1,797
Views
54
CrossRef citations to date
0
Altmetric
Review Article

Recent developments in colorimetric immunoassays using nanozymes and plasmonic nanoparticles

, , &
Pages 50-66 | Received 02 Dec 2017, Accepted 16 Jun 2018, Published online: 09 Sep 2018

References

  • Harvey DT. Analytical chemistry: a modern approach to analytical science, 2nd Edition (R. Kellner, J.-M. Mermet, M. Otto, M. Varcárcel, and H. M. Widmer, eds.). J Chem Educ. 2006;83:385.
  • Cruz HJ, Rosa CC, Oliva AG. Immunosensors for diagnostic applications. Parasitol Res. 2002;88:S4–S7.
  • Patel S, Nanda R, Sahoo S, et al. Biosensors in health care: the milestones achieved in their development towards lab-on-chip-analysis. Biochem Res Int. 2016;2016:1. DOI:10.1155/2016/3130469
  • Bartlett PN, Toh CS, Calvo EJ, et al. Modelling biosensor responses. In: Bartlett PN, editor. Bioelectrochemistry. West Sussex, England: John Wiley & Sons, Ltd; 2008. p. 267–325.
  • Darwish IA. Immunoassay methods and their applications in pharmaceutical analysis: basic methodology and recent advances. Int J Biomed Sci. 2006;2:217–235.
  • Vermeer AW, Norde W. The thermal stability of immunoglobulin: unfolding and aggregation of a multi-domain protein. Biophys J. 2000;78:394–404.
  • Raina M, Sharma R, Deacon SE, et al. Antibody mimetic receptor proteins for label-free biosensors. Analyst. 2015;140:803–810.
  • Ren X, Yan J, Wu D, et al. Nanobody-based apolipoprotein E immunosensor for point-of-care testing. ACS Sens. 2017;2:1267–1271.
  • Bruce VJ, McNaughton BR. Evaluation of nanobody conjugates and protein fusions as bioanalytical reagents. Anal Chem. 2017;89:3819–3823.
  • Li D, Cui Y, Morisseau C, et al. Nanobody based immunoassay for human soluble epoxide hydrolase detection using polymeric horseradish peroxidase (PolyHRP) for signal enhancement: the rediscovery of PolyHRP? Anal Chem. 2017;89:6248–6256.
  • Della Pia EA, Martinez KL. Single domain antibodies as a powerful tool for high quality surface plasmon resonance studies. PLoS One. 2015;10:e0124303.
  • Ta DT, Guedens W, Vranken T, et al. Enhanced biosensor platforms for detecting the atherosclerotic biomarker VCAM1 based on bioconjugation with uniformly oriented VCAM1-targeting nanobodies. Biosensors. 2016;6:34.
  • Dmitriev OY, Lutsenko S, Muyldermans S. Nanobodies as probes for protein dynamics in vitro and in cells. J Biol Chem. 2016;291:3767–3775.
  • Schumacher D, Helma J, Schneider AFL, et al. Nanobodies: chemical functionalization strategies and intracellular applications. Angew Chem Int Ed. 2018;57:2314–2333.
  • Vasapollo G, Sole R, Del Mergola L, et al. Molecularly imprinted polymers: present and future prospective. IJMS. 2011;12:5908. DOI:10.3390/ijms12095908
  • Uzun L, Turner APF. Molecularly-imprinted polymer sensors: realising their potential. Biosens Bioelectron. 2016;76:131–144.
  • Birnbaumer GM, Lieberzeit PA, Richter L, et al. Detection of viruses with molecularly imprinted polymers integrated on a microfluidic biochip using contact-less dielectric microsensors. Lab Chip. 2009;9:3549–3556.
  • Ge L, Wang S, Yu J, et al. Molecularly imprinted polymer grafted porous Au-paper electrode for an microfluidic electro-analytical origami device. Adv Funct Mater. 2013;23:3115–3123.
