979
Views
5
CrossRef citations to date
0
Altmetric
Review Article

Current studies on the enzymatic preparation 2-O-α-d-glucopyranosyl-l-ascorbic acid with cyclodextrin glycosyltransferase

, &
Pages 249-257 | Received 15 Jun 2018, Accepted 13 Sep 2018, Published online: 18 Dec 2018

References

  • Teng J, Pourmand A, Mazer-Amirshahi M. Vitamin C: the next step in sepsis management? J Crit Care. 2018;43:230–234.
  • Naidu KA. Vitamin C in human health and disease is still a mystery? An overview. Nutr J. 2003;2:7.
  • Mima H, Nomura H, Imai Y, et al. Chemistry and application of ascorbic acid phosphate. Vitamins. 1970;41:387–398.
  • Shen HQ, Song QH, Tan TW. Synthesis of l-ascorbyl palmitate by immobilized lipase. J Biotechnol. 2008;136:S393.
  • Mead CG, Finamore FJ. The occurrence of ascorbic acid sulfate in the brine shrimp, Artemia salina. Biochemistry. 1969;8:2652–2655.
  • Tanaka M, Muto N, Yamamoto I. Characterization of Bacillus stearothermophilus cyclodextrin glucanotransferase in ascorbic acid 2-O-alpha-glucoside formation. BBA-Protein Struct M. 1991;1078:127–132.
  • Li ZJ, Han HJ, Wang B, et al. Transglucosylation of ascorbic acid to ascorbic acid 2-glucoside by a truncated version of α-glucosidase from Aspergillus niger. J Food Biochem. 2017;41:1–9.
  • Aga H, Yoneyama M, Sakai S, et al. Synthesis of 2-O-α-d-glucopyranosyl l-ascorbic acid by cyclomaltodextrin gluconotransferase from Bacillus stearothermophilus. Agric Biol Chem. 1991;55:1751–1756.
  • Bae HK, Lee SB, Park CS, et al. Modification of ascorbic acid using transglycosylation activity of Bacillus stearothermophilus maltogenic amylase to enhance its oxidative stability. J Agric Food Chem. 2002;50:3309–3316.
  • Gudiminchi RK, Nidetzky B. Walking a fine line with sucrose phosphorylase: efficient single-step biocatalytic production of l-ascorbic acid 2-glucoside from sucrose. Chembiochem. 2017;18:1387–1390.
  • Mukai K, Tsusaki K, Kubota M, et al. Process for producing 2-O-alpha-d-glucopyranosyl-l-ascorbic acid. EP; . United States patent US8759030B2. 2014.
  • Uitdehaag JCM, Mosi R, Kalk KH, et al. X-ray structures along the reaction pathway of cyclodextrin glycosyltransferase elucidate catalysis in the alpha-amylase family. Nat Struct Biol. 1999;6:432–436.
  • Janecek S. Parallel beta/alpha-barrels of alpha-amylase, cyclodextrin glycosyltransferase and oligo-1,6-glucosidase versus the barrel of beta-amylase: evolutionary distance is a reflection of unrelated sequences. FEBS Lett. 1994;353:119–123.
  • van der Veen BA, van Alebeek G, Uitdehaag JCM, et al. Engineering of cyclodextrin glycosyltransferase reaction and product specificity. BBA-Protein Struct M. 2000;1543:336–360.
  • Wind RD, Uitdehaag JC, Buitelaar RM, et al. Engineering of cyclodextrin product specificity and pH optima of the thermostable cyclodextrin glycosyltransferase from Thermoanaerobacterium thermosulfurigenes EM1. J Biol Chem. 1998;273:5771–5779.
  • Hirano K, Ishihara T, Ogasawara S, et al. Molecular cloning and characterization of a novel gamma-CGTase from alkalophilic Bacillus sp. Appl Microbiol Biotechnol. 2006;70:193–201.
  • Penninga D, Ba DVV, Knegtel RM, et al. The raw starch binding domain of cyclodextrin glycosyltransferase from Bacillus circulans strain 251. J Biol Chem. 1996;271:32777–32784.
  • Chang HY, Irwin PM, Nikolov ZL. Effects of mutations in the starch-binding domain of Bacillus macerans cyclodextrin glycosyltransferase. J Biotechnol. 1998;65:191–202.
  • Cantarel BL, Coutinho PM, Rancurel C, et al. The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 2009;37:D233–D238.
