1,978
Views
72
CrossRef citations to date
0
Altmetric
Review Article

Remediation of contaminated soils by biotechnology with nanomaterials: bio-behavior, applications, and perspectives

, , , , , , , & show all
Pages 455-468 | Received 20 Dec 2016, Accepted 29 May 2017, Published online: 13 Sep 2017

References

  • Cheng M, Zeng G, Huang D, et al. Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: a review. Chem Eng J. 2015;284:582–598.
  • Chen M, Xu P, Zeng G, et al. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: applications, microbes and future research needs. Biotechnol Adv. 2015;33:745–755.
  • Wang H, Yuan X, Wu Y, et al. Photodeposition of metal sulfides on titanium metal–organic frameworks for excellent visible-light-driven photocatalytic Cr(VI) reduction. RSC Adv. 2015;5:32531–32535.
  • González V, Salinas J, García I, et al. Using marble sludge and phytoextraction to remediate metal(loid)s polluted soils. J Geochem Explor. 2016;174:1–172.
  • Singh NP, Sharma JK, Santal AR. Biotechnological Approaches to Remediate Soil and Water Using Plant–Microbe Interactions. Phytoremediation 2016;2016:131–152.
  • Huang DL, Wang C, Xu P, et al. A coupled photocatalytic-biological process for phenol degradation in the Phanerochaete chrysosporium-oxalate-Fe3O4 system. Int Biodeter Biodegr. 2014;97:115–123.
  • Wang H, Yuan X. New generation material for oil spill cleanup. Environ Sci Pollut Res Int. 2014;21:1248.
  • Chugunov VA, Ermolenko ZM, Jigletsova SK, et al. Development and testing of the biosorbent ekosorb prepared from an association of oil-oxidizing bacteria for cleaning oil-polluted soils. Appl Biochem Microbiol. 2000;36:572–576.
  • Gu J, Zhou W, Jiang B, et al. Effects of biochar on the transformation and earthworm bioaccumulation of organic pollutants in soil. Chemosphere 2016;145:431–437.
  • Wang H, Yuan X, Wu Z, et al. Removal of basic dye from aqueous solution using Cinnamomum camphora sawdust: kinetics, isotherms, thermodynamics, and mass-transfer processes. Sep Sci Technol. 2014;49:2689–2699.
  • Lin PC, Lin S, Wang PC, et al. Techniques for physicochemical characterization of nanomaterials. Biotechnol Adv. 2014;32:711–726.
  • Xu P, Zeng GM, Huang DL, et al. Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ. 2012;424:1–10.
  • Zhang C, Lai C, Zeng G, et al. Efficacy of carbonaceous nanocomposites for sorbing ionizable antibiotic sulfamethazine from aqueous solution. Water Res. 2016;95:103–112.
  • Huang DL, Xue WJ, Zeng GM, et al. Immobilization of Cd in river sediments by sodium alginate modified nanoscale zero-valent iron: impact on enzyme activities and microbial community diversity. Water Res. 2016;106:15–25.
  • Jia W, Chang Z, Zeng G, et al. Synthesis and evaluation of a new class of stabilized nano-chlorapatite for Pb immobilization in sediment. J Hazard Mater. 2016;320:278–288.
  • El-Temsah YS, Joner EJ. Effects of nano-sized zero-valent iron (nZVI) on DDT degradation in soil and its toxicity to collembola and ostracods. Chemosphere 2013;92:131–137.
  • Li S, Turaga U, Shrestha B, et al. Mobility of polyaromatic hydrocarbons (PAHs) in soil in the presence of carbon nanotubes. Ecotoxicol Environ Saf. 2013;96:168--174.
  • Shipley HJ, Engates KE, Guettner AM. Study of iron oxide nanoparticles in soil for remediation of arsenic. J Nanopart Res. 2011;13:2387–2397.
  • Lin Z, Tong H, Hong W, et al. Ni-Co alloy catalyst from LaNi1−xCoxO3 perovskite supported on zirconia for steam reforming of ethanol. Appl Catal B-Environ. 2016;187:19–29.