  • Urraca JL, Moreno-Bondi MC, Orellana G, et al. Molecularly imprinted polymers as antibody mimics in automated on-line fluorescent competitive assays. Anal Chem. 2007;79:4915–4923.
  • Wang S, Yin D, Wang W, et al. Targeting and imaging of cancer cells via monosaccharide-imprinted fluorescent nanoparticles. Sci Rep. 2016;6:22757
  • Jarczewska M, Gorski L, Malinowska E. Electrochemical aptamer-based biosensors as potential tools for clinical diagnostics. Anal Methods. 2016;8:3861–3877.
  • Farhad Behzad BM. The effects of gold and silver nanoparticles on an enzymatic reaction between horseradish peroxidase and 3,3′,5,5′-tetramethylbenzidine. Biochem Pharmacol (Los Angel). 2014;3:3–5.
  • Boholm M, Arvidsson R. A definition framework for the terms nanomaterial and nanoparticle. Nanoethics. 2016;10:25–40.
  • Cully M. Drug delivery: Nanoparticles improve profile of molecularly targeted cancer drug. Nat Rev Drug Discov. 2016;15:231.
  • Baranes K, Shevach M, Shefi O, et al. Gold nanoparticle-decorated scaffolds promote neuronal differentiation and maturation. Nano Lett. 2016;16:2916–2920.
  • Akturk O, Kismet K, Yasti AC, et al. Collagen/gold nanoparticle nanocomposites: a potential skin wound healing biomaterial. J Biomater Appl. 2016;31:283–301.
  • Shu J, Qiu Z, Lv S, et al. Plasmonic enhancement coupling with defect-engineered TiO2–x: a mode for sensitive photoelectrochemical biosensing. Anal Chem. 2018;90:2425–2429.
  • Jian S, Dianping T. Current advances in quantum‐dots‐based photoelectrochemical immunoassays. Chem Asian J. 2017;12:2780–2789.
  • Zhou Q, Lin Y, Zhang K, et al. Reduced graphene oxide/BiFeO3 nanohybrids-based signal-on photoelectrochemical sensing system for prostate-specific antigen detection coupling with magnetic microfluidic device. Biosens Bioelectron. 2018;101:146–152.
  • Zhang K, Lv S, Lin Z, et al. Bio-bar-code-based photoelectrochemical immunoassay for sensitive detection of prostate-specific antigen using rolling circle amplification and enzymatic biocatalytic precipitation. Biosens Bioelectron. 2018;101:159–166.
  • Jiang J, Oberdörster G, Elder A, et al. Does nanoparticle activity depend upon size and crystal phase? Nanotoxicology. 2008;2:33–42.
  • Kahk JM, Rees NV, Pillay J, et al. Electron transfer kinetics at single nanoparticles. Nano Today. 2012;7:174–179.
  • Graff BM, Bloom BP, Wierzbinski E, et al. Electron transfer in nanoparticle dyads assembled on a colloidal template. J Am Chem Soc. 2016;138:13260–13270.
  • Kim DH, Hur J, Park HG, et al. Reagentless colorimetric biosensing platform based on nanoceria within an agarose gel matrix. Biosens Bioelectron. 2017;93:226–233.
  • Yang X, Zhanghao K, Wang H, et al. Versatile application of fluorescent quantum dot labels in super-resolution fluorescence microscopy. ACS Photon. 2016;3:1611–1618.
  • Hemelaar SR, de Boer P, Chipaux M, et al. Nanodiamonds as multi-purpose labels for microscopy. Sci Rep. 2017;7:720.
  • Brown K, Thurn T, Xin L, et al. Intracellular in situ labeling of TiO2 nanoparticles for fluorescence microscopy detection. Nano Res. 2018;11:464–476.
  • Lai W, Wei Q, Xu M, et al. Enzyme-controlled dissolution of MnO2 nanoflakes with enzyme cascade amplification for colorimetric immunoassay. Biosens Bioelectron. 2017;89:645–651.
