1,119
Views
39
CrossRef citations to date
0
Altmetric
Review Article

A review on the nucleic acid constituents in mushrooms: nucleobases, nucleosides and nucleotides

ORCID Icon, , , , &
Pages 762-777 | Received 19 Mar 2017, Accepted 24 Oct 2017, Published online: 10 Nov 2017

References

  • Kalac P. Chemical composition and nutritional value of European species of wild growing mushrooms: a review. Food Chem. 2009;113:9–16.
  • Xu X, Yan H, Chen J, et al. Bioactive proteins from mushrooms. Biotechnol Adv. 2011;29:667–674.
  • Wasser SP. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol. 2002;60:258–274.
  • Patel S, Goyal A. Recent developments in mushrooms as anti-cancer therapeutics: a review. 3 Biotech. 2012;2:1–15.
  • Phan CW, David P, Tan Y, et al. Intrastrain comparison of the chemical composition and antioxidant activity of an edible mushroom, Pleurotus giganteus, and its potent neuritogenic properties. Sci World J. 2014;378651.
  • Valverde ME, Hernández-pérez T, Paredes-lópez O. Edible mushrooms: improving human health and promoting quality life. Int J Microbiol. 2015;376387.
  • Zhang S, He B, Ge J, et al. Characterization of chemical composition of Agaricus brasiliensis polysaccharides and its effect on myocardial SOD activity, MDA and caspase-3 level in ischemia-reperfusion rats. Int J Biol Macromol. 2010;46:363–366.
  • Sun C, Rosendahl a. H, Wang XD, et al. Polysaccharide-K (PSK) in cancer-old story, new possibilities? Curr Med Chem. 2012;19:757–762.
  • Cheng PG, Phan CW, Sabaratnam V, et al. Polysaccharides-rich extract of Ganoderma lucidum (M.A. Curtis:Fr.) P. Karst accelerates wound healing in streptozotocin-induced diabetic rats. Evid Based Complementary Altern Med. 2013;2013:1–9.
  • Shashidhar MG, Giridhar P, Udaya Sankar K, et al. Bioactive principles from Cordyceps sinensis: a potent food supplement – a review. J Funct Foods. 2013;5:1013–1030.
  • Jacobson KA, Constanzi S, Ohno M, et al. Molecular recognition at purine and pyrimidine nucleotide (P2) receptors. CTMC. 2004;4:805–819.
  • Schlimme E, Martin D, Meisel H. Nucleosides and nucleotides: natural bioactive substances in milk and colostrum. Brit J Nutr. 2000;84(Suppl 1):S59–S68.
  • Yamamoto S, Wang MF, Adjei AA, et al. Role of nucleosides and nucleotides in the immune system, gut reparation after injury, and brain function. Nutrition. 1997;13:372–374.
  • Chiriví J, et al. Metabolomic profile and nucleoside composition of Cordyceps nidus sp. nov. (Cordycipitaceae): a new source of active compounds. PLoS One. 2017;e0179428.
  • Brown PR, Robb CS, Geldart SE. Perspectives on analyses of nucleic acid constituents: the basis of genomics. J Chromatogr A. 2002;965:163–173.
  • Ishimaru M, Haraoka M, Hatate H, et al. Simultaneous analysis of purine and pyrimidine compounds associated with the freshness and taste of marine foods. Food Anal Methods. 2015;9:1606–1615.
  • García-Gómez D, Rodríguez-Gonzalo E, Carabias-Martínez R. Stationary phases for separation of nucleosides and nucleotides by hydrophilic interaction liquid chromatography. TrAC Trends Anal Chem. 2013;47:111–128.
  • Álvarez G, Montero L, Llorens L, et al. Recent advances in the application of capillary electromigration methods for food analysis and foodomics. Electrophoresis. Forthcoming. [cited 2017 Oct 31]. doi:10.1002/elps.201700321
  • Johnsen LG, Skou PB, Khakimov B, et al. Gas chromatography – mass spectrometry data processing made easy. J Chromatogr A. 2017;1503:57–64.
  • Baby S, Johnson AJ, Govindan B. Secondary metabolites from Ganoderma. Phytochemistry. 2015;114:66–101.
