1,504
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Transformation of animal genomics by next-generation sequencing technologies: a decade of challenges and their impact on genetic architecture

, , , , &
Pages 1157-1175 | Received 01 Aug 2017, Accepted 09 Mar 2018, Published online: 10 Apr 2018

References

  • Li M, Wang IX, Li Y, et al. Widespread RNA and DNA sequence differences in the human transcriptome. Science. 2011;333:53–58.
  • McCormack JE, Hird SM, Zellmer AJ, et al. Applications of next-generation sequencing to phylogeography and phylogenetics. Mol Phylogenet Evol. 2013;66:526–538.
  • Metzker ML. Emerging technologies in DNA sequencing. Genome Res. 2015;15:1767–1776.
  • Mardis ER. Next-generation sequencing platforms. Annu Rev Anal Chem (Palo Alto Calif). 2013;6:287–303.
  • Bai Y, Sartor M, Cavalcoli J. Current status and future perspectives for sequencing livestock genomes. J Anim Sci Biotechnol. 2012;3:8.
  • Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol. 2008;26:1135–1145.
  • Hutchison CA. DNA sequencing: bench to bedside and beyond. Nucleic Acids Res. 2007;35:6227–6237.
  • Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain termination inhibitors. Proc Natl Acad Sci USA. 1977;74:5463–5467.
  • Ansorge WJ. Next-generation DNA sequencing techniques. N Biotechnol. 2009;25:195–203.
  • Liu L, Li Y, Li S, et al. Comparison of next-generation sequencing systems. J Biomed Biotechnol. 2012;11:1–11.
  • McGettigan PA. Transcriptomics in the RNA-seq era. Curr Opin Chem Biol. 2013;17:4–11.
  • Marozova O, Marra MA. Applications of next-generation sequencing technologies in functional genomics. Genomics. 2008;92:255–264.
  • Von Bubnoff A. Next-generation sequencing: the race is on. Cell. 2008;132:721–723.
  • Rizzo JM, Buck MJ. Key principles and clinical applications of “‘next-generation’ DNA sequencing”. Cancer Prev Res (Phila). 2012;5:887–900.
  • Gheyas AA, Burt DW. Microarray resources for genetic and genomic studies in chicken: a review. Genesis. 2013;51:337–356.
  • Buermans HPJ, den Dunner JT. Next generation sequencing technology: advances and applications. Biochim Biophys Acta. 2014;1842:1932–1941.
  • Ronaghi A. Pyrosequencing sheds light on DNA sequencing. Genome Res. 2001;11:3–11.
  • Delseny M, Han B, Hsing YL. High throughput DNA sequencing: the new sequencing revolution. Plant Sci. 2010;179:407–422.
  • Casals F, Idaghdour Y, Hussin J, et al. Next-generation sequencing approaches for genetic mapping of complex diseases. J Neuroimmunol. 2012;248:10–22.
  • Metzker ML. Sequencing technologies – the next generation. Nat Rev Genet. 2010;11:31–46.
  • Anderson MW, Schrijver I. Next generation DNA sequencing and the future of Genomic Medicine. Genes (Basel). 2010;1:38–69.
  • Gupta PK. Single molecule DNA sequencing technologies for future genomics research. Trends Biotechnol. 2008;26:602–611.
  • Quail MA, Smith M, Coupland P, et al. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics. 2012;13:341.
  • Rusk N. Torrents of sequence. Nat Methods. 2011;8:44.
  • Rothberg JM,  Hinz W, Rearick TM, et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature. 2011;475:348–352.
  • Golan D, Medvedev P. Using state machines to model the Ion Torrent sequencing process and to improve read error rates. Bioinformatics. 2013;29:i344–i351.
  • Shendure J, Porreca GJ, Reppas NB, et al. Accurate multiplex polony sequencing of an evolved bacterial genome. Science. 2005;309:1728–1732.
  • Porreca GJ, Shendure J, Church GM. Polony DNA sequencing. Curr Protoc Mol Biol. 2006;7:7.8.
  • Munroe DJ, Harris TJR. Third-generation sequencing fireworks at Marco Island. Nat Biotechnol. 2010;28:426–428.
