1,666
Views
45
CrossRef citations to date
0
Altmetric
Review Article

Structural insights into alcohol dehydrogenases catalyzing asymmetric reductions

, &
Pages 366-379 | Received 11 Oct 2016, Accepted 02 Dec 2018, Published online: 30 Jan 2019

References

  • Forrest GL, Gonzalez B. Carbonyl reductase. Chem Biol Interact. 2000;129:21–40.
  • Hall M, Bommarius AS. Enantioenriched compounds via enzyme-catalyzed redox reactions. Chem Rev. 2011;111:4088–4110.
  • Kroutil W, Mang H, Edegger K, et al. Recent advances in the biocatalytic reduction of ketones and oxidation of sec-alcohols. Curr Opin Chem Biol. 2004;8:120–126.
  • Moore JC, Pollard DJ, Kosjek B, et al. Advances in the enzymatic reduction of ketones. Acc Chem Res. 2007;40:1412–1419.
  • De Wildeman SMA, Sonke T, Schoemaker HE, et al. Biocatalytic reductions: from lab curiosity to “first choice”. Acc Chem Res. 2007;40:1260–1266.
  • Huisman GW, Liang J, Krebber A. Practical chiral alcohol manufacture using ketoreductases. Curr Opin Chem Biol. 2010;14:122–129.
  • Zheng YG, Yin HH, Yu DF, et al. Recent advances in biotechnological applications of alcohol dehydrogenases. Appl Microbiol Biotechnol. 2017;101:987–1001.
  • Giacomini D, Galletti P, Quintavalla A, et al. Highly efficient asymmetric reduction of arylpropionic aldehydes by horse liver alcohol dehydrogenase through dynamic kinetic resolution. Chem Commun. 2007;4038–4440.
  • Musa MM, Phillips RS, Laivenieks M, et al. Racemization of enantiopure secondary alcohols by Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase. Org Biomol Chem. 2013;11:2911–2915.
  • Kamitori S, Iguchi A, Ohtaki A, et al. X-ray structures of NADPH-dependent carbonyl reductase from Sporobolomyces salmonicolor provide insights into stereoselective reductions of carbonyl compounds. J Mol Biol. 2005;352:551–558.
  • Huang Y, Liu N, Wu X, et al. Dehydrogenases/reductases for the synthesis of chiral pharmaceutical intermediates. COC. 2010;14:1447–1460.
  • Lutz H, Andreas L, Ulrich, et al. Applied biocatalysis: from fundamental science to industrial applications. 2016; ISBN: 978-3-527-33669-2.
  • Nie Y, Xiao R, Xu Y, et al. Novel anti-prelog stereospecific carbonyl reductases from Candida parapsilosis for asymmetric reduction of prochiral ketones. Org Biomol Chem. 2011;9:4070–4078.
  • Itoh N. Use of the anti-Prelog stereospecific alcohol dehydrogenase from Leifsonia and Pseudomonas for producing chiral alcohols. Appl Microbiol Biotechnol. 2014;98:3889–3904.
  • Chen R, Deng J, Lin J, et al. Assessing the stereoselectivity of carbonyl reductases toward the reduction of OPBE and docking analysis. Biotechnol Appl Biochem. 2016;63:465–470.
  • Tan Z, Ma H, Li Q, et al. Biosynthesis of optically pure chiral alcohols by a substrate coupled and biphasic system with a short-chain dehydrogenase from Streptomyces griseus. Enzyme Microb Technol. 2016;93–94:191–199.
  • Lian C, Nie Y, Mu X, et al. Gene mining-based identification of aldo–keto reductases for highly stereoselective reduction of bulky ketones. Bioresour Bioprocess. 2018;5:33–40.
  • Mak WS, Tran S, Marcheschi R, et al. Integrative genomic mining for enzyme function to enable engineering of a non-natural biosynthetic pathway. Nat Commun. 2015;6:10005.
  • Qin F, Qin B, Zhang W, et al. Discovery of a switch between Prelog and anti-Prelog reduction toward halogen-substituted acetophenones in short-chain dehydrogenase/reductases. ACS Catal. 2018;8:6012–6020.
  • Luetz S, Giver L, Lalonde J. Engineered enzymes for chemical production. Biotechnol Bioeng. 2008;101:647–653.
