351
Views
12
CrossRef citations to date
0
Altmetric
Review Article

Advances and challenges in the production of extracellular thermoduric pullulanases by wild-type and recombinant microorganisms: a review

ORCID Icon &
Pages 337-350 | Received 10 Nov 2017, Accepted 01 Dec 2018, Published online: 30 Jan 2019

References

  • Hii SL, Tan JS, Ling TC, et al. Pullulanase: role in starch hydrolysis and potential industrial applications. Enzyme Res. 2012;2012:1.
  • Xu J, Ren F, Huang CH, et al. Functional and structural studies of pullulanase from Anoxybacillus sp. LM18-11. Proteins. 2014;82:1685–1693.
  • Duan X, Chen J, Wu J. Improving the thermostability and catalytic efficiency of Bacillus deramificans pullulanase by site-directed mutagenesis. Appl Environ Microbiol. 2013;79:4072–4077.
  • van Donkelaar LHG, Mostert J, Zisopoulos FK, et al. The use of enzymes for beer brewing: thermodynamic comparison on resource use. Energy. 2016;115:519–527.
  • Van Ee J, Misset O, Baas E. Enzymes in detergency. New York (NY): CRC Press; 1997.
  • Abd El Aty AA, Shehata AN, Shaheen TI. Production and sequential optimization of Bacillus subtilis MF467279 pullulanase by statistical experimental designs and evaluation of its desizing efficiency. Biocatal Agric Biotechnol. 2018;14:375–385.
  • Kunamneni A, Singh S. Improved high thermal stability of pullulanase from a newly isolated thermophilic Bacillus sp. AN-7. Enzyme Microb Technol. 2006;39:1399–1404.
  • Hii LS, Rosfarizan M, Ling TC, et al. Statistical optimization of pullulanase production by Raoultella planticola DSMZ 4617 using sago starch as carbon and peptone as nitrogen sources. Food Bioprocess Technol. 2012;5:729–737.
  • Liu G, Gu Z, Hong Y, et al. Structure, functionality and applications of debranched starch: a review. Trends Food Sci Technol. 2017;63:70–79.
  • Robyt JF. Enzymes and their action on starch, chapter 7. In: BeMiller JN, Whistler RL, editors. Starch: Chemistry and technology, 3rd. ed. London: Academic Press; 2009. p. 237.
  • de Souza PM, de O, Magalhães P. Application of microbial α-amylase in industry - A review. Braz J Microbiol. 2010;41:850–861.
  • Chen A, Li Y, Nie J, et al. Protein engineering of Bacillus acidopullulyticus pullulanase for enhanced thermostability using in silico data driven rational design methods. Enzyme Microb Technol. 2015;78:74–83.
  • Ramesh B, Reddy PR, Seenayya G, et al. Effect of various flours on the production of thermostable beta-amylase and pullulanase by Clostridium thermosulfurogenes SV2. Bioresour Technol. 2001;76:169–171.
  • Chen A, Li Y, Liu X, et al. Soluble expression of pullulanase from Bacillus acidopullulyticus in Escherichia coli by tightly controlling basal expression. J Ind Microbiol Biotechnol. 2014;41:1803–1810.
  • Wu H, Yu X, Chen L, et al. Cloning, overexpression and characterization of a thermostable pullulanase from Thermus thermophilus HB27. Protein Expr Purif. 2014;95:22–27.
  • Zouari Ayadi D, Ben Ali M, Jemli S, et al. Heterologous expression, secretion and characterization of the Geobacillus thermoleovorans US105 type I pullulanase. Appl Microbiol Biotechnol. 2008;78:473–481.
  • Zou C, Duan X, Wu J. Enhanced extracellular production of recombinant Bacillus deramificans pullulanase in Escherichia coli through induction mode optimization and a glycine feeding strategy. Bioresour Technol. 2014;172:174–179.
  • Bertoldo C, Armbrecht M, Becker F, et al. Cloning, sequencing, and characterization of a heat- and alkali-stable type I pullulanase from Anaerobranca gottschalkii. Appl Environ Microbiol. 2004;70:3407–3416.
  • Song W, Nie Y, Mu XQ, et al. Enhancement of extracellular expression of Bacillus naganoensis pullulanase from recombinant Bacillus subtilis: effects of promoter and host. Protein Expr Purif. 2016;124:23–31.