  • Yu J, Zhai Y. Studies on the constituents of Ganoderma capens. (Part I). Yao Xue Xue Bao (Acta Pharmaceutica Sinica). 1979;14:374–378.
  • Ngai PH, Ng T. A mushroom (Ganoderma capense) lectin with spectacular thermostability, potent mitogenic activity on splenocytes, and antiproliferative activity toward tumor cells. Biochem Biophys Res Commun. 2004;314:988–993.
  • Yan C, Kong F, Zhang D, et al. Anti-glycated and antiradical activities in vitro of polysaccharides from Ganoderma capense. Pharmacogn Mag. 2013;9:23–27.
  • Kim IH, Nam IS. Studies on distribution of the mononucleotides in Ganoderma lucidum. Han’guk Kyunhakhoechi. 1984;12:111–116.
  • Shimizu A, Yano T, Saito Y, et al. Isolation of an inhibitor of platelet aggregation from a fungus, Ganoderma lucidum. Chem Pharm Bull. 1985;33:3012–3015.
  • Huie CW, Di X. Chromatographic and electrophoretic methods for Lingzhi pharmacologically active components. J Chromatogr B. 2004;812:241–257.
  • Cheung HY, Ng CW, Hood DJ. Identification and quantification of base and nucleoside markers in extracts of Ganoderma lucidum, Ganoderma japonicum and Ganoderma capsules by micellar electrokinetic chromatography. J Chromatogr. 2001;911:119–126.
  • Gao JL, Leung KSY, Wang YT, et al. Qualitative and quantitative analyses of nucleosides and nucleobases in Ganoderma spp. by HPLC-DAD-MS. J Pharm Biomed Anal. 2007;44:807–811.
  • Peng JL, Peng QX, Lin LM, et al. Simultaneous determination of 13 nucleosides and nucleobases in Ganoderma lucidum and related species by HPLC-DAD. Asian J Chem. 2014;26:3477–3482.
  • Chen Y, Bicker W, Wu J, et al. Simultaneous determination of 16 nucleosides and nucleobases by hydrophilic interaction chromatography and its application to the quality evaluation of Ganoderma. J Agric Food Chem. 2012;60:4243–4252.
  • Khan MS, Parveen R, Mishra K, et al. Determination of nucleosides in Cordyceps sinensis and Ganoderma lucidum by high performance liquid chromatography method. J Pharm Bioall Sci. 2015;7:264–6.
  • Qian Z, Zhao J, Li D, et al. Analysis of global components in Ganoderma using liquid chromatography system with multiple columns and detectors. J Sep Sci. 2012;35:2725–2734.
  • Lo Y-C, Chien S-C, Mishchuk DO, et al. Quantification of water-soluble metabolites in medicinal mushrooms using proton NMR spectroscopy. Int J Med Mushrooms. 2016;18:413–424.
  • Liu Y, Wang J, Wang W, et al. The chemical constituents and pharmacological actions of Cordyceps sinensis. Evid Based Complementary Altern Med. 2015;2015:575063.
  • Lan DH, Thu NTK, Lan PT, et al. Cordyceps militaris (L.) Link: chemical bioactive compounds and pharmacological activities. J Pharm Nutr Sci. 2016;6:153–159.
  • Cui JD. Biotechnological production and applications of Cordyceps militaris, a valued traditional Chinese medicine. Crit Rev Biotechnol. 2015;35:475–484.
  • Xiao JH, Q Y, Xiong Q. Nucleosides, a valuable chemical marker for quality control in traditional chinese medicine Cordyceps. BIOT. 2013;7:153–166.
  • Yue K, Ye M, Zhou Z, et al. The genus Cordyceps: a chemical and pharmacological review. J Pharm Pharmacol. 2012;65:474–493.
  • Gong YX, Li SP, Li P, et al. Simultaneous determination of six main nucleosides and bases in natural and cultured Cordyceps by capillary electrophoresis. J Chromatogr A. 2004;1055:215–221.
  • Yang FQ, Li S, Li P, et al. Optimization of CEC for simultaneous determination of eleven nucleosides and nucleobases in Cordyceps using central composite design. Electrophoresis. 2007;28:1681–1688.