  • Li T, Luo S, Luo Y, et al. Ag/AgI nanoparticles decorated WO3/TiO2 nanotubes with enhanced visible light photocatalytic activity. Mater Lett. 2016;180:130–134.
  • Yuan X, Wang H, Wu Y, et al. One-pot self-assembly and photoreduction synthesis of silver nanoparticle-decorated reduced graphene oxide/MIL-125(Ti) photocatalyst with improved visible light photocatalytic activity. Appl Organometal Chem. 2016;30:289–296.
  • Zhang L, Wang L, Zhang P, et al. Facilitated transport of 2,2',5,5'-polychlorinated biphenyl and phenanthrene by fullerene nanoparticles through sandy soil columns. Environ Sci Technol. 2011;45:1341–1348.
  • Qi Z, Hou L, Zhu D, et al. Enhanced transport of phenanthrene and 1-naphthol by colloidal graphene oxide nanoparticles in saturated soil. Environ Sci Technol. 2014;48:10136–10144.
  • Ditta A, Arshad M. Applications and perspectives of using nanomaterials for sustainable plant nutrition. Nanotechnol Rev. 2016;5:209–229.
  • Reddy PVL, Hernandez-Viezcas J, Peralta-Videa J, et al. Lessons learned: are engineered nanomaterials toxic to terrestrial plants? Sci Total Environ. 2016;568:470–479.
  • Lau CP, Abdul-Wahab MF, Jaafar J, et al. Toxic effect of high concentration of sonochemically synthesized polyvinylpyrrolidone-coated silver nanoparticles on Citrobacter sp. A1 and Enterococcus sp. C1. J Microbiol Immunol. 2015. DOI:10.1016/j.jmii.2015.08.004.
  • Mohammed AE. Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles mediated by Eucalyptus camaldulensis leaf extract. Asian Pac J Trop Biomed. 2015;5:382–386.
  • Suppi S, Kasemets K, Ivask A, et al. A novel method for comparison of biocidal properties of nanomaterials to bacteria, yeasts and algae. J Hazard Mater. 2015;286:75–84.
  • De La Torre-Roche R, Hawthorne J, Deng Y, et al. Multiwalled carbon nanotubes and C60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants. Environ Sci Technol. 2013;47:12539–12547.
  • Towell MG, Browne LA, Paton GI, et al. Impact of carbon nanomaterials on the behaviour of 14C-phenanthrene and 14C-benzo-[a] pyrene in soil. Environ Pollut. 2011;159:706–715.
  • Singh J, Lee BK. Influence of nano-TiO2 particles on the bioaccumulation of Cd in soybean plants (Glycine max): a possible mechanism for the removal of Cd from the contaminated soil. J Environ Manage. 2016;170:88–96.
  • Kumari B, Singh DP. A review on multifaceted application of nanoparticles in the field of bioremediation of petroleum hydrocarbons. Ecol Eng. 2016;97:98–105.
  • Schwab F, Zhai G, Kern M, et al. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants – critical review. Nanotoxicology 2015;10:257.
  • Monreal CM, Derosa M, Mallubhotla SC, et al. Nanotechnologies for increasing the crop use efficiency of fertilizer-micronutrients. Biol Fert Soils 2015;52:1–15.
  • Zhu H, Han J, Xiao JQ, et al. Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit. 2008;10:713–717.
  • Hischemöller A, Nordmann J, Ptacek P, et al. In-vivo imaging of the uptake of upconversion nanoparticles by plant roots. J Biomed Nanotechnol. 2009;5:278–284.
  • Lin S, Reppert J, Hu Q, et al. Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 2009;5:1128–1132.
  • Begum P, Ikhtiari R, Fugetsu B, et al. Phytotoxicity of multi-walled carbon nanotubes assessed by selected plant species in the seedling stage. Appl Surf Sci. 2012;262:120–124.
  • Rico CM, Morales MI, Barrios AC, et al. Effect of cerium oxide nanoparticles on the quality of rice (Oryza sativa L.) grains. J Agric Food Chem. 2013;61:11278–11285.