  • Liang J, Borup B, Mitchell V, et al. Ketoreductases for the production of (S,E)-methyl 2-(3-(3-(2-(7-chloroquinolin-2-yl)vinyl)phenyl)-3-hroxypropyl) benzoate. 2012; Patent US 8088610B2.
  • Savile C, Gruber JM, Mundorff E, et al. Ketoreductase polypeptides for the production of a 3-aryl-3-hydroxypropanamine from a 3-aryl-3-ketopropanamine. 2014; Patent US 8673607B2.
  • Ni Y, Xu J-H. Biocatalytic ketone reduction: a green and efficient access to enantiopure alcohols. Biotechnol Adv. 2012;30:1279–1288.
  • Kavanagh KL, Jörnvall H, Persson B, et al. Medium- and short-chain dehydrogenase/reductase gene and protein families : the SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes. Cell Mol Life Sci. 2008;65:3895–3906.
  • Tanaka N, Kusakabe Y, Ito K, et al. Crystal structure of glutathione-independent formaldehyde dehydrogenase. Chem Biol Interact. 2003;143-144:211–218.
  • Ye Q, Yan M, Yao Z, et al. A new member of the short-chain dehydrogenases/reductases superfamily: purification, characterization and substrate specificity of a recombinant carbonyl reductase from Pichia stipitis. Bioresour Technol. 2009;100:6022–6027.
  • Favia AD, Nobeli I, Glaser F, et al. Molecular docking for substrate identification: the short-chain dehydrogenases/reductases. J Mol Biol. 2008;375:855–874.
  • Nordling E, Jörnvall H, Persson B. Medium-chain dehydrogenases/reductases (MDR). Family characterizations including genome comparisons and active site modeling. Eur J Biochem. 2002;269:4267–4276.
  • Korkhin Y, Kalb AJ, Peretz M, et al. NADP-dependent bacterial alcohol dehydrogenases: crystal structure, cofactor-binding and cofactor specificity of the ADHs of Clostridium beijerinckii and Thermoanaerobacter brockii. J Mol Biol. 1998;278:967–981.
  • Esposito L, Sica F, Raia CA, et al. Crystal Structure of the alcohol dehydrogenase from the hyperthermophilic archaeon Sulfolobus solfataricus at 1.85Å resolution. J Mol Biol. 2002;318:463–477.
  • Kavanagh KL, Klimacek M, Nidetzky B, et al. Crystal structure of Pseudomonas fluorescens mannitol 2-dehydrogenase binary and ternary complexes. Specificity and catalytic mechanism. J Biol Chem. 2002;277:43433–43442.
  • Oppermann U, Filling C, Hult M, et al. Short-chain dehydrogenases/reductases (SDR): the 2002 update. Chem Biol Interact. 2003;143-144:247–253.
  • Otagiri M, Kurisu G, Ui S, et al. Crystal structure of meso-2,3-butanediol dehydrogenase in a complex with NAD+ and inhibitor mercaptoethanol at 1.7 Å resolution for understanding of chiral substrate recognition mechanisms. J Biochem. 2001;129:205–208.
  • Otagiri M, Ui S, Takusagawa Y, et al. Structural basis for chiral substrate recognition by two 2,3-butanediol dehydrogenases. FEBS Lett. 2010;584:219–223.
  • Chen X, Zhang HL, Feng JH, et al. Molecular basis for the high activity and enantioselectivity of the carbonyl reductase from Sporobolomyces salmonicolor toward α-haloacetophenones. ACS Catal. 2018;8:3525–3531.
  • Noey EL, Tibrewal N, Jiménez-Osés G, et al. Origins of stereoselectivity in evolved ketoreductases. Proc Natl Acad Sci USA. 2015;112:E7065–E7072.
  • Schlieben NH, Niefind K, Müller J, et al. Atomic resolution structures of R-specific alcohol dehydrogenase from Lactobacillus brevis provide the structural bases of its substrate and cosubstrate specificity. J Mol Biol. 2005;349:801–813.
  • Mu XQ, Xu Y, Yang M, et al. New kinetic and thermodynamic approach of one-pot synthesis of chiral alcohol by oxidoreductase from Candida parapsilosis. Process Biochem. 2011;46:233–239.
  • Bhabha G, Lee J, Ekiert DC, et al. A dynamic knockout reveals that conformational fluctuations influence the chemical step of enzyme catalysis. Science. 2011;332:234–238.