  • Yu L, Zhao J, Li SP, et al. Quality evaluation of Cordyceps through simultaneous determination of eleven nucleosides and bases by RP-HPLC. J Sep Sci. 2006;29:953–958.
  • Fan H, Yang FQ, Li SP. Determination of purine and pyrimidine bases in natural and cultured Cordyceps using optimum acid hydrolysis followed by high performance liquid chromatography. J Pharm Biomed Anal. 2007;45:141–144.
  • Li P, Li SP, Gong YX, et al. Simultaneous determination of ergosterol, nucleosides and their bases from natural and cultured Cordyceps by pressurized solvent extraction and high performance liquid chromatography. Act Pharm Sinica. 2004;39:917–920.
  • Wang S, Yang FQ, Feng K, et al. Simultaneous determination of nucleosides, myriocin, and carbohydrates in Cordyceps by HPLC coupled with diode array detection and evaporative light scattering detection. J Sep Sci. 2009;32:4069–4076.
  • Yang FQ, Li DQ, Feng K, et al. Determination of nucleotides, nucleosides and their transformation products in Cordyceps by ion-pairing reversed-phase liquid chromatography-mass spectrometry. J Chromatogr A. 2010;1217:5501–5510.
  • Yang FQ, Guan J, Li SP. Fast simultaneous determination of 14 nucleosides and nucleobases in cultured Cordyceps using ultra-performance liquid chromatography. Talanta. 2007;73:269–273.
  • Qian Z, Li S. Analysis of Cordyceps by multi-column liquid chromatography. Act Pharm Sinica B. 2017;7:202–207.
  • Zhao HQ, Wang X, Li HM, et al. Characterization of nucleosides and nucleobases in natural Cordyceps by HILIC-ESI/TOF/MS and HILIC-ESI/MS. Molecules. 2013;18:9755–9769.
  • Tian X, Li Y, Shen Y, Li Q, Wang Q, Feng L. Apoptosis and inhibition of proliferation of cancer cells induced by cordycepin (Review). Oncol Lett. 2015;595–599.
  • Wang XL, Yao YJ. Host insect species of Ophiocordyceps sinensis: a review. ZK. 2011;127:43–59.
  • Tuli HS, Sharma AK, Sandhu SS, et al. Cordycepin: a bioactive metabolite with therapeutic potential. Life Sci. 2013;93:863–869.
  • Paterson RRM. Cordyceps: a traditional Chinese medicine and another fungal therapeutic biofactory? Phytochem. 2008;69:1469–1495.
  • Pan BS, Wang YK, Lai MS, et al. Cordycepin induced MA-10 mouse Leydig tumor cell apoptosis by regulating p38 MAPKs and PI3K/AKT signaling pathways. Sci Rep. 2015;5:13372.
  • Ren Z, Cui J, Huo Z, et al. Cordycepin suppresses TNF-α-induced NF-κB activation by reducing p65 transcriptional activity, inhibiting IκBα phosphorylation, and blocking IKKγ ubiquitination. Int Immunopharm. 2012;14:698–703.
  • Jeong JW, Jin CY, Kim GY, et al. Anti-inflammatory effects of cordycepin via suppression of inflammatory mediators in BV2 microglial cells. Int Immunopharmacol. 2010;10:1580–1586.
  • Cho HJ, Cho JY, Rhee MH, et al. Deoxyadenosine inhibits human platelet aggregation in a cyclic AMP- and cyclic GMP-dependent manner. Eur J Pharm. 2007;558:43–51.
  • Tianzhu Z, Shihai Y, Juan D. Antidepressant-Like Effects of cordycepin in a mice model of chronic unpredictable mild stress. Evid Based Complementary Altern Med. 2014;2014:438506.
  • Jiang Y, Wong JH, Fu M, et al. Isolation of adenosine, iso-sinensetin and dimethylguanosine with antioxidant and HIV-1 protease inhibiting activities from fruiting bodies of Cordyceps militaris. Phytomed. 2011;18:189–193.