  • Bo X, Yang YJ, Huang ZX. Cloning and over expression of gene encoding pullulanase from Bacillus naganoensis in Pichia pastoris. J Microbiol Biotechnol. 2006;16:1185–1191.
  • Albertson GD, McHale RH, Gibbs MD, et al. Cloning and sequence of a type I pullulanase from an extremely thermophilic anaerobic bacterium, Caldicellulosiruptor saccharolyticus. Biochim Biophys Acta. 1997;1354:35–39.
  • Duffner F, Bertoldo C, Andersen JT, et al. A new thermoactive pullulanase from Desulfurococcus mucosus: cloning, sequencing, purification, and characterization of the recombinant enzyme after expression in Bacillus subtilis. J Bacteriol. 2000;182:6331–6338.
  • Kuriki T, Okada S, Imanaka T. New type of pullulanase from Bacillus stearothermophilus and molecular cloning and expression of the gene in Bacillus subtilis. J Bacteriol. 1988;170:1554–1559.
  • Nisha M, Satyanarayana T. Characteristics and applications of recombinant thermostable amylopullulanase of Geobacillus thermoleovorans secreted by Pichia pastoris. Appl Microbiol Biotechnol. 2017;33:2357–2369.
  • Nisha M, Satyanarayana T. Characterization of recombinant amylopullulanase (gt-apu) and truncated amylopullulanase (gt-apuT) of the extreme thermophile Geobacillus thermoleovorans NP33 and their action in starch saccharification. Appl Microbiol Biotechnol. 2013;97:6279–6292.
  • Su Z, Lu FP, Gao Q, et al. Cloning and expression of a thermostable pullulanase gene from Thermotoga maritima MSB8 in Bacillus subtilis WB600. Proceedings of the 2010 4th International Conference on Bioinformatics and Biomedical Engineering; 2010 Jun 18–20; Chengdu: IEEE; 2010. p. 1–4.
  • McCleary BV, Mangan D, McKie V, et al. Colourimetric and fluorometric substrates for measurement of pullulanase activity. Carbohydr Res. 2014;393:60–69.
  • Chen WB, Nie Y, Xu Y. Signal peptide-independent secretory expression and characterization of pullulanase from a newly isolated Klebsiella variicola SHN-1 in Escherichia coli. Appl Biochem Biotechnol. 2013;169:41–54.
  • Li X, Zhao J, Fu J, et al. Sequence analysis and biochemical properties of an acidophilic and hyperthermophilic amylopullulanase from Thermofilum pendens. Int J Biol Macromol. 2018;114:235–243.
  • Fujiwara S. Extremophiles: developments of their special functions and potential resources. J Biosci Bioeng. 2002;94:518–525.
  • Krahe M, Antranikian G, Märkl H. Fermentation of extremophilic microorganisms. FEMS Microbiol Rev. 1996;18:271–285.
  • Schiraldi C, Marulli F, Di Lernia I, et al. A microfiltration bioreactor to achieve high cell density in Sulfolobus solfataricus fermentation. Extremophiles. 1999;3:199–204.
  • Antranikian G, Zablowski P, Gottschalk G. Conditions for the overproduction and excretion of thermostable α-amylase and pullulanase from Clostridium thermohydrosulfuricum DSM 567. Appl Microbiol Biotechnol. 1987;27:75–81.
  • Reddy PRM, Reddy G, Seenayya G. Production of thermostable pullulanase by Clostridium thermosulfurogenes SV2 in solid-state fermentation: optimization of nutrients levels using response surface methodology. Bioprocess Eng. 1999;21:497–503.
  • Mohan Reddy PR, Mrudula S, Ramesh B, et al. Production of thermostable pullulanase by Clostridium thermosulfurogenes SV2 in solid-state fermentation: optimization of enzyme leaching conditions using response surface methodology. Bioprocess Eng. 2000;23:107–112.
  • Gomes I, Gomes J, Steiner W. Highly thermostable amylase and pullulanase of the extreme thermophilic eubacterium Rhodothermus marinus: production and partial characterization. Bioresour Technol. 2003;90:207–214.
  • Swamy MV, Seenayya G. Thermostable pullulanase and alpha-amylase activity from Clostridium thermosulfurogenes SV9 - Optimization of culture conditions for enzyme production. Process Biochem. 1996;31:157–162.
  • Odibo FJC, Obi SKC. Optimum culture conditions for the production of the extracellular pullulanase of Thermoactinomyces thalpophilus. Biol Wastes. 1990;32:9–15.