  • Höffken HW, Duong M, Friedrich T, et al. Crystal structure and enzyme kinetics of the (S)-specific 1-phenylethanol dehydrogenase of the denitrifying bacterium strain EbN1. Biochemistry. 2006;45:82–93.
  • Dubey KD, Wang B, Shaik S. Molecular dynamics and QM/MM calculations predict the substrate-induced gating of cytochrome P450 BM3 and the regio- and stereoselectivity of fatty acid hydroxylation. J Am Chem Soc. 2016;138:837–845.
  • Wijma HJ, Floor RJ, Bjelic S, et al. Enantioselective enzymes by computational design and in silico screening. Angew Chem Int Ed Engl. 2015;54:3726–3730.
  • Dhoke GV, Davari MD, Schwaneberg U, et al. QM/MM calculations revealing the resting and catalytic states in zinc-dependent medium-chain dehydrogenases/reductases. ACS Catal. 2015;5:3207–3215.
  • Dhoke GV, Loderer C, Davari MD, et al. Activity prediction of substrates in NADH-dependent carbonyl reductase by docking requires catalytic constraints and charge parameterization of catalytic zinc environment. J Comput Aided Mol Des. 2015;29:1057–1069.
  • Zhu D, Hua L. How carbonyl reductases control stereoselectivity: approaching the goal of rational design. Pure Appl Chem. 2010;82:117–128.
  • Cundari TR, Dinescu A, Zhu D, et al. A molecular modeling study on the enantioselectivity of aryl alkyl ketone reductions by a NADPH-dependent carbonyl reductase. J Mol Model. 2007;13:685–690.
  • Zhu D, Yang Y, Buynak JD, et al. Stereoselective ketone reduction by a carbonyl reductase from Sporobolomyces salmonicolor. Substrate specificity, enantioselectivity and enzyme-substrate docking studies. Org Biomol Chem. 2006;4:2690–2695.
  • Wang S, Nie Y, Xu Y, et al. Unconserved substrate-binding sites direct the stereoselectivity of medium-chain alcohol dehydrogenase. Chem Commun (Camb). 2014;50:7770–7772.
  • Büsing I, Höffken HW, Breuer M, et al. Molecular genetic and crystal structural analysis of 1-(4-hydroxyphenyl)-ethanol dehydrogenase from Aromatoleum aromaticum EbN1. J Mol Microbiol Biotechnol. 2015;25:327–339.
  • Dudzik A, Snoch W, Borowiecki P, et al. Asymmetric reduction of ketones and β-keto esters by (S)-1-phenylethanol dehydrogenase from denitrifying bacterium Aromatoleum aromaticum. Appl Microbiol Biotechnol. 2015;99:5055–5069.
  • Sogabe S, Yoshizumi A, Fukami TA, et al. The crystal structure and stereospecificity of levodione reductase from Corynebacterium aquaticum M-13. J Biol Chem. 2003;278:19387–19395.
  • Yang W, Xu J-H, Xie Y, et al. Asymmetric reduction of ketones by employing Rhodotorula sp. AS2.2241 and synthesis of the β-blocker (R)-nifenalol. Tetrahedron. 2006;17:1769–1774.
  • Zheng J, Piasecki SK, Keatinge-Clay AT. Structural studies of an A2-type modular polyketide synthase ketoreductase reveal features controlling α-substituent stereochemistry. ACS Chem Biol. 2013;8:1964–1971.
  • Niefind K, Müller J, Riebel B, et al. The crystal structure of R-specific alcohol dehydrogenase from Lactobacillus brevis suggests the structural basis of its metal dependency. J Mol Biol. 2003;327:317–328.
  • Nie Y, Wang S, Xu Y, et al. Enzyme engineering based on X-ray structures and kinetic profiling of substrate libraries: alcohol dehydrogenases for stereospecific synthesis of a broad range of chiral alcohols. ACS Catal. 2018;8:5145–5152.
  • Sun Z, Lonsdale R, Ilie A, et al. Catalytic asymmetric reduction of difficult-to-reduce ketones: triple-code saturation mutagenesis of an alcohol dehydrogenase. ACS Catal. 2016;6:1598–1605.
  • Nealon CM, Musa MM, Patel JM, et al. Controlling substrate specificity and stereospecificity of alcohol dehydrogenases. ACS Catal. 2015;2:2100–2114.