  • Cha JY, Ahn HY, Cho YS, et al. Protective effect of cordycepin-enriched Cordyceps militaris on alcoholic hepatotoxicity in Sprague-Dawley rats. Food Chem Toxicol. 2013;60:52–57.
  • Peng J, Wang P, Ge H, et al. Effects of cordycepin on the microglia-overactivation-induced impairments of growth and development of hippocampal cultured neurons. PLoS One. 2015;10:e0125902.
  • Ikeda R, Nishimura M, Sun Y, et al. Simple HPLC-UV determination of nucleosides and its application to the authentication of Cordyceps and its allies. Biomed Chromatogr. 2008;22:630–636.
  • Mao XB, Eksriwong T, Chauvatcharin S, et al. Optimization of carbon source and carbon/nitrogen ratio for cordycepin production by submerged cultivation of medicinal mushroom Cordyceps militaris. Process Biochem. 2005;40:1667–1672.
  • Mao XB, Zhong JJ. Significant effect of NH4+ on cordycepin production by submerged cultivation of medicinal mushroom Cordyceps militaris. Enzyme Microb Technol. 2006;38:343–350.
  • Masuda M, Das SK, Fujihara S, et al. Production of cordycepin by a repeated batch culture of a Cordyceps militaris mutant obtained by proton beam irradiation. J Biosci Bioeng. 2011;111:55–60.
  • Fan D, Wang W, Zhong JJ. Enhancement of cordycepin production in submerged cultures of Cordyceps militaris by addition of ferrous sulfate. Biochem Eng J. 2012;60:30–35.
  • Das SK, Masuda M, Hatashita M, et al. Optimization of culture medium for cordycepin production using Cordyceps militaris mutant obtained by ion beam irradiation. Process Biochem. 2010;45:129–132.
  • Masuda M, Urabe E, Honda H, et al. Enhanced production of cordycepin by surface culture using the medicinal mushroom Cordyceps militaris. Enzyme Microb Technol. 2007;40:1199–1205.
  • Shih IL, Tsai KL, Hsieh C. Effects of culture conditions on the mycelial growth and bioactive metabolite production in submerged culture of Cordyceps militaris. Biochem Eng J. 2007;33:193–201.
  • Wu FC, Chen YL, Chang SM, et al. Cultivation of medicinal caterpillar fungus, Cordyceps militaris (Ascomycetes), and production of cordycepin using the spent medium from levan fermentation. Int J Med Mushr. 2013;15:393–405.
  • Ni H, Zhou XH, Li HH, et al. Column chromatographic extraction and preparation of cordycepin from Cordyceps militaris waster medium. J Chromatogr B. 2009;877:2135–2141.
  • Culleré L, Ferreira V, Venturini ME, et al. Potential aromatic compounds as markers to differentiate between Tuber melanosporum and Tuber indicum truffles. Food Chem. 2013;141:105–110.
  • Liu P, Li YY, Li HM, et al. Determination of the nucleosides and nucleobases in Tuber samples by dispersive solid-phase extraction combined with liquid chromatography-mass spectrometry. Anal Chimica Act. 2011;687:159–167.
  • Yue PYK, Wong YY, Chan TYK, et al. Review of biological and pharmacological activities of the endemic Taiwanese bitter medicinal mushroom, Antrodia camphorata (M. Zang et C. H. Su) Sh. H. Wu et al. (Higher Basidiomycetes). Int J Med Mushrooms. 2012;14:241–256.
  • Geethangili M, Tzeng YM. Review of pharmacological effects of Antrodia camphorata and its bioactive compounds. Evid Based Complementary Altern Med. 2011;2011:212641.
  • Huang NK, Cheng JJ, Lai WL, et al. Antrodia camphorata prevents rat pheochromocytoma cells from serum deprivation-induced apoptosis. FEMS Microbiol Lett. 2005;244:213–219.
  • Lu MK, Cheng JJ, Lai WL, et al. Adenosine as an active component of Antrodia cinnamomea that prevents rat PC12 cells from serum deprivation-induced apoptosis through the activation of adenosine A(2A) receptors. Life Sci. 2006;79:252–258.
  • Lu MK, Cheng JJ, Lai WL, et al. Fermented Antrodia cinnamomea extract protects rat PC12cells from serum deprivation-induced apoptosis: the role of the MAPK family. J Agric Food Chem. 2008;56:865–874.