  • Domań-Pytka M, Bardowski J. Pullulan degrading enzymes of bacterial origin. Crit Rev Microbiol. 2004;30:107–121.
  • Choi KH, Cha J. Membrane-bound amylopullulanase is essential for starch metabolism of Sulfolobus acidocaldarius DSM639. Extremophiles. 2015;19:909–920.
  • Janse BJ, Pretorius IS. Expression of the Klebsiella pneumoniae pullulanase-encoding gene in Saccharomyces cerevisiae. Curr Genet. 1993;24:32–37.
  • Plant AR, Morgan HW, Daniel RM. A highly stable pullulanase from Thermus aquaticus YT-1. Enzyme Microb Technol. 1986;8:668–672.
  • Reddy RM, Reddy PG, Seenayya G. Enhanced production of thermostable β-amylase and pullulanase in the presence of surfactants by Clostridium thermosulfurogenes SV2. Process Biochem. 1999;34:87–92.
  • Demirtas MU, Kolhatkar A, Kilbane JJII. Effect of aeration and agitation on growth rate of Thermus thermophilus in batch mode. J Biosci Bioeng. 2003;95:113–117.
  • Han T, Zeng F, Li Z, et al. Biochemical characterization of a recombinant pullulanase from Thermococcus kodakarensis KOD1. Lett Appl Microbiol. 2013;57:336–343.
  • Yang M, Johnson SC, Murthy PPN. Enhancement of alkaline phytase production in Pichia pastoris: influence of gene dosage, sequence optimization and expression temperature. Protein Expr Purif. 2012;84:247–254.
  • Wang Y, Liu Y, Wang Z, et al. Influence of promoter and signal peptide on the expression of pullulanase in Bacillus subtilis. Biotechnol Lett. 2014;36:1783–1789.
  • Zhang W, Inan M, Meagher MM. Rational design and optimization of fed-batch and continuous fermentations. Methods Mol Biol. 2007;389:43–64.
  • Amon A, Berk A, Bretscher A, et al. Biologie moléculaire de la cellule. [Molecular biology of the cell]. Louvain-la-Neuve: De Boeck Supérieur; 2004.
  • Deng Y, Nie Y, Zhang Y, et al. Improved inducible expression of Bacillus naganoensis pullulanase from recombinant Bacillus subtilis by enhancer regulation. Protein Expr Purif. 2018;148:9–15.
  • Yan S, Wu G. Secretory pathway of cellulase: a mini-review. Biotechnol Biofuels. 2013;6:177.
  • Nguyen HD, Nguyen QA, Ferreira RC, et al. Construction of plasmid-based expression vectors for Bacillus subtilis exhibiting full structural stability. Plasmid. 2005;54:241–248.
  • Beaulieu L, Groleau D, Miguez CB, et al. Production of pediocin PA-1 in the methylotrophic yeast Pichia pastoris reveals unexpected inhibition of its biological activity due to the presence of collagen-like material. Protein Expr Purif. 2005;43:111–125.
  • Ahmad M, Hirz M, Pichler H, et al. Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Appl Microbiol Biotechnol. 2014;98:5301–5317.
  • Potvin G, Ahmad A, Zhang Z. Bioprocess engineering aspects of heterologous protein production in Pichia pastoris: a review. Biochem Eng J. 2012;64:91–105.
  • Resina D, Maurer M, Cos O, et al. Engineering of bottlenecks in Rhizopus oryzae lipase production in Pichia pastoris using the nitrogen source-regulated FLD1 promoter. Nat Biotechnol. 2009;25:396–403.
  • Nakano A, Lee CY, Yoshida A, et al. Effects of methanol feeding methods on chimeric alpha-amylase expression in continuous culture of Pichia pastoris. J Biosci Bioeng. 2006;101:227–231.
  • Zhang AL, Luo JX, Zhang TY, et al. Recent advances on the GAP promoter derived expression system of Pichia pastoris. Mol Biol Rep. 2009;36:1611–1619.
  • Delic M, Valli M, Graf AB, et al. The secretory pathway: exploring yeast diversity. FEMS Microbiol Rev. 2013;37:872–914.
  • Macauley-Patrick S, Fazenda ML, McNeil B, et al. Heterologous protein production using the Pichia pastoris expression system. Yeast. 2005;22:249–270.