  • Gao Z, Xu M, Hou L, et al. Magnetic bead-based reverse colorimetric immunoassay strategy for sensing biomolecules. Anal Chem. 2013;85:6945–6952.
  • Jv Y, Li B, Cao R. Positively-charged gold nanoparticles as peroxidase mimic and their application in hydrogen peroxide and glucose detection. Chem Commun (Camb). 2010;46:8017–8019.
  • Shah J, Purohit R, Singh R, et al. ATP-enhanced peroxidase-like activity of gold nanoparticles. J Colloid Interface Sci. 2015;456:100–107.
  • Lin Y, Huang Y, Ren J, et al. Incorporating ATP into biomimetic catalysts for realizing exceptional enzymatic performance over a broad temperature range. NPG Asia Mater. 2014;6:e114.
  • Peng FF, Zhang Y, Gu N. Size-dependent peroxidase-like catalytic activity of Fe3O4 nanoparticles. Chinese Chem Lett. 2008;19:730–733.
  • Lin Y, Li Z, Chen Z, et al. Mesoporous silica-encapsulated gold nanoparticles as artificial enzymes for self-activated cascade catalysis. Biomaterials. 2013;34:2600–2610.
  • Jiang H, Chen Z, Cao H, et al. Peroxidase-like activity of chitosan stabilized silver nanoparticles for visual and colorimetric detection of glucose. Analyst. 2012;137:5560–5564.
  • Liu B, Liu J. Surface modification of nanozymes. Nano Res. 2017;10:1125–1148.
  • Gao Z, Xu M, Hou L, et al. Irregular-shaped platinum nanoparticles as peroxidase mimics for highly efficient colorimetric immunoassay. Anal Chim Acta. 2013;776:79–86.
  • Gao Z, Lv S, Xu M, et al. High-index {hk0} faceted platinum concave nanocubes with enhanced peroxidase-like activity for an ultrasensitive colorimetric immunoassay of the human prostate-specific antigen. Analyst. 2017;142:911–917.
  • Li J, Liu W, Wu X, et al. Mechanism of pH-switchable peroxidase and catalase-like activities of gold, silver, platinum and palladium. Biomaterials. 2015;48:37–44.
  • Lan J, Xu W, Wan Q, et al. Colorimetric determination of sarcosine in urine samples of prostatic carcinoma by mimic enzyme palladium nanoparticles. Anal Chim Acta. 2014;825:63–68.
  • Gao Z, Hou L, Xu M, et al. Enhanced colorimetric immunoassay accompanying with enzyme cascade amplification strategy for ultrasensitive detection of low-abundance protein. Sci Rep. 2014;4:3966.
  • Berillo D, Cundy A. 3D-macroporous chitosan-based scaffolds with in situ formed Pd and Pt nanoparticles for nitrophenol reduction. Carbohydr Polym. 2018;192:166–175.
  • Qiu L, McCaffrey R, Jin Y, et al. Cage-templated synthesis of highly stable palladium nanoparticles and their catalytic activities in Suzuki-Miyaura coupling. Chem Sci. 2018;9:676–680.
  • Niu Z, Li Y. Removal and utilization of capping agents in nanocatalysis. Chem Mater. 2014;26:72–83.
  • Wang Z, Yang X, Yang J, et al. Peroxidase-like activity of mesoporous silica encapsulated Pt nanoparticle and its application in colorimetric immunoassay. Anal Chim Acta. 2015;862:53–63.
  • Dong W, Zhuang Y, Li S, et al. High peroxidase-like activity of metallic cobalt nanoparticles encapsulated in metal–organic frameworks derived carbon for biosensing. Sensors Actuators B Chem. 2018;255:2050–2057.