  • Machovic M, Janecek S. Starch-binding domains in the post-genome era. Cell Mol Life Sci. 2006;63:2710–2724.
  • Veen BAVD, Alebeek GJWMV, Uitdehaag JCM, et al. The three transglycosylation reactions catalyzed by cyclodextrin glycosyltransferase from Bacillus circulans (strain 251) proceed via different kinetic mechanisms. FEBS J. 2000;267:658–665.
  • Han RZ, Liu L, Shin HD, et al. Iterative saturation mutagenesis of -6 subsite residues in cyclodextrin glycosyltransferase from Paenibacillus macerans to improve maltodextrin specificity for 2-O-d-glucopyranosyl-l-ascorbic acid synthesis. Appl Environ Microbiol. 2013;79:7562–7568.
  • Gudiminchi RK, Towns A, Varalwar S, et al. Enhanced synthesis of 2-O-alpha-d-glucopyranosyl-l-ascorbic acid from alpha-cyclodextrin by a highly disproportionating CGTase. ACS Catal. 2016;6:1606–1615.
  • Liu L, Han RZ, Shin HD, et al. Biosynthesis of 2-O-α-d-glucopyraosyl l-ascorbic acid from maltose by an engineered cyclodextrin glycosyltransferase from Paenibacillus macerans. Carbohydr Res. 2013;382:101–107.
  • Borner T, Roger K, Adlercreutz P. Hydrophobic complexation promotes enzymatic surfactant synthesis from alkyl glucoside/cyclodextrin mixtures. ACS Catal. 2014;4:2623–2634.
  • Zhang ZC, Li JH, Liu L, et al. Enzymatic transformation of 2-O-α-d-glucopyranosyl-l-ascorbic acid by α-cyclodextrin glucanotransferase from recombinant Escherichia coli. Biotechnol Bioproc E. 2011;16:107–113.
  • Hong KJ, Bae KM, Kim SK. Production of 2-O-α-d-glucopyraosyl l-ascorbic acid using cyclodextrin glucanotransferase from Paenibacillus sp. Biotechnol Lett. 2001;23:1793–1797.
  • Wongsangwattana W, Kaulpiboon J, Ito K, et al. Synthesis of cellobiose-containing oligosaccharides by intermolecular transglucosylation of cyclodextrin glycosyltransferase from Paenibacillus sp. A11. Process Biochem. 2010;45:947–953.
  • Rather MY, Ara KZG, Karlsson EN, et al. Characterization of cyclodextrin glycosyltransferases (CGTases) and their application for synthesis of alkyl glycosides with oligomeric head group. Process Biochem. 2015;50:722–728.
  • Sheng C, Xiong YJ, Su LQ, et al. Position 228 in Paenibacillus macerans cyclodextrin glycosyltransferase is critical for 2-O-α-glucopyranosyl l-ascorbic acid synthesis. J Biotechnol. 2017;247:18–24.
  • Kang Y, Kim SK, Jun HK. Purification and characterization of cyclodextrin glucanotransferase from Paenibacillus sp. JK-12. Prev Nutr Food Sci. 2002;7:42–52.
  • Bae KM, Kim SK, Kong IS, et al. Purification and properties of cyclodextrin glucanotransferase synthesizing 2-O-α-d-glucopyranosyl l-ascorbic acid from Paenibacillus sp. JB-13. J Microbiol Biotechn. 2001;11:242–250.
  • Cao X, Liu F, Ming H, et al. The optimization of the enzyme producing condition and the transformation condition to prepare glucopyranosyl-l-ascorbid acid. Acad Period Farm Prod Process. 2008;19–28.
  • Eibaid A, Miao M, Bashari M, et al. Biosynthesis of 2-O-α-d-glucopyranosyl-l-ascorbic acid from maltose catalyzed by cyclodextrin glucanotransferase from Bacillus sp. SK13.002. J Food Nutr Res. 2014;2:193–197.
  • Song C, Du G, Tian Z, et al. Exploration of the influence of acidity, temperature and standing time on the stability of vitamin C. J Fuyang Teachers Coll (Nat Sci). 2015;35:31–34.
  • Martin MT, Alcalde M, Plou FJ, et al. Synthesis of malto-oligosaccharides via the acceptor reaction catalyzed by cyclodextrin glycosyltransferases. Biocatalysis. 2001;19:21–35.