  • Anjum NA, Adam V, Kizek R, et al. Nanoscale copper in the soil-plant system – toxicity and underlying potential mechanisms. Environ Res. 2015;138:306–325.
  • Martin-Ortigosa S, Valenstein JS, Wei S, et al. Parameters affecting the efficient delivery of mesoporous silica nanoparticle materials and gold nanorods into plant tissues by the biolistic method. Small 2012;8:413.
  • Le VN, Rui Y, Xin G, et al. Uptake, transport, distribution and bio-effects of SiO2 nanoparticles in Bt-transgenic cotton. J Nanobiotechnology 2014;12:50.
  • Ma X, Gurung A, Yang D. Phytotoxicity and uptake of nanoscale zero-valent iron (nZVI) by two plant species. Sci Total Environ. 2013;443:844–849.
  • Larue C, Laurette J, Herlin-Boime N, et al. Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. Sci Total Environ. 2012;431:197–208.
  • Barrios AC, Rico CM, Trujillo-Reyes J, et al. Effects of uncoated and citric acid coated cerium oxide nanoparticles, bulk cerium oxide, cerium acetate, and citric acid on tomato plants. Sci Total Environ. 2016;563–564:956–964.
  • Koelmel J, Leland T, Wang H, et al. Investigation of gold nanoparticles uptake and their tissue level distribution in rice plants by laser ablation-inductively coupled-mass spectrometry. Environ Pollut. 2013;174:222–228.
  • Tripathi DK, Gaur S, Singh S, et al. An overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytotoxicity. Plant Physiol Biochem. 2016;110:2–12.
  • Cañas JE, Long M, Nations S, et al. Effects of functionalized and nonfunctionalized single‐walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem. 2008;27:1922–1931.
  • Song U, Lee S. Phytotoxicity and accumulation of zinc oxide nanoparticles on the aquatic plants Hydrilla verticillata and Phragmites australis: leaf-type-dependent responses. Environ Sci Pollut Res. 2016;23:8539–8545.
  • Ma XM, Geiserlee J, Deng Y, et al. Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ. 2010;408:3053–3061.
  • Ma C, White JC, Dhankher OP, et al. Metal-based nanotoxicity and detoxification pathways in higher plants. Environ Sci Technol. 2015;49:7109.
  • Lin D, Xing B. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut. 2007;150:243–250.
  • Stampoulis D, Sinha SK, White JC. Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol. 2009;43:9473–9479.
  • Begum P, Ikhtiari R, Fugetsu B. Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce. Carbon. 2011;49:3907–3919.
  • Tan X-M, Lin C, Fugetsu B. Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells. Carbon. 2009;47:3479–3487.
  • Lin D, Xing B. Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol. 2008;42:5580–5585.
  • Nair R, Mohamed MS, Gao W, et al. Effect of carbon nanomaterials on the germination and growth of rice plants. J Nanosci Nanotechnol. 2012;12:2212–2220.
  • Giraldo JP, Landry MP, Faltermeier SM, et al. Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater. 2014;13:400–408.
  • Lahiani MH, Chen J, Irin F, et al. Interaction of carbon nanohorns with plants: Uptake and biological effects. Carbon 2015;81:607–619.
  • Khodakovskaya MV, de Silva K, Nedosekin DA, et al. Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proc Natl Acad Sci USA. 2011;108:1028–1033.
  • Luo Y. Current research and development in soil remediation technologies. Prog Chem. 2009;20:117–132.
  • Ali H, Khan E, Sajad MA. Phytoremediation of heavy metals-concepts and applications. Chemosphere. 2013;91:869–881.
  • Mahar A, Wang P, Ali A, et al. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicol Environ Saf. 2016;126:111–121.
  • De La Torre-Roche R, Hawthorne J, Deng Y, et al. Fullerene-enhanced accumulation of p,p'-DDE in agricultural crop species. Environ Sci Technol. 2012;46:9315–9323.
  • Wu J, Xie Y, Fang Z, et al. Effects of Ni/Fe bimetallic nanoparticles on phytotoxicity and translocation of polybrominated diphenyl ethers in contaminated soil. Chemosphere. 2016;162:235–242.