  • Bleidorn C. Third generation sequencing: technology and its potential impact on evolutionary biodiversity research. Syst Biodivers. 2015;14:1–8.
  • Gupta AK, Gupta UD. Next generation sequencing and its applications. In: Verma A, Singh A, editors. Animal biotechnology: models in discovery and translation. New York: Academic Press; 2014. p. 345–367 (Chapter 19).
  • Eid J, Fehr A, Gray J, et al. Real time DNA sequencing from single polymerase molecules. Science. 2009;323:113–138.
  • Roberts RJ, Carnerio MO, Schatz MC. The advantages of SMRT sequencing. Genome Biol. 2013;14:405.
  • Rhoads A, Au KF. PacBio sequencing and its applications. Genomics Proteomics Bioinformatics. 2015;13:278–289.
  • Lu H, Giordano F, Ning Z. Oxford nanopore MinION sequencing and genome assembly. Genomics Proteomics Bioinformatics. 2016;14:265–279.
  • Kasianowicz JJ, Brandin E, Branton D, et al. Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci USA. 1996;93:13770–13773.
  • Feng Y, Zhang Y, Ying C, et al. Nanopore-based fourth generation DNA sequencing technology. Genomics Proteomics Bioinformatics. 2015;13:4–16.
  • Clarke J, Wu HC, Jayasinghe L, et al. Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol. 2009;4:265–270.
  • Zhang J, Chiodini R, Badr A, et al. The impact of next-generation sequencing on genomics. J Genet Genomics. 2011;38:95–109.
  • Koitzsch U, Heydt C, Attig H, et al. Use of the GeneReader NGS System in a clinical pathology laboratory: a comparative study. J Clin Pathol. 2017;70:725–728.
  • Weisenfeld NI, Kumar V, Shah P, et al. Direct determination of diploid genomic sequences. Genome Res. 2017;27:757–767.
  • Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next generation sequencing technologies. Nat Rev Genet. 2016;17:333–335.
  • Gibbs RA, Taylor JF, VanTassell CP, et al. Bovine HAPMAP Consortium: the genetic history of cattle. Science. 2009;324:529–532.
  • Zimin AV, Delcher AL, Florea L, et al. A whole-genome assembly of the domestic cow, Bos taurus. Genome Biol. 2009;10:R42.
  • Tellam RL, Lemay DG, Van Tassell CP, et al. Unlocking the bovine genome. BMC Genomics. 2009;10:193.
  • Elsik CG, Tellam RL, Worlet KC, et al. The genome sequence of Taurine Cattle: a window to ruminant biology and evolution. Science. 2009;324:522–528.
  • Elsik CG, Unni DR, Diesh CM, et al. Bovine genome database: new tools for gleaning function from the Bos taurus genome. Nucleic Acids Res. 2016;44:D834–D839.
  • Pareek CS, Smoczynski R, Pierzchala M, et al. From genotype to phenotype in bovine functional genomics. Brief Funct Genomics. 2011;10:165–171.
  • Raszek MM, Guan LL, Plastow GS. Use of genomic tools to improve cattle health in the context of infectious diseases. Front Genet. 2016;7:30.
  • Vatsiou AI, Bazin E, Gaggiotti OE. Detection of selective sweeps in structured populations: a comparison of recent methods. Mol Ecol. 2016;25:89–103.
  • Clement JAJ, Toulza E, Gautier M, Parrinello H, et al. Private selective sweeps identified from next generation pool sequencing reveal convergent pathways under selection in two inbred Schistosoma mansoni strains. PLoS Negl Trop Dis. 2013;7:e2591.
  • Boitard S, Schlotterer C, Nolte V, et al. Detection selective sweeps from pooled next generation sequencing samples. Mol Biol Evol. 2012;29:2177–2186.
  • Chen M, Pan D, Ren H, et al. Identification of selective sweeps reveals divergent selection between Chinese Holstein and Simmental cattle populations. Genet Sel Evol. 2016;48:76.
  • Ramey HR, Decker JE, McKay SD, et al. Detection of selective sweeps in cattle using genome-wide SNP data. BMC Genomics. 2013;14:382.