  • Chen YY, Chou PY, Chien YC, et al. Ethanol extracts of fruiting bodies of Antrodia cinnamomea exhibit anti-migration action in human adenocarcinoma CL1-0 cells through the MAPK and PI3K/AKT signaling pathways. Phytomed. 2012;19:768–778.
  • Liu FC, Lai MT, Chen YY, et al. Elucidating the inhibitory mechanisms of the ethanolic extract of the fruiting body of the mushroom Antrodia cinnamomea on the proliferation and migration of murine leukemia WEHI-3 cells and their tumorigenicity in a BALB/c allograft tumor model. Phytomed. 2013;20:874–882.
  • Yang FQ, Lv R, Zhang YL, et al. Comparison study on nucleosides and nucleotides in edible mushroom species by capillary zone electrophoresis. Anal Methods. 2012;4:546–549.
  • Ranogajec A, Beluhan S, Smit Z. Analysis of nucleosides and monophosphate nucleotides from mushrooms with reversed-phase HPLC. J Sep Sci. 2010;33:1024–1033.
  • Cheng JJ, Lur HS, Huang NK, et al. Exploring the potential of biopharmaceutical production by Rigidoporus ulmarius: cultivation, chemistry, and bioactivity studies. Process Biochem. 2009;44:1237–1244.
  • Phan CW, David P, Wong KH, et al. Uridine from Pleurotus giganteus and its neurite outgrowth stimulatory effects with underlying mechanism. PLoS One. 2015;10:e0143004.
  • Yuan J, Zhao S, Wang J, et al. Distribution of nucleosides and nucleobases in edible fungi. J Agric Food Chem. 2008;56:809–815.
  • Sharma SK, Gautam N. Chemical composition and antioxidant and antibacterial activities of cultured mycelia of four Clavicipitaceous mushrooms (Ascomycetes) from the Indian Himalayas. Int J Med Mushrooms. 2017;19:45–54.
  • Olatunji OJ, Feng Y, Olatunji OO, et al. Polysaccharides purified from Cordyceps cicadae protects PC12 cells against glutamate-induced oxidative damage. Carb Polym. 2016;153:187–195.
  • Lu MY, Chen CC, Lee LY, et al. N(6)-(2-hydroxyethyl)adenosine in the medicinal mushroom Cordyceps cicadae attenuates lipopolysaccharide-stimulated pro-inflammatory responses by suppressing TLR4-mediated NF-κB signaling pathways. J Nat Prod. 2015;78:2452–2460.
  • Chi YL, Zhang HY, Xue JH, et al. N2-(1-Methoxycarbonylethyl)guanosine, a new nucleoside coupled with an amino acid derivative from Amanita exitialis. Chinese Cheml Lett. 2009;20:830–832.
  • Konno K, Hayano K, Shirahama H, et al. Clitidine, a new toxic pyridine nucleoside from Clitocybe acromelalga. Tetrahedron. 1982;38:3281–3284.
  • Haraguchi A, Kinoshita K, Fukai M, et al. A novel nucleoside from the edible mushroom, Tricholoma japonicum. J Nat Med. 2015;69:584–588.
  • Elvan H, Ertunga NS, Yildirim M, et al. Partial purification and characterisation of endoglucanase from an edible mushroom, Lepista flaccida. Food Chem. 2010;123:291–295.
  • Kubo I, Kim M, Hood WF, et al. Clitocine, a new insecticidal nucleoside from the mushroom Clitocybe inversa. Tetrahedron Lett. 1986;27:4277–4280.
  • Sun JG, Xiang J, Zeng XL, et al. Clitocine induces apoptosis and enhances the lethality of ABT-737 in human colon cancer cells by disrupting the interaction of Mcl-1 and Bak. Cancer Lett. 2014;355:253–263.
  • Sun JG, Ruan F, Zeng XL, et al. Clitocine potentiates TRAIL-mediated apoptosis in human colon cancer cells by promoting Mcl-1 degradation. Apoptosis. 2016;21:1144–1157.