  • Akeboshi H, Kashiwagi Y, Aoki H, et al. Construction of an efficient expression system for Aspergillus isopullulanase in Pichia pastoris, and a simple purification method. Biosci Biotechnol Biochem. 2003;67:1149–1153.
  • Pechan T, Ma PW, Luthe DS. Heterologous expression of maize (Zea mays L) Mir1 cysteine proteinase in eukaryotic and prokaryotic expression systems. Protein Expr Purif. 2004;34:134–141.
  • Duan X, Chen J, Wu J. Optimization of pullulanase production in Escherichia coli by regulation of process conditions and supplement with natural osmolytes. Bioresour Technol. 2013;146:379–385.
  • Hohenblum H, Gasser B, Maurer M, et al. Effects of gene dosage, promoters, and substrates on unfolded protein stress of recombinant Pichia pastoris. Biotechnol Bioeng. 2004;85:367–375.
  • Diamant S, Rosenthal D, Azem A, et al. Dicarboxylic amino acids and glycine-betaine regulate chaperone-mediated protein-disaggregation under stress. Mol Microbiol. 2003;49:401–410.
  • Duan X, Zou C, Wu J. Triton X-100 enhances the solubility and secretion ratio of aggregation-prone pullulanase produced in Escherichia coli. Bioresour Technol. 2015;194:137–143.
  • Elleuche S, Schröder C, Sahm K, et al. Extremozymes-biocatalysts with unique properties from extremophilic microorganisms. Curr Opin Biotechnol. 2014;29:116–123.
  • Kumar L, Awasthi G, Singh B. Extremophiles: a novel source of industrially important enzymes. Biotechnology. 2011;10:121–135.
  • Chen A, Sun Y, Zhang W, et al. Downsizing a pullulanase to a small molecule with improved soluble expression and secretion efficiency in Escherichia coli. Microb Cell Fact. 2016;15:9.
  • Wang J, Liu Z, Zhou Z. The N-terminal domain of the pullulanase from Anoxybacillus sp. WB42 modulates enzyme specificity and thermostability. Chembiochem. 2018;19:949–955.
  • Lin HY, Chuang HH, Lin FP. Biochemical characterization of engineered amylopullulanase from Thermoanaerobacter ethanolicus 39E-implicating the non-necessity of its 100 C-terminal amino acid residues. Extremophiles. 2008;12:641–650.
  • Li SF, Xu JY, Bao YJ, et al. Structure and sequence analysis-based engineering of pullulanase from Anoxybacillus sp. LM18-11 for improved thermostability. J Biotechnol. 2015;210:8–14.
  • Turkenburg JP, Brzozowski AM, Svendsen A, et al. Structure of a pullulanase from Bacillus acidopullulyticus. Proteins. 2009;76:516–519.
  • Deng Z, Yang H, Shin HD, et al. Structure-based rational design and introduction of arginines on the surface of an alkaline alpha-amylase from Alkalimonas amylolytica for improved thermostability. Appl Microbiol Biotechnol. 2014;98:8937–8945.
  • Lin FP, Ho YH, Lin HY, et al. Effect of C-terminal truncation on enzyme properties of recombinant amylopullulanase from Thermoanaerobacter pseudoethanolicus. Extremophiles. 2012;16:395–403.
  • Saha BC, Zeikus JG. Novel highly thermostable pullulanase from thermophiles. Trends Biotechnol. 1989;7:234–239.
  • Vieille C, Zeikus GJ. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev. 2001;65:1–43.
  • Farhat-Khemakhem A, Ali MB, Boukhris I, et al. Crucial role of Pro 257 in the thermostability of Bacillus phytases: biochemical and structural investigation. Int J Biol Macromol. 2013;54:9–15.
  • Guo J, Coker AR, Wood SP, et al. Structure and function of the type III pullulan hydrolase from Thermococcus kodakarensis. Acta Crystallogr D Struct Biol. 2018;74:305–314.
  • Mesbah NM, Wiegel J. Biochemical characterization of halophilic, alkalithermophilic amylopullulanase PulD7 and truncated amylopullulanases PulD7ΔN and PulD7ΔC. Int J Biol Macromol. 2018;111:632–638.
  • Bommarius AS, Blum JK, Abrahamson MJ. Status of protein engineering for biocatalysts: how to design an industrially useful biocatalyst. Curr Opin Chem Biol. 2011;15:194–200.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.