  • Lu T, Xia YM. Transglycosylation specificity of glycosyl donors in transglycosylation of stevioside catalysed by cyclodextrin glucanotransferase. Food Chem. 2014;159:151–156.
  • Xu QY, Han RZ, Li JH, et al. Improving maltodextrin specificity by site-saturation engineering of subsite +1 in cyclodextrin glycosyltransferase from Paenibacillus macerans. Acta Microbiol Sin. 2014;30:98–108.
  • Han RZ, Liu L, Shin HD, et al. Systems engineering of tyrosine 195, tyrosine 260, and glutamine 265 in cyclodextrin glycosyltransferase from Paenibacillus macerans to enhance maltodextrin specificity for 2-O-(d)-glucopyranosyl-(l)-ascorbic acid synthesis. Appl Environ Microbiol. 2013;79:672–677.
  • Liu L, Xu QY, Han RZ, et al. Improving maltodextrin specificity for enzymatic synthesis of 2-O-d-glucopyranosyl-l-ascorbic acid by site-saturation engineering of subsite-3 in cyclodextrin glycosyltransferase from Paenibacillus macerans. J Biotechnol. 2013;166:198–205.
  • Han RZ, Liu L, Shin HD, et al. Site-saturation engineering of lysine 47 in cyclodextrin glycosyltransferase from Paenibacillus macerans to enhance substrate specificity towards maltodextrin for enzymatic synthesis of 2-O-d-glucopyranosyl-l-ascorbic acid (AA-2G). Appl Microbiol Biotechnol. 2013;97:5851–5860.
  • Han RZ, Li JH, Shin HD, et al. Carbohydrate-binding module-cyclodextrin glycosyltransferase fusion enables efficient synthesis of 2-O-d-glucopyranosyl-l-ascorbic acid with soluble starch as the glycosyl donor. Appl Environ Microbiol. 2013;79:3234–3240.
  • Han RZ, Li JH, Shin HD, et al. Fusion of self-assembling amphipathic oligopeptides with cyclodextrin glycosyltransferase improves 2-O-d-glucopyranosyl-l-ascorbic acid synthesis with soluble starch as the glycosyl donor. Appl Environ Microbiol. 2014;80:4717–4724.
  • Tao X, Wang T, Su L, et al. Enhanced 2- O-α-d-glucopyranosyl-l-ascorbic acid synthesis through iterative saturation mutagenesis of acceptor subsite residues in Bacillus stearothermophilus NO2 cyclodextrin glycosyltransferase. J Agric Food Chem. 2018;66:9052–9060.
  • Zhang ZC, Li JH, Liu L, et al. Enzymatic transformation of 2-O-α-d-glucopyranosyl-l-ascorbic acid (AA-2G) by immobilized α-cyclodextrin glucanotransferase from recombinant Escherichia coli. Biotechnol Bioprocess. 2011;68:223–229.
  • Markosyan AA. Transglycosylation of L-ascorbic acid by free and immobilized cyclomaltodextrin glucanotransferases. Electron J Nat Sci. 2005;5:15.
  • Prousoontorn MH, Pantatan S. Production of 2-O-α-glucopyranosyl l-ascorbic acid from ascorbic acid and β-cyclodextrin using immobilized cyclodextrin glycosyltransferase. J Incl Phenom Macrocycl Chem. 2007;57:39–46.
  • Xiong Y, Su L, Wang L, et al. Anchorage of cyclodextrin glycosyltransferase on outer membrane of Saccharomyces cerevisiae to produce 2-O-α-d-glucopyranosyl-l-ascorbic acid. Acta Microbiol Sin. 2015;55:1305–1313.
  • Eibaid AI, Miao M, Jiang B, et al. Improvement of 2-O-α-d-glucopyranosyl-l-ascorbic acid biosynthesis using ultrasonic radiation. Trop J Pharm Res. 2015;14:599–604.
  • Xiao YM, Wu Q, Cai Y, et al. Ultrasound-accelerated enzymatic synthesis of sugar esters in nonaqueous solvents. Carbohydr Res. 2005;340:2097–2103.
  • Gogate PR, Prajapat AL. Depolymerization using sonochemical reactors: a critical review. Ultrason Sonochem. 2015;27:480–494.
  • Wang Z, Lin X, Li P, et al. Effects of low intensity ultrasound on cellulase pretreatment. Bioresource Technol. 2012;117:222–227.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.