  • Karume I, Takahashi M, Hamdan SM, et al. Deracemization of secondary alcohols by using a single alcohol dehydrogenase. ChemCatChem. 2016;8:1459–1463.
  • Musa MM, Bsharat O, Karume I, et al. Expanding the substrate specificity of Thermoanaerobacter pseudoethanolicus secondary alcohol dehydrogenase by a dual site mutation. Eur J Org Chem. 2018; 2018:798–805.
  • Friest JA, Maezato Y, Broussy S, et al. Use of a robust dehydrogenase from an archael hyperthermophile in asymmetric catalysis-dynamic reductive kinetic resolution entry into (S)-profens . J Am Chem Soc. 2010;132:5930–5931.
  • Klimacek M, Kavanagh KL, Wilson DK, et al. Pseudomonas fluorescens mannitol 2-dehydrogenase and the family of polyol-specific long-chain dehydrogenases/reductases: sequence-based classification and analysis of structure-function relationships. Chem Biol Interact. 2003;143–144:559–582.
  • Yan Z, Nie Y, Xu Y, et al. Biocatalytic reduction of prochiral aromatic ketones to optically pure alcohols by a coupled enzyme system for cofactor regeneration. Tetrahedron Lett. 2011;52:999–1002.
  • Filling C, Berndt KD, Benach J, et al. Critical residues for structure and catalysis in short-chain dehydrogenases/reductases. J Biol Chem. 2002;277:25677–25684.
  • Tanaka N, Nonaka T, Nakamura KT, et al. SDR: structure, mechanism of action, and substrate recognition. COC. 2001;5:89–111.
  • Kallberg Y, Persson B. Prediction of coenzyme specificity in dehydrogenases/reductases. A hidden markov model-based method and its application on complete genomes. Febs J. 2006;273:1177–1184.
  • Thompson MP, Turner NJ. Two-enzyme hydrogen-borrowing amination of alcohols enabled by a cofactor-switched alcohol dehydrogenase. ChemCatChem. 2017;9:3833–3836.
  • Schoemaker HE, Mink D, Wubbolts MG. Dispelling the myths-biocatalysis in industrial synthesis. Science. 2003;299:1694–1697.
  • Karabec M, Łyskowski A, Tauber KC, et al. Structural insights into substrate specificity and solvent tolerance in alcohol dehydrogenase ADH-'A' from Rhodococcus ruber DSM 44541. Chem Commun (Camb). 2010;46:6314–6316.
  • Li C, Heatwole J, Soelaiman S, et al. Crystal structure of a thermophilic alcohol dehydrogenase substrate complex suggests determinants of substrate specificity and thermostability. Proteins. 1999;37:619–627.
  • Musa MM, Ziegelmann-Fjeld KI, Vieille C, et al. Xerogel-encapsulated W110A secondary alcohol dehydrogenase from Thermoanaerobacter ethanolicus performs asymmetric reduction of hydrophobic ketones in organic solvents. Angew Chem. 2007;119:3151–3154.
  • Zhu D, Malik HT, Hua L. Asymmetric ketone reduction by a hyperthermophilic alcohol dehydrogenase. The substrate specificity, enantioselectivity and tolerance of organic solvents. Tetrahedron. 2006;17:3010–3014.
  • Ashraf R, Rashid N, Kanai T, et al. Pcal_1311, an alcohol dehydrogenase homologue from Pyrobaculum calidifontis, displays NADH-dependent high aldehyde reductase activity. Extremophiles. 2017;21:1101–1110.
  • Alsafadi D, Paradisi F. ffect of organic solvents on the activity and stability of halophilic alcohol dehydrogenase (ADH2) from Haloferax volcanii. Extremophiles. 2013;17:115–122.
  • Michael Breuer D, Ralf Rabus B, Johann Heider M. Method for producing optically active alcohols using an Azoarcus sp. Ebn1 Dehydrogenase. 2012; Patent US 8338146B2.
  • Radianingtyas H, Wright PC. Alcohol dehydrogenases from thermophilic and hyperthermophilic archaea and bacteria. FEMS Microbiol Rev. 2003;27:593–616.
  • Vieille C, Zeikus GJ. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev. 2001;65:1–43.
  • Zhu D, Hyatt BA, Hua L. Enzymatic hydrogen transfer reduction of α-chloro aromatic ketones catalyzed by a hyperthermophilic alcohol dehydrogenase. J Mol Catal B Enzym. 2009;56:272–276.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.