  • Ren G, Zhao YP, Yang L, et al. Anti-proliferative effect of clitocine from the mushroom Leucopaxillus giganteus on human cervical cancer HeLa cells by inducing apoptosis. Cancer Lett. 2008;262:190–200.
  • Sun JG, Yeung CA, Co NN, et al. Clitocine reversal of P-glycoprotein associated multi-drug resistance through down-regulation of transcription factor NF-κB in R-HepG2 cell line. PLoS One. 2012;7:1–11.
  • Sun JG, Li H, Li X, et al. Clitocine targets Mcl-1 to induce drug-resistant human cancer cell apoptosis in vitro and tumor growth inhibition in vivo. Apoptosis. 2014;19:871–882.
  • Fortin H, Tomasi S, Delcros JG, et al. In vivo antitumor activity of clitocine, an exocyclic amino nucleoside isolated from Lepista inversa. ChemMedChem. 2006;1:189–196.
  • Zhang Y, Venkitasamy C, Pan Z, et al. Recent developments on umami ingredients of edible mushrooms – a review. Trends Food Sci Technol. 2013;33:78–92.
  • Tsai SY, Huang SJ, Lo SH, et al. Flavour components and antioxidant properties of several cultivated mushrooms. Food Chem. 2009;113:578–584.
  • Phan CW, Sabaratnam V. Potential uses of spent mushroom substrate and its associated lignocellulosic enzymes. Appl Microbiol Biotechnol. 2012;96:863–873.
  • Chang ST, Buswell JA. Development of the world mushroom industry: applied mushroom biology and international mushroom organizations. Int J Med Mushr. 2008;10:195–208.
  • Yang J, Lin H, Mau J. Non-volatile taste components of several commercial mushrooms. Food Chem. 2001;72:465–471.
  • Phat C, Moon B, Lee C. Evaluation of umami taste in mushroom extracts by chemical analysis, sensory evaluation, and an electronic tongue system. Food Chem. 2016;192:1068–1077.
  • Mau J, Lin H, Ma J, et al. Non-volatile taste components of several speciality mushrooms. Food Chem. 2001;73:1–6.
  • Beluhan S, Ranogajec A. Chemical composition and non-volatile components of Croatian wild edible mushrooms. Food Chem. 2011;124:1076–1082.
  • Wang WK, Zhu Y, Tang Y, et al. Non-volatile taste components of different cultivated mushrooms at mycelia, primordium, and fruit body cultivation stages. Int J Food Prop. 2015;19:1938–1948.
  • Cho IH, Choi HK, Kim YS. Comparison of umami-taste active components in the pileus and stipe of pine-mushrooms (Tricholoma matsutake Sing.) of different grades. Food Chem. 2010;118:804–807.
  • Chen W, Li W, Yang Y, et al. Analysis and evaluation of tasty components in the pileus and stipe of Lentinula edodes at different growth stages. J Agric Food Chem. 2015;63:795–801.
  • Liu P, Li HM, Tang YJ. Comparison of free amino acids and 5’-nucleotides between Tuber fermentation mycelia and natural fruiting bodies. Food Chem. 2012;132:1413–1419.
  • Mau J, Chyau C, Li J, et al. Flavor compounds in straw mushrooms Volvariella volvacea harvested at different stages of maturity. J Agric Food Chem. 1997;4726–4729.
  • Tsai S-Y, Wu T-P, Huang S-J, et al. Nonvolatile taste components of Agaricus bisporus harvested at different stages of maturity. Food Chem. 2007;103:1457–1464.
  • Tseng Y, Mau J. Contents of sugar, free amino acids and free 5′-nucleotides in mushrooms, Agaricus bisporus, during post-harvest storage. J Sci Food Agric. 1999;79:1519–1523.
  • Liu Y, Huang F, Yang H, et al. Effects of preservation methods on amino acids and 5′-nucleotides of Agaricus bisporus mushrooms. Food Chem. 2014;149:221–225.
  • Pei F, Shi Y, Gao X, et al. Changes in non-volatile taste components of button mushroom (Agaricus bisporus) during different stages of freeze drying and freeze drying combined with microwave vacuum drying. Food Chem. 2014;165:547–554.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.