  • Barendse W, Bunch R, Thomas M, et al. The TG5 thyroglobulin gene test for a marbling quantitative trait loci evaluated in feedlot cattle. Aust J Exp Agric. 2004;44:669–674.
  • Zinder MC, Seroussi E, Larkin DM, et al. Identification of a missense mutation in the bovine ABCG2 gene with a major effect on the QTL on chromosome 6 affecting milk yield and composition in Holstein cattle. Genome Res. 2005;5:936–944.
  • Barendes W, Bunch RJ, Kijas JW, et al. The effect of genetic variation of the retinoic acid receptor related orphan receptor C gene on fatness in cattle. Genetics. 2007;175:843–853.
  • McLoughlin KE, Nalpas NC, Rue-Albrecht K, et al. RNA-seq transcriptional profiling of peripheral blood leukocytes from cattle infected with Mycobacterium bovis. Front Immunol. 2014;5:396.
  • Masuda T, Nagai M, Yamasato H, et al. Identification of novel bovine group A rotavirus G15P [14] strain from epizootic diarrhea of adult cows by de novo sequencing using a next-generation sequencer. Vet Microbiol. 2014;171:66–73.
  • Bosse M, Megens HJ, Madsen O, et al. Regions of homozygosity in the porcine genome: consequence of demography and the recombination landscape. PLoS Genet. 2012;8:e1003100.
  • Frantz LA, Schraiber JG, Madsen O, et al. Genome sequencing reveals fine scale diversification and reticulation history during speciation in Sus. Genome Biol. 2013;14:R107.
  • Frantz LA. Speciation and domestication in Suiformes: a genomic perspective [PhD thesis]. Wageningen University; 2015.
  • Groenen MAM. A decade of pig genome sequencing: a window on pig domestication and evolution. Genet Select Evol. 2016;48:23.
  • Humphray SJ, Scott CE, Clark R, et al. A high utility integrated map of the pig genome. Genome Biol. 2007;78:R139.
  • Lim D, Cho YM, Lee KT, et al. The pig genomics database (PiGenome): an integrated database for pig genome research. Mamm Genome. 2009;20:60–66.
  • Groenen MA, Archibald AL, Uenishi H, et al. Analyses of pig genomes provide insight into pocrine demography and evolution. Nature. 2012;491:393–398.
  • Zhou ZY, Li A, Otecko NO, et al. PigVar: a database of pig variations and positive selection signatures. Database. 2017;2017:1–10.
  • Schiavo G, Hoffmann OL, Ribani A, et al. A genomic landscape of mitochondrial DNA insertions in the pig nuclear genome provides evolutionary signatures of interspecies admixture. DNA Res. 2017;24:487–498.
  • Rubin CJ, Megens HJ, BArrio AM, et al. Strong signature of selection in the domestic pig genome. PNAS. 2012;109:19529–19536.
  • Sodhi SS, Park WC, Ghosh M, et al. Comparative transcriptomic analysis to identify differentially expressed genes in fat tissue of adult Berkshire and Jeju Native Pig using RNA-seq. Mol Biol Rep. 2014;41:6305–6315.
  • Ghosh M, Sodhi SS, Song KD, et al. Evaluation of body growth and immunity-related differentially expressed genes through deep RNA sequencing in the piglets of Jeju native pig and Berkshire. Anim Genet. 2015;46:255–264.
  • Ramayo-Caldas Y, Castello A, Pena RN, et al. Copy number variation in the porcine genome inferred from a 60 k SNP BeadChip. BMC Genomics. 2010;11:593.
  • Ghosh M, Sodhi SS, Sharma N, et al. An integrated in silico approach for functional and structural impact of non-synonymous SNPs in the MYH1 gene in Jeju Native Pigs. BMC Genet. 2016;17:35.
  • Lee SE, Hyun H, Park MR, et al. Production of transgenic pig as an Alzheimer's disease model using a multi-cistronic vector system. PLoS One. 2017;12:e0177933.
  • Archibald AL, Bolund L, Churcher C, et al. Pig genome sequence-analysis and publication strategy. BMC Genomics. 2010;11:438.
  • Fadiel A, Anidi I, Eichenbaum KD. Farm animal genomics and informatics: an update. Nucleic Acids Res. 2005;33:6308–6318.