  • Yang L, Watts DJ. Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett. 2005;158:122–132.
  • Schwab F, Bucheli TD, Camenzuli L, et al. Diuron sorbed to carbon nanotubes exhibits enhanced toxicity to Chlorella vulgaris. Environ Sci Technol. 2013;47:7012–7019.
  • Hu X, Kang J, Lu K, et al. Graphene oxide amplifies the phytotoxicity of arsenic in wheat. Sci Rep. 2014;4:6122.
  • Gil-Díaz M, Diez-Pascual S, González A, et al. A nanoremediation strategy for the recovery of an As-polluted soil. Chemosphere. 2016;149:137–145.
  • Yang WW, Miao AJ, Yang LY. Cd2+ Toxicity to a green alga Chlamydomonas reinhardtii as influenced by its adsorption on TiO2 engineered nanoparticles. PLoS One. 2012;7:e32300.
  • López-Luna J, Silva-Silva MJ, Martinez-Vargas S, et al. Magnetite nanoparticle (NP) uptake by wheat plants and its effect on cadmium and chromium toxicological behavior. Sci Total Environ. 2016;565:941–950.
  • Tripathi DK, Singh VP, Prasad SM, et al. Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisum sativum (L.) seedlings. Plant Physiol Biochem. 2015;96:189–198.
  • Tang Y, Tian J, Li S, et al. Combined effects of graphene oxide and Cd on the photosynthetic capacity and survival of Microcystis aeruginosa. Sci Total Environ. 2015;532:154–161.
  • Wang Y, Fang Z, Kang Y, et al. Immobilization and phytotoxicity of chromium in contaminated soil remediated by CMC-stabilized nZVI. J Hazard Mater. 2014;275:230–237.
  • Nair PMG, Chung I-M. Cell cycle and mismatch repair genes as potential biomarkers in arabidopsis thaliana seedlings exposed to silver nanoparticles. Bull Environ Contam Toxicol. 2014;92:719–725.
  • Khodakovskaya MV, de Silva K, Biris AS, et al. Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano. 2012;6:2128–2135.
  • Kaveh R, Li Y-S, Ranjbar S, et al. Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environ Sci Technol. 2013;47:10637–10644.
  • Tong Z, Bischoff M, Nies L, et al. Impact of fullerene (C60) on a soil microbial community. Environ Sci Technol. 2007;41:2985–2991.
  • Chung H, Kim MJ, Ko K, et al. Effects of graphene oxides on soil enzyme activity and microbial biomass. Sci Total Environ. 2015;514:307–313.
  • Wang D, Wang G, Zhang G, et al. Using graphene oxide to enhance the activity of anammox bacteria for nitrogen removal. Bioresource Technol. 2013;131:527–530.
  • Ruiz ON, Fernando KA, Wang B, et al. Graphene oxide: a nonspecific enhancer of cellular growth. ACS Nano. 2011;5:8100–8107.
  • Johansen A, Pedersen AL, Jensen KA, et al. Effects of C60 fullerene nanoparticles on soil bacteria and protozoans. Environ Toxicol Chem. 2008;27:1895–1903.
  • Jin L, Son Y, Yoon TK, et al. High concentrations of single-walled carbon nanotubes lower soil enzyme activity and microbial biomass. Ecotoxicol Environ Saf. 2013;88:9–15.
  • Rodrigues DF, Jaisi DP, Elimelech M. Toxicity of functionalized single-walled carbon nanotubes on soil microbial communities: implications for nutrient cycling in soil. Environ Sci Technol. 2012;47:625–633.
  • Dehner C, Moralessoto N, Behera RK, et al. Ferritin and ferrihydrite nanoparticles as iron sources for Pseudomonas aeruginosa. J Biol Inorg Chem. 2013;18:371–381.
  • Němeček J, Lhotský O, Cajthaml T. Nanoscale zero-valent iron application for in situ reduction of hexavalent chromium and its effects on indigenous microorganism populations. Sci Total Environ. 2014;485–486:739–747.
