, Boido E, et al. De novo synthesis of monoterpenes by Saccharomyces cerevisiae wine yeasts. FEMS Microbiol Lett. 2005;243:107–115.
  • Cordente AG, Cordero-Bueso G, Pretorius IS, et al. Novel wine yeast with mutations in YAP1 that produce less acetic acid during fermentation. FEMS Yeast Res. 2013;13:62–73.
  • Holt S, Cordente AG, Williams SJ, et al. Engineering Saccharomyces cerevisiae to release 3-mercaptohexan-1-ol during fermentation through overexpression of an S. cerevisiae gene, STR3, for improvement of wine aroma. Appl Environ Microbiol. 2011;77:3626–3632.
  • Roncoroni M, Santiago M, Hooks DO, et al. The yeast IRC7 gene encodes a β-lyase responsible for production of the varietal thiol 4-mercapto-4-methylpentan-2-one in wine. Food Microbiol. 2011;28:926–935.
  • Swiegers JH, Bartowsky EJ, Henschke PA, et al. Yeast and bacterial modulation of wine aroma and flavour. Austral J Grape Wine Res. 2005;11:139–173.
  • Swiegers JH, Capone DL, Pardon KH, et al. Engineering volatile thiol release in Saccharomyces cerevisiae for improved wine aroma. Yeast. 2007;24:561–574.
  • Swiegers JH, Pretorius IS. Modulation of volatile sulfur compounds by wine yeast. Appl Microbiol Biotechnol. 2007;74:954–960.
  • Swiegers JH, Saerens SMG, Pretorius IS. Novel yeast strains as tools to adjust the flavour of fermented beverages to market specifications. In: Frenkel DH, Belanger F, editors. Biotechnology in flavour production. Oxford: Blackwell Publishing; 2008. p. 1–55.
  • Swiegers JH, Kievit RL, Siebert T, et al. The influence of yeast on the aroma of Sauvignon Blanc wine. Food Microbiol. 2009;26:204–211.
  • Thibon C, Marullo P, Claisse O, et al. Nitrogen catabolic repression controls the release of volatile thiols by Saccharomyces cerevisiae during wine fermentation. FEMS Yeast Res. 2008;8:1076–1086.
  • Wood C, Siebert TE, Parker M, et al. From wine to pepper: rotundone, an obscure sesquiterpene, is a potent spicy aroma compound. J Agric Food Chem. 2008;56:3738–3744.
  • Takahashi S, Yeo Y, Greenhagen BT, et al. Metabolic engineering of sesquiterpene metabolism in yeast. Biotechnol Bioeng. 2007;97:170–181.
  • Takase H, Sasaki K, Shinmori H, et al. Cytochrome P450 CYP71BE5 in grapevine (Vitis vinifera) catalyzes the formation of the spicy aroma compound (−)-rotundone. J Exp Bot. 2016;67:787–798.
  • Volschenk H, Viljoen-Bloom M, Van Staden J, et al. Genetic engineering of an industrial strain of Saccharomyces cerevisiae for l-malic acid degradation via an efficient malo-ethanolic pathway. S Afr J Enol Vitic. 2004;25:63–73.
  • Husnik JI, Volschenk H, Bauer F, et al. Metabolic engineering of malolactic wine yeast. Metabolic Eng. 2006;8:315–323.
  • Coulon J, Husnik JI, Inglis DL, et al. Metabolic engineering of Saccharomyces cerevisiae to minimize the production of ethyl carbamate in wine. Am J Enol Vitic. 2006;57:113–124.
  • Pretorius IS, Bauer FF. Meeting the consumer challenge through genetically customized wine-yeast strains. Trends Biotechnol. 2002;20:426–432.
  • Pretorius IS, Curtin CD, Chambers PJ. Designing wine yeast for the future. In: Holzapfel W, editor. Advances in fermented foods and beverages: improving quality, technologies and health benefits. Cambridge: Woodhead Publishing; 2015. p. 195–226.
  • Borneman AR, Forgan AH, Pretorius IS, et al. Comparative genome analysis of a Saccharomyces cerevisiae wine strain. FEMS Yeast Res. 2008;8:1185–1195.
  • Borneman AR, Desany BA, Riches D, et al. Whole genome comparison reveals novel genetic elements that characterize the genome of industrial strains of Saccharomyces cerevisiae. PLoS Genet. 2011;7:e1001287.
  • Borneman AR, Desany BA, Riches D, et al. The genome sequence of the wine yeast VIN7 reveals an allotriploid hybrid genome with Saccharomyces cerevisiae and Saccharomyces kudriavzevii origins. FEMS Yeast Res. 2012;12:88–96.
  • Dunn B, Richter C, Kvitek DJ, et al. Analysis of the Saccharomyces cerevisiae pan-genome reveals a pool of copy number variants distributed in diverse yeast strains from differing industrial environments. Genome Res. 2012;22:908–924.
  • Galeote V, Novo M, Salema-Oom M, et al. FSY1, a horizontally transferred gene in the Saccharomyces cerevisiae EC1118 wine yeast strain, encodes a high-affinity fructose/H + symporter. Microbiology. 2010;56:3754–3761.
  • Galeote V, Bigey F, Beyne E, et al. Amplification of a Zygosaccharomyces bailii DNA segment in wine yeast genomes by extrachromosomal circular DNA formation. PLoS One. 2011;6:e17872.
  • Novo M, Bigey F, Beyne E, et al. Eukaryote-to-eukaryote gene transfer events revealed by the genome sequence of the wine yeast Saccharomyces cerevisiae EC1118. Proc Natl Acad Sci USA. 2009;106:16333–16338.
  • Wei W, McCusker JH, Hyman RW, et al. Genome sequencing and comparative analysis of Saccharomyces cerevisiae strain YJM789. Proc Natl Acad Sci USA. 2007;104:12825–12830.
  • Liti G, Carter DM, Moses AM, et al. Population genomics of domestic and wild yeasts. Nature. 2009;458:337–341.
  • Borneman AR, Pretorius IS. Genomic insights into the Saccharomyces sensu stricto complex. Genetics. 2015;199:281–291.
  • Zabetakis I, Holden MA. Strawberry flavour: analysis and biosynthesis. J Sci Food Agric. 1997;74:421–434.
  • Beekwilder J, van der Meer IM, Sibbesen O. Microbial production of natural raspberry ketone. Biotechnol J. 2007;2:1270–1279.
  • Nielsen J, Keasling JD. Synergies between synthetic biology and metabolic engineering. Nat Biotechnol. 2011;29:693–695.