  • Librado P, Gamba C, Gaunitz C, et al. Ancient genomic changes associated with domestication of the horse. Science. 2017;356:442–445.
  • Schubert M, Jonsson H, Chang D, et al. Prehistoric genomes reveal the genetic foundation and cost of horse domestication. Proc Natl Acad Sci USA. 2014;111:E5661–E5669.
  • Orlando L, Ginoljac A, Zhang G, et al. Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature. 2013;499:74–78.
  • Jun JH, Cho YS, Hu H, et al. Whole genome sequence and analysis of the Marwari horse breed and its genetic origin. BMC Genomics. 2014;15:S4.
  • Wade CM, Giulotto E, Sigurdsson S, et al. Genome sequence, comparative analysis, and population genetics of the domestic horse. Science. 2009;326:865–867.
  • Tozaki T, Swinburne J, Hirota K, et al. Improved resolution of the comparative horse-human map: investigating markers with in silico and linkage mapping approaches. Gene. 2007;392:181–186.
  • Mucher E, Jayr L, Rossignol F, et al. Gene expression profiling in equine muscle tissues using mouse cDNA microarrays. Equine Vet J Suppl. 2006;36:359–364.
  • Scharefer RJ, Schubert M, Bailey E, et al. Developing a 670k genotyping array to tag ∼2M SNPs across 24 horse breeds. BMC Genomics. 2017;18:565.
  • Chowdhary BP, Raudsepp T. The Horse Genome Derby: racing from map to whole genome sequence. Chromosome Res. 2008;6:109–127.
  • McGivney B, Gu J, Eivers S, et al. Population and functional genomics investigations of performance associations in thoroughbred horses. In: 7th Dorothy Russell Havemeyer International Equine Genome Mapping Workshop, Tahoe City, CA; 2007.
  • Ghosh M, Woo CH, Park WJ, et al. Comparative transcriptomic analyses by RNA-seq to elucidate differentially expressed genes in the muscle of Korean thoroughbred horses. Appl Biochem Biotechnol. 2016;180:588–608.
  • Siegel PB, Dodgson JB, Andersson L. Progress from chicken genetics to the chicken genome. Poult Sci. 2006;85:2050–2060.
  • Burt DW. Chicken genome: current status and future opportunities. Genome Res. 2005;15:1692–1698.
  • Sawai H, Kim HL, Kuno K, et al. The origin and genetic variation of domestic chickens with special reference to Junglefowls Gallus g. gallus and G. varius. PLoS One. 2010;5:e10639.
  • International Chicken Genome Sequencing Consortium. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature. 2004;432:695–716.
  • International Chicken Polymorphism Map Consortium. A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms. Nature. 2004;432:717–722.
  • Schmid M, Smith J, Burt DW, et al. Third report on chicken genes and chromosomes 2015. Cytogenet Genome Res. 2015;145:78–179.
  • Rubin CJ, Zody MC, Eriksson J, et al. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature. 2010;464:587–591.
  • Warren WC, Hillier LaD C, Tomlinson C, et al. A new chicken genome assembly provides insight into avian genome structure. G3. 2017;7:109–117.
  • Groenen MAM, Cheng HH, Bumstead N, et al. A consensus linkage map of the chicken genome. Genome Res. 2000;10:137–147.
  • Cogburn LA, Wang X, Carre W, et al. Systems-wide chicken DNA microarrays, gene expression profiling, and discovery of functional genes. Poult Sci. 2003;82:939–951.
  • Boichard MT, Bedhom B, Rognon X. Chicken domestication: from archeology to genomics. C R Biol. 2011;334:197–204.
  • Elferink MG, Megens HJ, Vereijken A, et al. Signatures of selection in the genomes of commercial and non-commercial chicken breeds. PLoS One. 2012;7:e32720.
  • Belak S, Karleeon OE, Leijon M, et al. High throughput sequencing in veterinary infection biology and diagnostics. Rev Sci Tech Oie. 2013;32:(3):893–915.