  • Guo L, Xu Y, Ferhan AR, et al. Oriented gold nanoparticle aggregation for colorimetric sensors with surprisingly high analytical figures of merit. J Am Chem Soc. 2013;135:12338–12345.
  • Su K-H, Wei Q-H, Zhang X, et al. Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett. 2003;3:1087–1090.
  • Wang W, Yang M, Wang Z, et al. Silver nanoparticle aggregates by room temperature electron reduction: preparation and characterization. RSC Adv. 2014;4:63079–63084.
  • Xianyu Y, Wang Z, Jiang X. A plasmonic nanosensor for immunoassay via enzyme-triggered click chemistry. ACS Nano. 2014;8:12741–12747.
  • de la Rica R, Stevens MM. Plasmonic ELISA for the detection of analytes at ultralow concentrations with the naked eye. Nat Protocol. 2013;8:1759–1764.
  • Gao Z, Deng K, Wang X-D, et al. High-resolution colorimetric assay for rapid visual readout of phosphatase activity based on gold/silver core/shell nanorod. ACS Appl Mater Interfaces. 2014;6:18243–18250.
  • Xuan Z, Li M, Rong P, et al. Plasmonic ELISA based on the controlled growth of silver nanoparticles. Nanoscale. 2016;8:17271–17277.
  • Malashikhina N, Garai-Ibabe G, Pavlov V. Unconventional application of conventional enzymatic substrate: first fluorogenic immunoassay based on enzymatic formation of quantum dots. Anal Chem. 2013;85:6866–6870.
  • Thanh NTK, Maclean N, Mahiddine S. Mechanisms of nucleation and growth of nanoparticles in solution. Chem Rev. 2014;114:7610–7630.
  • Bastu´s NG, Comenge J, Puntes V. Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening. Langmuir. 2011;27:11098–11105.
  • Ziegler C, Eychmüller A. Seeded growth synthesis of uniform gold nanoparticles with diameters of 15 − 300 nm. J Phys Chem C. 2011;115:4502–4506.
  • Makhsin SR, Razak KA, Noordin R, et al. The effects of size and synthesis methods of gold nanoparticle-conjugated MαHIgG 4 for use in an immunochromatographic strip test to detect brugian filariasis. Nanotechnology. 2012;23:495719.
  • Peng M-P, Ma W, Long Y-T. Alcohol dehydrogenase-catalyzed gold nanoparticle seed-mediated growth allows reliable detection of disease biomarkers with the naked eye. Anal Chem. 2015;87:5891–5896.
  • Kimling J, Maier M, Okenve B, et al. Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B. 2006;110:15700–15707.
  • Stanglmair C, Scheeler SP, Pacholski C. Seeding growth approach to gold nanoparticles with diameters ranging from 10 to 80 nanometers in organic solvent. Eur J Inorg Chem. 2014;2014:3633–3637.
  • Akiba H, Ichiji M, Nagao H, et al. Effect of seeding and pH conditions on the size and shape of Au nanoparticles in reduction crystallization. Chem Eng Technol. 2015;38:1068–1072.
  • Leng W, Pati P, Vikesland PJ. Room temperature seed mediated growth of gold nanoparticles: mechanistic investigations and life cycle assesment. Environ Sci Nano. 2015;2:440–453.
  • Iravani S, Korbekandi H, Mirmohammadi SV, et al. Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci. 2014;9:385–406.
  • Myroshnychenko V, Rodriguez-Fernandez J, Pastoriza-Santos I, et al. Modelling the optical response of gold nanoparticles. Chem Soc Rev. 2008;37:1792–1805.
  • Ma X, Chen Z, Kannan P, et al. Gold nanorods as colorful chromogenic substrates for semiquantitative detection of nucleic acids, proteins, and small molecules with the naked eye. Anal Chem. 2016;88:3227–3234.
  • Liang J, Yao C, Li X, et al. Silver nanoprism etching-based plasmonic ELISA for the high sensitive detection of prostate-specific antigen. Biosens Bioelectron. 2015;69:128–134.