  • Brayner R, Ferrari-Iliou R, Brivois N, et al. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett. 2006;6:866–870.
  • Adams LK, Lyon DY, Alvarez PJ. Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res. 2006;40:3527–3532.
  • Xu C, Peng C, Sun L, et al. Distinctive effects of TiO2 and CuO nanoparticles on soil microbes and their community structures in flooded paddy soil. Soil Biol Biochem. 2015;86:24–33.
  • Wilson SC, Jones KC. Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): a review. Environ Pollut. 1993;81:229–249.
  • Cornu JY, Huguenot D, Jézéquel K, et al. Bioremediation of copper-contaminated soils by bacteria. World J Microbiol Biotechnol. 2017;33:26.
  • Wu G, Kang H, Zhang X, et al. A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities. J Hazard Mater. 2010;174:1–8.
  • Huang DL, Zeng GM, Feng CL, et al. Degradation of lead-contaminated lignocellulosic waste by Phanerochaete chrysosporium and the reduction of lead toxicity. Environ Sci Technol. 2008;42:4946–4951.
  • Xu P, Zeng GM, Huang DL, et al. Adsorption of Pb(II) by iron oxide nanoparticles immobilized Phanerochaete chrysosporium: equilibrium, kinetic, thermodynamic and mechanisms analysis. Chem Eng J. 2012;203:423–431.
  • Polti MA, García RO, Amoroso MJ, et al. Bioremediation of chromium(VI) contaminated soil by Streptomyces sp. MC1. J Basic Microbiol. 2009;49:285–292.
  • HE YK, Sun JG, Feng XZ, et al. Differential mercury volatilization by tobacco organs expressing a modified bacterial merA gene. Cell Res. 2001;11:231–236.
  • Zhang ZY, Pan LP, Li HH. Isolation, identification and characterization of soil microbes which degrade phenolic allelochemicals. J Appl Microbiol. 2010;108:1839–1849.
  • Ryoo D, Shim H, Canada K, et al. Aerobic degradation of tetrachloroethylene by toluene-o-xylene monooxygenase of Pseudomonas stutzeri OX1. Nat Biotechnol. 2000;18:775–778.
  • Shrestha B, Acosta-Martinez V, Cox SB, et al. An evaluation of the impact of multiwalled carbon nanotubes on soil microbial community structure and functioning. J Hazard Mater. 2013;261:188–197.
  • Fang G, Si Y, Tian C, et al. Degradation of 2, 4-D in soils by Fe3O4 nanoparticles combined with stimulating indigenous microbes. Environ Sci Pollut Res. 2012;19:784–793.
  • Ye K, Yan Z, Chen Z, et al. Impact of Fe and Ni/Fe nanoparticles on biodegradation of phenol by the strain Bacillus fusiformis (BFN) at various pH values. Bioresource Technol. 2013;136:588–594.
  • Tilston EL, Collins CD, Mitchell GR, et al. Nanoscale zerovalent iron alters soil bacterial community structure and inhibits chloroaromatic biodegradation potential in Aroclor 1242-contaminated soil. Environ Pollut. 2013;173:38–46.
  • Rónavári A, Balázs M, Tolmacsov P, et al. Impact of the morphology and reactivity of nanoscale zero-valent iron (NZVI) on dechlorinating bacteria. Water Res. 2016;95:165–173.
  • Oyelami AO, Semple KT. The impact of carbon nanomaterials on the development of phenanthrene catabolism in soil. Environ Sci Process Impacts. 2015;17:1302–1310.
  • Xia X, Li Y, Zhou Z, et al. Bioavailability of adsorbed phenanthrene by black carbon and multi-walled carbon nanotubes to Agrobacterium. Chemosphere. 2010;78:1329–1336.
  • Zhou W, Shan J, Jiang B, et al. Inhibitory effects of carbon nanotubes on the degradation of 14C-2,4-dichlorophenol in soil. Chemosphere. 2013;90:527–534.
  • Hendren CO, Lowry GV, Unrine JM, et al. A functional assay-based strategy for nanomaterial risk forecasting. Sci Total Environ. 2015;536:1029–1037.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.