  • Borm SV, Belak S, Feimanis G, et al. Next-generation sequencing in veterinary medicine: how can the massive amount of information arising from high-throughput technologies improve diagnosis, control, and management of infectious diseases? Methods Mol Biol. 2015;1247:415–436.
  • Deurenberg RH, Bathoorn E, Chlebowicz MA, et al. Application of next generation sequencing in clinical microbiology and infection prevention. J Biotechnol. 2017;243:16–24.
  • Zhou K, Lokate M, Deurenberg RH, et al. Use of whole-genome sequencing to trace, control and characterize the regional expansion of extended-spectrum beta-lactamase producing ST15 Klebsiella pneumoniae. Sci Rep. 2013;6:20840.
  • Zhou K, Lokate M, Deurenberg RH, et al. Characterization of a CTX-M-15 producing Klebsiella pneumoniae outbreak strain assigned to a novel Sequence Type (1427). Front Microbiol. 2015;6:1250.
  • Weterings V, Zhou K, Rossen JW, et al. An outbreak of colistin-resistant Klebsiella pneumoniae carbapenemase-producing Klebsiella pneumoniae in the Netherlands (July–December 2013), with inter-institutional spread. Eur J Clin Microbiol Infect Dis. 2015;34:1647–1655.
  • Bathoorn E, Rossen JW, Lokate M, et al. Isolation of an NDM-5-producing ST16 Klebsiella pneumoniae from a Dutch patient without travel history abroad, August 2015. Euro Surveil. 2015;20:30040.
  • Ferdous M, Zhou K, de Boer RF, et al. Comprehensive characterization of Escherichia coli O104:H4 isolated from patients in the Netherlands. Front Microbiol. 2015;6:1348.
  • Xiao S, Jia J, Mo D, et al. Understanding PRRSV infection in porcine lung based on genome-wide transcriptome response identified by deep sequencing. PLoS One. 2010;5:e11377.
  • Wright CF, Morelli MJ, Thebaud G, et al. Beyond the consensus: dissecting within-host viral population diversity of foot-and-mouth disease virus by using nextgeneration genome sequencing. J Virol. 2011;85:2266–2275.
  • Blomstrom AL, Belak S, Fossum C, et al. Studies of porcine circovirus type 2, porcine boca-like virus and Torque teno virus indicate the presence of multiple viral infections in postweaning multisystemic wasting syndrome pigs. Virus Res. 2010;152:59–64.
  • Biek R, O’Hare A, Wright D, et al. Whole genome sequencing reveals local transmission patterns of Mycobacterium bovis in sympatric cattle and badger populations. PLoS Pathog. 2012;8:e1003008.
  • Leifer I, Ruggli N, Blome S. Approaches to define the viral genetic basis of classical swine fever virus virulence. Virology. 2013;438:51–55.
  • Lefebure T, Bitar PD, Suzuki H, et al. Evolutionary dynamics of complete Campylobacter pan-genomes and the bacterial species concept. Genome Biol Evol. 2010;2:646–655.
  • Ghosh M, Sodhi SS, Kim JH, et al. An integrated In silico approach for the structural and functional exploration of lipocalin 2and its functional insights with metalloproteinase and lipoprotein receptor related protein 2. Appl Biochem Biotechnol. 2015;176:712–729.
  • Ali R, Blackburn RM, Kozlakidis Z. Next-generation sequencing and influenza virus: a short review of the published implementation attempts. HAYATI J Biosci. 2016;23:155–159.
  • Hadjadi L, Riziki T, Zhu Y, Li J, et al. Study of mcr-1 gene-mediated colistin resistance in enterobacteriaceae isolated from human and animals in different countries. Genes. 2017;8:398.
  • Kluytmans-van den Bergh MF, Rossen JW, Bruijning-Verhagen PC, et al. Whole genome multilocus sequence typing of extended-spectrum beta-lactamase-producing Enterobacteriaceae. J Clin Microbiol. 2016;54:2919–2927.
  • Terveer EM, Nijhuis RHT, Crobach MJT, et al. Prevalence of colistin resistance gene (mcr1) containing Enterobacteriaceae in feces of patients attending a tertiary care hospital and detection of a mcr-1 containing, colistin susceptible E. coli. PLoS One. 2017;12:e0178598.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.