  • Guo L, Xu S, Ma X, et al. Dual-color plasmonic enzyme-linked immunosorbent assay based on enzyme-mediated etching of Au nanoparticles. Sci Rep. 2016;6:32755.
  • Ahmed MU, Hossain MM, Safavieh M, et al. Toward the development of smart and low cost point-of-care biosensors based on screen printed electrodes. Crit Rev Biotechnol. 2016;36:495–505.
  • Lim SA, Ahmed MU. Electrochemical immunosensors and their recent nanomaterial-based signal amplification strategies: a review. RSC Adv. 2016;6:24995–25014.
  • Rizwan M, Koh D, Booth MA, et al. Combining a gold nanoparticle-polyethylene glycol nanocomposite and carbon nanofiber electrodes to develop a highly sensitive salivary secretory immunoglobulin A immunosensor. Sensors Actuators B Chem. 2018;255:557–563.
  • Lou T, Qiang H, Chen Z. Core-shell Cu@Au nanoparticles-based colorimetric aptasensor for the determination of lysozyme. Talanta. 2017;163:132–139.
  • Liu H, Jiao M, Gu C, et al. Au@CuxOS yolk-shell nanomaterials with porous shells act as a new peroxidase mimic for the colorimetric detection of H2O2. J Alloys Compd. 2018;741:197–204.
  • Gao Z, Xu M, Lu M, et al. Urchin-like (gold core)@(platinum shell) nanohybrids: a highly efficient peroxidase-mimetic system for in situ amplified colorimetric immunoassay. Biosens Bioelectron. 2015;70:194–201.
  • Huang B, Wang Y, Lu Z, et al. One pot synthesis of palladium-cobalt nanoparticles over carbon nanotubes as a sensitive non-enzymatic sensor for glucose and hydrogen peroxide detection. Sensors Actuators B Chem. 2017;252:1016–1025.
  • Gao Z, Ye H, Tang D, et al. Platinum-decorated gold nanoparticles with dual functionalities for ultrasensitive colorimetric in vitro diagnostics. Nano Lett. 2017;17:5572–5579.
  • Huang X, Liu Y, Yung B, et al. Nanotechnology-enhanced no-wash biosensors for in vitro diagnostics of cancer. ACS Nano. 2017;11:5238–5292.
  • Yang Y-C, Tseng W-L. 1,4-Benzenediboronic-acid-induced aggregation of gold nanoparticles: application to hydrogen peroxide detection and biotin–avidin-mediated immunoassay with naked-eye detection. Anal Chem. 2016;88:5355–5362.
  • Yu R-J, Ma W, Liu X-Y, et al. Metal-linked immunosorbent assay (MeLISA): the enzyme-free alternative to ELISA for biomarker detection in serum. Theranostics. 2016;6:1732–1739.
  • Xianyu Y, Chen Y, Jiang X. Horseradish peroxidase-mediated, iodide-catalyzed cascade reaction for plasmonic immunoassays. Anal Chem. 2015;87:10688–10692.
  • Bui M-PN, Ahmed S, Abbas A. Single-digit pathogen and attomolar detection with the naked eye using liposome-amplified plasmonic immunoassay. Nano Lett. 2015;15:6239–6246.
  • Wang P, Wan Y, Ali A, et al. Aptamer-wrapped gold nanoparticles for the colorimetric detection of omethoate. Sci China Chem. 2016;59:237–242.
  • Zhang Z, Chen Z, Wang S, et al. Iodine-mediated etching of gold nanorods for plasmonic ELISA based on colorimetric detection of alkaline phosphatase. ACS Appl Mater Interfaces. 2015;7:27639–27645.
  • Yao C, Yu S, Li X, et al. A plasmonic ELISA for the naked-eye detection of chromium ions in water samples. Anal Bioanal Chem. 2017;409:1093–1100.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.